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Growing grapevine (Vitis vinifera) is a key contribution to the economy of many countries.

Tools provided by genomics and bioinformatics did help researchers in obtaining

biological knowledge about the different cultivars. Several genetic markers for common

diseases were identified. Recently, the impact of microbiome has been proved to be of

fundamental importance both in humans and in plants for its ability to confer protection

or induce diseases. In this review we report current knowledge about grapevine

microbiome, together with a description of the available computational methodologies

for meta-omics analysis.
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1. INTRODUCTION

Vitis vinifera is one of the most important plant in modern agriculture. Its economic and cultural
impact is undeniable (Mullins et al., 1992; Pulvirenti et al., 2015). Almost 8 million hectares of
vineyards (Vivier and Pretorius, 2000) together with 5, 000 estimated cultivars (Jackson, 1994)make
grapevine economic contribution to wine-producing countries very significant. Improving wine
quality and increasing grapevine pathogens and environmental stress resistance is crucial for wine
industry (Vivier and Pretorius, 2002).

In 2007, the French-Italian Public Consortium for Grapevine Genome Characterization
sequenced the first genome ofV. vinifera Jaillon et al. (2007). Grapes genome has driven amultitude
of studies on the genetics of grapes (Tomkins et al., 2001; Adam-Blondon et al., 2005, 2011;
Lamoureux et al., 2006). Research attention has been also focused on grapevine transcriptome
analysis. Gene expressions and trascriptional profiling data analysis have shed light on several V.
vinifera biological processes. In particular the following biological functions have been considered:
(i) ripening andmaturation (Fortes et al., 2011; Guillaumie et al., 2011; Fasoli et al., 2012; Lijavetzky
et al., 2012); (ii) dormancy transitioning (Sreekantan et al., 2010); (iii) and resistance to pathogens
and environmental conditions (Grimplet et al., 2009; Polesani et al., 2010; Tillett et al., 2011;
Pulvirenti et al., 2015). Nowadays, an increasing amount of knowledge proves the importance of
beneficial plant-associated microbes in plant health, growth, nutrition and stress resistance, as well
as in increasing crop quality thanks to their biostimulant properties (Rouphael et al., 2015; Pieterse
et al., 2016). From a functional point of view, plant microbiome is comparable to gut microbiome in
mammals, and it has been defined as the plant’s second genome. In this perspective, plant fitness (a
quantitative description of survival and reproductive success of a plant in a given environment) is
the point of convergence of two components: the plant itself and its associated microbiota, which
collectively form a holobiont (Vandenkoornhuyse et al., 2015). Indeed, it has been shown that
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grapevine growth and survival are significantly impacted by
its microflora. This latter has been identified as a key factor
influencing not only plant fitness, but also many vine traits,
positively contributing viticulture economy. Many viticulturists
are now persuaded that wine organoleptic properties are partly
due to microbes influence.

One of the most accepted principle in this field concerns the
beneficial effects of mycorrhizal symbiosis. Indeed, grapevine
growth is remarkably dependent on mycorrhizae, since this
plant has low-density roots and few root hairs. Mycorrhizal
fungi improve water use efficiency, soil nutrient uptake, and
biomass production in grapevine. Furthermore, arbuscular
mycorrhizal communities composition in vineyards is largely
influenced by surrounding vegetation (Holland et al., 2014).
According to the latest studies, based principally on culture-
independent methods, the eukaryotic microbiome of V.
vinifera is characterized by fungi belonging to early diverging
fungal lineages, Ascomycota and Basidiomycota. On the other
hand, prokaryotic microbiome is prevalently composed by
Proteobacteria, followed by Firmicutes, Actinobacteria and
Bacteroidetes. At species level, these microorganisms, either
epiphytes or endophytes, are not uniformly distributed along
the vine. Belowground microbial communities significantly
differ from aboveground ones. More precisely, the level of
biodiversity decreases from belowground to aboveground.
Furthermore, aboveground microbiota is subject to temporal
variation during grapevine vegetative cycle and agricultural
practices like integrated pest management (Pancher et al., 2012;
Martins et al., 2013; Campisano et al., 2014; Pinto et al., 2014;
Zarraonaindia et al., 2015). In healthy conditions, within the
aboveground fungal microorganisms, the Aureobasidium genus
results to be predominant and ubiquitous all over vine’s organs,
including leaves and barks. In this group, A. pullulans is by
far the most abundant fungal species. Cryptococcus spp. and
Rhodotorula spp. are frequently found on leaves and grapes
with a high relative abundance, while Candida spp. and Pichia
spp. are more present on grapes than other parts of the plant.
All together, these microorganisms are capable of exerting
antibacterial activity, inhibiting spore germination and mold
growth, resulting in a protector effect on vine and grapes (Raspor
et al., 2010; Mousa and Raizada, 2013). Similarly, bacterial
species of the genera Pseudomonas and Bacillus are widely
spread on flowers, leaves and grapes. Genera Burkholderia,
Sphingomonas, Serratia and Streptococcus are more present
on leaves and grapes. Finally, Erwinia spp. are dominant in
flowers. These bacterial genera are among the most abundant
in grapevine and some of them are well established bacterial
and yeast antagonists (De Vleesschauwer and Höfte, 2003;
Trotel-Aziz et al., 2008; Elshafie et al., 2012). Besides beneficial
microbes, metagenomic analysis also revealed the presence
of phytopathogen microorganism living on grapevines, albeit
normally with low abundance, like fungal species of the genera
Phomopsis, Cryptovalsa, and Botryotinia (Pinto et al., 2014).
Keeping a balance between beneficial microorganisms, in terms
of abundance and richness, is of crucial importance for grapevine
health and biocontrol of pathogens.

Grapevine microbiota is influenced by several factors,
including pedoclimatic and biogeographic conditions. The
concept of a region-specific microbiota gives strength to the
concept of “terroir,” on which viticulturists often heavily rely.
Not all regions and vineyards are microbiologically unique, but
evidences prove the existence of patterns at least on a large
scale for microbial communities in grapes and musts. These
correlate with climate, soil type and crop management (Bokulich
et al., 2016). On the other hand, it is important to stress
that studies on the biogeographic structural characterization of
the grapevine microbiota have been mainly carried on grape
samples. Furthermore, there is a lack of information regarding
the role of soil microbiome in defining the terroir at a local
scale, as well as the influence exerted by grapevine roots on
soil microorganisms and vice versa. A recent study suggests
that soil microbiome could represent a potential reservoir, since
about 40% of bacterial OTUs obtained from grape, leaf and
flower samples are also present in root samples. Moreover,
about 48% of prokaryotic OTUs from three different types of
belowground samples overlap (Zarraonaindia et al., 2015). Rolli
et al. reported that plant growth promoting bacteria (PGPB) of
different geographical origins and different crop plants rapidly
colonizes the root system of grapevine. This allows the growth
of grapevine under different field conditions. However, authors
found contrasting results in the literature concerning the effect
of PGPB on different plants. This clearly suggests that a more in
dept analysis is needed (Rolli et al., 2017).

2. COMPUTATIONAL METHODS FOR
MICROBIOME ANALYSIS

Given the recent interest in meta-omics sciences, many
computational methodologies are rising to allow the
interpretation of the large amount of data produced by
high-throughput techniques. The primary purpose of these
studies has been the identification of microorganisms present
in a environmental sample, determining their activity and
interaction with host plant.

Metagenomic methodologies, developed to establish
microbiome composition, are divided in two classes: DNA
Metabarcoding techniques and Genome Relative Abundance
(GRA) estimation techniques.

DNA Metabarcoding aims at identifying a set of operational
taxonomic units (OTUs) present in a single environmental
sample. However, this method requires specific algorithmic
techniques capable of handling large amounts of data. QIIME
(Quantitative Insights into Microbial Ecology: Caporaso et al.,
2010) is a suite of tools combined to define standard pipelines
for metabarcoding analysis. It provides a set of analysis and
prediction algorithms, along with graphical reports, allowing a
simplified analysis of the results. OBITools (Boyer et al., 2016)
is another tool enabling analysis from raw sequencing data up
to taxon assignment. PRINSEQ (Schmieder and Edwards, 2011)
offers functionality similar to QIIME and OBITools through
a web interface. Several other tools are available: UPARSE

Frontiers in Plant Science | www.frontiersin.org 2 January 2018 | Volume 8 | Article 2241

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Alaimo et al. Knowledge and Tools for Grapevine Meta-Omics

(Edgar, 2013) aims to detect de novo OTUs from NGS reads
achieving high accuracy in biological sequence recovery, and
improving richness estimate; MOTHUR (Schloss et al., 2009) is
a comprehensive software package, which analyzes community
sequencing data; DADA2 (Callahan et al., 2016) is a model-based
approach to correct amplicon errors without constructing OTUs.
See Table 1 for an overview of described methods.

The main shortcoming of metabarcoding is the classification
of OTUs using an existing reference, and the preparation of
specific sequencing libraries (Somervuo et al., 2016). Recently,
techniques have been developed to detect microbial composition
directly from shotgun sequencing. These approaches can be
divided into two categories: compositional-based and alignment-
based (Xia et al., 2011). In compositional-based approaches, k-
mer frequency measurements are used to classify metagenomic
reads. Methods such as TETRA (Teeling et al., 2004),
CompostBin (Chatterji et al., 2008) and TACOA (Diaz et al.,
2009) organize sequences in clusters (k-mer frequency is used
to build a feature vector to compute distances between reads).
Next, they assign an unique taxon to each cluster through a set of
references computed on known genomes. However, none of these
approaches is able to estimate Genomes Relative Abundance
(GRAs) for microbial communities. AbundanceBin (Wu and
Ye, 2011) uses the content of k-mers in the reads to estimate
abundance of the genomes. The main assumption in this process
is that reads are sampled from genomes following a Poisson
distribution. However, detection efficiency decreases when a
uniform distribution of species is present in a sample.

Unlike compositional-based algorithms, alignment-based
methods use tools such as BLAST to find similarity to a reference
species database, while estimating the relative abundance of each
genome. MEGAN (Huson et al., 2007) uses BLAST to assign
a species to each read, tracing the lowest common ancestor
for those with multiple assignments. Then, it estimates the
relative abundance using reads distribution normalized by taking
into account ambiguous ones. GRAMMy (Genome Relative
Abundance using Mixture Models: Xia et al., 2011) uses BLAST
to perform an initial assignment of the species to each read. Next,
it uses Expectation Maximization (EM) technique to establish
probability assignment of the reads, modeling ambiguities, and
accurately identifying the relative quantities of each species. See
Table 1 for an overview of described methods.

Although the metagenomic approach can estimate a profile
of a sample microbial community, it only allows comparative
studies in different conditions, without providing insight on
their actual activity (Simon and Daniel, 2011). A complementary
view is given by metatranscriptomics. It gives details on the
expression profiles and regulation mechanisms in the identified
microorganisms (See Table 3 for an overview of all methods).

This produces details concerning progress and intensity of
biological and metabolic processes, elucidating the means by
which a microbial community interacts with its host. Several
tools can analyze RNA-seq data to extract information about
microbial transcriptome. In Leimena et al. (2013), authors
propose a comprehensive platform for metatranscriptomics
analysis. It allows removal of rRNA sequences, prediction of
taxonomic origin and assignment of a function to mRNAs

in a sample. HUMAnN2 (Abubucker et al., 2012) can detect
the presence, absence, and abundance of microbial pathways
through sequencing data. The purpose of the suite is describing
the metabolic potential of a microbial community and its
members, establishing a functional profile. MetaTrans (Martinez
et al., 2016) is an open-source pipeline, which analyzes the
structure and function of an active microbial community
in a sample. It was developed to analyze large amounts of
data produced by sequencing leveraging parallel computing
techniques. COMAN (Ni et al., 2016) is a tool for determining
themetatranscriptome through an easy-to-use web interface. The
primary purpose of the platform is providing tools for quality
control, metatranscripts counting, and several statistical analyzes.
It can be used in the absence of sufficient computational resources
and without any programming expertise, since it is based on a
web interface. See Table 2 for an overview of described methods.

An important limitation of the methods analyzed so far
is the use of functional enrichment to establish microbial
pathway activity. Recently, a new paradigm has emerged. Indeed,
considering both gene expression and their interaction network
can lead to more accurate results (Tarca et al., 2008; Alaimo et al.,
2016, 2017). These tools have great potential formicrobial activity
analysis and quantifying microbial interactions with the host,
through its pathways.

3. MANIPULATING GRAPEVINE
MICROBIOME: FROM IN SILICO TO THE
FIELD

Traditionally, to overcome the low economic returns caused by
Grapevine Trunk Diseases (GTDs), viticulturists treat plants with
pesticides. Commercially available microbial inoculants are also
available. Most of these inoculants includes individual bacterial
or fungal strains, aiming to contrast grapevine pathogens without
causing environmental pollution (McSpadden Gardener and
Fravel, 2002). However, despite the availability of registered
biocontrol products, recently published data report that their
adoption in viticulture is still limited mainly due to the belief that
they are less effective than traditional pesticides (Gramaje and
Di Marco, 2015).

The growing understanding of microbial influence on plants
is driving us toward an innovative sustainable viticulture
where microbes will replace pesticides, improving grapevine
traits. In this new scenario, culture-independent molecular
techniques and in silico analysis are the new protagonists.
Metagenomics, metabarcoding, metatranscriptomics and other
molecular approaches applied to healthy, pesticides-treated, and
disease-affected grapevines are revealing specific patterns of
colonizing microorganisms. This will enable the development of
prediction models based on structure and transcriptional profile
of organ-specific vine-associated microbiome.

Some recent works focused onGTD-affected vines highlighted
the importance of microbial communities influence. In field
conditions, plant infectious diseases are rarely due to single
host-pathogen interactions. They are the result of simultaneous
biotic and abiotic stresses on plants, which induce a sequential
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TABLE 1 | Brief description of metabarcoding: tools advantages and disadvantages.

Tool Bioinformatics tools for metabarcoding

Brief description Advantages Disadvantages

QIIME Pipeline for performing microbiome analysis by exploiting

a set of integrated scripts for analyzing raw microbial

DNA samples, including taxonomic classification using

marker genes.

Allows flexible multi-script pipelines to be constructed.

Allows wide statistical analysis with advanced graphical

visualizations. Provides compute resources for free.

Command line interface. Installation

on local machine may be difficult for

non-experts. Not multi-platform.

OBITool Set of programs specifically designed for analyzing NGS

data in a DNA metabarcoding context, designed to

target microbial communities from various ecological

contexts.

Relies mainly on filtering and sorting algorithms,

allowing users to set up flexible data analysis pipelines.

It takes into account taxonomic annotations, allowing

sorting and filtering of sequence records based on the

taxonomy.

Command line interface. Installation

on local machine may be difficult for

non-experts. Not multi-platform.

PRINSEQ Projected to trim adapter sequences and low quality

ends and to remove the reads containing ambiguous

nucleotides and duplicate reads from the sequencing

data output, accelerating read data analysis.

User-friendly. Generates complete statistics of

data-seq for parameters like sequence length, GC

content, quality score and replicates. Capable of

treating both single and paired-end reads. Exploitable

also for metagenomics and metatranscriptomics data.

Window size needs to be defined by

users for the initial trimming step.

Limited to pre-processing.

MOTHUR Principally designed to target the microbial ecology

community, it provides an extensible package with

functionality accessible through a domain-specific

language. It incorporates algorithms from previous tools

plus additional features.

Single program for complete analysis with basic

visualizations.

Custom command line interface.

Incomplete usage of software

engineering techniques. Not

multi-platform.

DADA2 R package implementing the full amplicon workflow,

from filtering to merging of paired-end reads.

Uses a statistical model of amplicon errors to infer

sequence variance instead of construct OTUs. Very

high accuracy.

Command line interface.

TABLE 2 | Brief description of GRA estimation tools: advantages and disadvantages.

Tool Bioinformatics tools for Genomes Relative Abundance (GRA) estimation

Brief description Advantages Disadvantages

TETRA Pioneering classifier that uses

tetranucleotide-derived z-score correlations to

taxonomically classify genomic fragments.

Compositional-based.

Provides statistical analysis of tetranucleotide

usage patterns in genomic fragments. It works

either via a web-service or a stand-alone

program.

Accuracy at genus level is reached using long

reads (>1 kb). Tends to create multiple clusters

for reads originating from highly abundant

species when the sample contains multiple

species with highly varying levels of abundance.

CompostBin DNA compositional-based algorithm which

adopts a weighted Principal Component

Analysis (PCA)-based strategy.

Compositional-based.

Reduces the dimensionality of compositional

space. Bins raw sequence reads without need

for assembly or training.

Accuracy at genus level is reached using long

reads (>1 kb). Tends to create multiple clusters

for reads originating from highly abundant

species when the sample contains multiple

species with highly varying levels of abundance.

TACOA Multi-class taxonomic classifier combining the

idea of the k-nearest neighbor with strategies

from kernel-based learning.

Compositional-based.

Easily installed and run on a desktop computer.

Its reference set can be easily updated with

newly sequenced genomes.

Accuracy at genus level is reached using long

reads (>1 kb).

AbundanceBin Binning tool, based on the l-tuple content of

reads, developed on the assumption that reads

are sampled from genomes following a Poisson

distribution. Compositional-based.

Capable to return accurate results also when

the sequence lengths are very short (∼75 pb).

Binning efficiency decrease in case of samples

which tend to have a uniform distribution of

species.

MEGAN Standalone computer program allowing large

metagenomic data sets. It uses BLAST or other

comparison tools to assign species to each

read, and then employs the NCBI taxonomy.

Alignment-based.

Allows large data sets to be dissected without

the need for assembly or the targeting of

specific phylogenetic markers. Provides

statistical and graphical output. Computes

quantitatively accuracy and specificity.

Uses bit-score of individual hits as the sole

parameter for judging significance, thus

affecting specificity and accuracy of taxonomic

assignments in different scenarios.

GRAMMy Probabilistic framework developed for GRA. It

uses the Mixture Model theory.

Exploitable with mapping, alignment and

composition-based tools. Possibility to handle

very short reads obtaining accurate results.

Accuracy in estimated abundance decreases in

case of closely related microbes whose

genomic sequences are highly similar.
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TABLE 3 | Brief description of metatranscriptomics tools: advantages and disadvantages.

Tool Bioinformatics tools for metatranscriptomics

Brief description Advantages Disadvantages

HUMAnN2 Pipeline for profiling the presence/absence and

activity level of microbial pathways in a

community.

Easy to install and extensive documentation and

examples. Uses commonly available tools and

databases.

Command line interface.

MetaTrans Pipeline aiming to analyze structure and

functions of active microbial communities using

the power of multi-threading computers.

Its design facilitates the inclusion of third-party tools

in each of its stages. Possibility to perform

RNA-Seq analyses addressing both 16S rRNA

taxonomy and gene expression.

Installation on local computer may be difficult

for non-experts. Require proper local setup on

a powerful computer.

COMAN Web-based tool dedicated to automatically and

comprehensively analyzing metatranscriptomic

data.

Easy-to-use interface and extensive instructions for

non-experts. Processes uploaded raw reads

automatically to ultimately achieve functional

assignments, which are then exploited to perform

further analysis.

Web-based interface not suitable for big

analysis.

colonization process of the host tissue (Travadon et al., 2016;
Song et al., 2017). Beneficial microbial communities work as
a barrier defending against plant pathogens. This reduces the
potential of pathogens invasiveness, since a significant fraction
of their niche overlaps (Wei et al., 2015).

In Esca-affected vines the fungal community structure
undergoes a considerable change in comparison with healthy
plants (Morales-Cruz et al., 2017). In apparently healthy
vines, very low fungal counts were recorded. Phaeomoniella
chlamydospora and Phaeoacremonium minimum (two Esca
pathogens) appeared to be relatively more abundant than other
taxa. The most variable fungal composition was reported in vines
with wood symptoms but no foliar symptoms, with a generalized
notable increase in abundance and activity of pathogenic fungal
taxa. Furthermore, P. chlamydospora and P. minimum were
reported to be highly predominant in wood together with
Diaporthe ampelina (causal agents of Botryosphaeria dieback). No
significant changes were reported for the bacterial community,
since the nine most abundant species belonged to the genera
Bacillus and Pantoea. However, a deeper analysis of the bacterial
community is required, especially from a functional point of
view (Bruez et al., 2015). For instance, the antagonistic activity
of two microbial strains of Bacillus pumilus and Paenibacillus
sp. against P. chlamydospora was recently tested in vitro. These
two strains can synthesize volatile compounds with antifungal
activity. Furthermore, B. pumilus inoculation confers a systemic
resistance in grapevine (Haidar et al., 2016). Such experiments
indicate that pathogen detection methods aiming to differentiate
between the early and late stages of infection should be
quantitative (Morales-Cruz et al., 2017). Therefore, the usage
of metatranscriptomics tools, in combination with pathway
analysis, of healthy and affected plants, might elucidate the
functional relationships between microbial communities, leading
to the discovery of novel interactions.

The fungal pathogen Eutypa lata is predominant in
wood tissues of Eutypa dieback affected vines, followed by
high abundances of Diplodia seriata and Phaeomoniella
chlamydospora (Morales-Cruz et al., 2017). No information
is available concerning the bacterial community changes with

respect to this disease. Yet, it was shown that in crown gall
affected grapevines, changes in bacterial community is site-
specific since a shift in composition happened only in graft
unions. Agrobacterium vitis is the infectious agent causing the
disease (Faist et al., 2016). Authors recorded that the difference
in microbial community composition was due to nine bacterial
species. The most abundant ones were A. vitis, Pseudomonas sp.
and Enterobacteriaceae sp. However, it was determined that the
induction of this disease by A. vitis do not necessarily requires
a core microbiome. Morales-Cruz et al. (2017) detected some
pathogenic fungi also in asymptomatic samples, especially P.
chlamydospora and P. minimumwith a ratio of 1:200 in respect to
GTD-affected samples. Therefore, a more in-depth metagenomic
analysis is needed in order to elucidate the composition of the
microbial community, with a greater effort on pathological
strains.

Metatranscriptomic analysis and functional profiling
also helps identifying biological processes linked to specific
conditions. For example, Morales-Cruz et al. (2017) showed that
most virulence-related expressed genes belonged to carbohydrate
active enzymes and transporters, followed by genes related to
secondary metabolism, cytochrome P450s and peroxidases. In
addition, authors demonstrated that it is possible to distinguish
the Esca pathogenic functional profile from Eutypa dieback
one. A recent metabolomics experiment also showed indirectly
that inoculation of specific endophytes strains causes a shift
in grapevine secondary metabolism, and activation of defense
pathways. Furthermore, it was confirmed the existence of
strain-specific colonization patterns (Lòpez-Fernàndez et al.,
2016).

Transcriptomic analysis of grapevine leaves and wood
tissues revealed differentially expressed genes linked to latent
Neofusicoccum parvum grapevine infection (Czemmel et al.,
2015). However, this information is still largely incomplete.

In accordance with Busby et al. (2017), research should have
different objectives to enable a reasoned, conscious and effective
microbial exploitation, taking into account the impact of plant
protection products on the quality of production and human
health. In this direction, computational tools could be exploited
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to detect interactions among genes, pathogens and treatments,
leading to a greater insight on their possible use and effects.
Recent review on suchmethods is available in Lotfi Shahreza et al.
(2017).

4. A CASE STUDY: METABARCODING
ANALYSIS OF GRAPEVINE IN CHILE

In order to show the power of bioinformatics metagenomic
analysis in the study of grapevine, we developed a case study from
16S rRNA sequencing data from vineyards and adjacent forest
areas in the Chilean territory (SRA Project: SRP110820; Miura
et al. 2017). The study analyzed 6 vines from three Chilean
geographic areas, and sclerophyllous trees from the adjacent
forest area. Vines were sampled from both leaves and fruits. All
analysis were replicated 3 times, leading to 54 samples, of which
36 grapevine and 18 controls. 2 samples were discarded due to
quality issues. All analysis were conducted using QIIME 2 release
2017.9.

Paired-end Raw Illumina fastq files downloaded from SRA
(SRP110820) were demultiplexed, quality filtered, and analyzed
using QIIME. Reads containing one or more ambiguous base
calls were discarded and truncated to a length of 200 nt. A
subsequent filtering phase was performed using Deblur (Amir
et al., 2017) to obtain putative error-free sequences from the
original data. A phylogenetic tree was therefore built by making
use of MAFFT (Katoh and Standley, 2013) and FastTree 2 (Price
et al., 2010) allowing computation of subsequent diversity
metrics.

Alpha-diversity (within-sample species richness) and
beta-diversity (between-sample community dissimilarity)
estimates were calculated within QIIME using weighted
UniFrac (Lozupone and Knight, 2005) distance between
samples for bacterial 16S rRNA reads (evenly sampled at 1,000
reads per sample). Principal coordinates were computed from
the resulting distance matrices to compress dimensionality
intro 2D principal coordinate analysis (PCoA) plots, enabling
visualization of sample relationships (Figure 1A). To determine
whether sample classifications (host, sample site) contained

FIGURE 1 | Results of the metabarcoding analysis of grapevine in Chile. The study analyzes 6 vines from three Chilean geographic areas, and sclerophyllous trees

from the adjacent forest area. Vines are sampled from both leaves and fruits. All analysis are replicated 3 times, leading to 54 samples, of which 36 grapevine and 18

controls. 2 samples are discarded due to quality issues. Principal coordinates analysis plot is reported to visualize relationships between samples (A). We also show

the relative abundance of operational taxonomic units, assigned using QIIME feature classifier, at phylum level (B), together with the median abundance values

obtained for the most significant species in the differential analysis between sampling sites (C) and plant species (D).
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differences in phylogenetic or species diversity, permutational
MANOVA with 1,000 permutations was used to test significant
differences between sample groups based on weighted UniFrac.
No significant differences could be found in terms of alpha-
diversity between hosts (p = 0.18) and sample sites (p = 0.41),
and beta-diversity between sample sites (p = 0.13), however a
significant difference in beta-diversity could be observed between
host species (p = 0.03).

OTUs were assigned using QIIME feature classifier, which
employs a Naive Bayes classifier to map each sequence to a
taxonomy. The classifier was trained on a qiime-compatible
Silva database (release 119), which includes sequences from
16S/18S rRNA. Any OTU representing less than 0.001% of
the total filtered sequences was removed to avoid inclusion
of erroneous reads, leading to inflated estimates of diversity.
In Figure 1B we report the relative frequency of OTUs for
each sample, sorted by site and host. Significant taxonomic
differences between sample conditions were tested using
ANCOM (Mandal et al., 2015). All results are available in
Figures 1C,D.

Results shown in Figure 1B are consistent with Miura
et al.. We are able to retrieve the three main bacterial
phyla (Actinobacteria, Firmicutes and Proteobacteria), and
relative abundances are consistent. Furthermore, grapevine-
related bacterial communities are similar to the phyllosphere
of sclerophyllous trees when OTUs clustering is carried out
at high bacterial taxonomic levels. This is not surprising
since plants are known to show similar pattern at phylum
level (Turner et al., 2013). Nonetheless, several differences
can be detected at the genus, species or strain level. It is
possible to make distinction between bacterial communities
living on different plant species. This reflects the finely tuned
metabolic adaptations required to live in symbiosis with the host
(Figure 1D), but also between microbial communities living on
different organs, reflecting the adaptations required to live in

environment characterized by certain microclimatic conditions
(Figure 1C).

5. CONCLUSIONS AND PERSPECTIVES

Gaining wider knowledge about plant-microbiota interactions
at a molecular scale is an urgent task, since it can lead to
the development of new biotechnological approaches, enhancing
agriculture productivity and sustainability. NGS technologies
together with bioinformatics are fundamental tools in this
process. They have the potential to reveal new details concerning
interactions between microbial communities and plants with
unprecedented resolution. The characterization of microbial
communities in grapevines at various conditions using high
throughput sequencing technologies will sooner lead to the
identification of disease-specific, cultivar-specific and climate-
specific grapevine microbiota. Their exploitation in the field
of viticulture could lead to the discovery of new applicable
microbial strains, and could help us gaining a holistic and more
complete view of plant-microbiome interactions at a genetic
level. This would allow not only to potentiate antagonisms
against phytopathogens and crop yield, but also to positively
affect economically important traits, such as flowering time, and
quality and flavor of grapes, must and wine.
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