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Plants confront multifarious environmental stresses widely divided into abiotic and biotic

stresses, of which heavy metal stress represents one of the most damaging abiotic

stresses. Heavy metals cause toxicity by targeting crucial molecules and vital processes

in the plant cell. One of the approaches by which heavy metals act in plants is by over

production of reactive oxygen species (ROS) either directly or indirectly. Plants act against

such overdose of metal in the environment by boosting the defense responses like

metal chelation, sequestration into vacuole, regulation of metal intake by transporters,

and intensification of antioxidative mechanisms. This response shown by plants is the

result of intricate signaling networks functioning in the cell in order to transmit the

extracellular stimuli into an intracellular response. The crucial signaling components

involved are calcium signaling, hormone signaling, and mitogen activated protein kinase

(MAPK) signaling that are discussed in this review. Apart from signaling components

other regulators like microRNAs and transcription factors also have a major contribution

in regulating heavy metal stress. This review demonstrates the key role of MAPKs in

synchronously controlling the other signaling components and regulators in metal stress.

Further, attempts have been made to focus on metal transporters and chelators that are

regulated by MAPK signaling.

Keywords: calcium signaling, chelators, heavy metals, hormones, MAPKs, metal transporters, metallothioneins,

microRNAs

INTRODUCTION

Heavy metals are essential to life only in trace amount while their excess amount causes cellular
damage. The heavy metals present in environment affecting the growth of many organisms are
iron (Fe), arsenite (AsIII), arsenate (AsV), cadmium (Cd), chromium (Cr), lead (Pb), copper
(Cu), mercury (Hg), aluminum (Al), etc. These metals have not only known to perturb animal
kingdom but also plant kingdom. Their damaging impact on our agriculture has also been
very well-documented (Tchounwou et al., 2012). At cellular level elevated quantity of heavy
metals imposes damage by wide number of mechanisms. The most common mechanism is
the production of reactive oxygen species (ROS) inducing oxidative stress, while others are
inactivation of biomolecules by displacement of essential metal ions or by blocking essential
functional groups (Stohs and Bagchi, 1995). Metals like As, Cd, Cr, Pb, Hg are able to work by
displacing essential metal ions or blocking functional groups. Metals like Fe and Cu, which are
redox active, generate ROS directly through redox reactions; in contrast, other metals like Pb,
Cd, Ni, Al, Mn, and Zn generate ROS by indirect mechanisms. The indirect mechanism of ROS
production includes stimulation of ROS producing enzymes like NADPH oxidases or displacing
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essential cations from the binding sites of enzymes and inhibiting
their activities. ROS at normal physiological level play essential
role however its enhanced generation deteriorates functioning
of cell (Cuypers et al., 2009). Plants show defense against these
heavymetal ions by adsorbing them on to the chelatingmolecules
[for e.g., phytochelatins (PCs), metallothionines, etc.] and by
sequestration into the vacuoles (Figure 1). Many of the defense
responses (not all) shown by the plants are due to the major
contribution by signaling cascades, which perceive the signal
from upstream receptors and transmit into the nucleus, thus
regulating several defense related genes. The receptors that are
known to perceive the signals and are well studied in plant stress
and development include receptor like protein kinases (RLKs),
flagellin sensitive 2 (FLS2), EF-Tu receptor (EFR), ethylene
resistance1/2 (ETR1/2), salt intolerance 1 (SIT1), ERECTA (ER),
etc. (Rodriguez et al., 2010; Sinha et al., 2011; Jalmi and Sinha,
2015). The major signaling networks working in metals stresses
in addition to the other environmental stresses are calcium
signaling, hormone signaling and MAPK signaling. Calcium
signaling employs multitude of calcium sensing proteins like
Calmodulins (CaMs), CaM like proteins (CMLs), Calcineurin
B-like proteins (CBLs), and Ca2+-dependent protein kinases
(CDPKs) that bind to Ca2+ and trigger different downstream
signaling pathways (Luan et al., 2002; Sanders et al., 2002; Dodd
et al., 2010; Steinhorst and Kudla, 2014). In case of hormone
signaling there are different plant hormones that play role
in metal stress response (Cao et al., 2009; Vitti et al., 2013;
Chen et al., 2014; Zhao et al., 2014). Of the several signaling
modules, the most predominant and complex is the mitogen
activated protein kinase (MAPK) signaling composed of three-
tier phosphorylation module MAPKKKs (Mitogen Activated
Protein Kinase Kinase Kinase), MAPKKs (Mitogen Activated
Protein Kinase Kinase), and MAPKs (Mitogen Activated Protein
Kinase) (Hamel et al., 2006). MAPKs are substantially known in
providing tolerance against biotic and abiotic stress (Rodriguez
et al., 2010; Rao et al., 2011; Sinha et al., 2011) (Figure 2).

During environmental stress plants exhibit molecular
response that helps them to adapt during various environmental
calamities. Plant’s molecular response to metal stress is signified
by the synthesis of signaling molecules and stress-related
proteins like metal transporters and chelators. They tackle the
heavy metal toxicity by chelating and sequestering them in the
plant vacuoles, serving as temporary storage of essential as well
as toxic metabolites (Sharma and Dietz, 2006; Verbruggen et al.,
2009; Mendoza-Cózatl et al., 2011) (Figure 1). Based on this
ability plants are now being widely used for removing heavy
metals contamination from the environment by process of
phytoremediation (Salt et al., 1998).

Transport of heavy metals required for their relocation is
performed by transporters localized in the parenchyma cells
of xylem and companion cells of phloem. Majority of loading
and unloading of the metal ions in xylem and phloem is
done by the transporters. Prominent groups of transporters
maintaining physiological concentration of heavy metals are:
zinc–iron permease (ZIP), heavy metal transport ATPase (CPx-
and P1B-ATPase), natural resistant associated macrophage
protein (NRAMP), cation diffusion facilitator (CDF), and

ATP-binding cassette (ABC) transporters, present at plasma
membrane and on tonoplast membrane of cell (Park et al., 2012;
Singh S. et al., 2015) (Figure 1). In addition, Cys-rich metal
binding peptides like PCs or metallothionines, nicotinamide,
and glutathione are also important players of metal transport
(Figure 1). Studies suggesting the role of metal transporters
and Cys-rich metal binding peptides in arsenic metal uptake,
transport, and detoxification have been very well-described by
Kumar et al. (2015). Apart from the transporters and chelators,
vacuole sequestration capacity (VSC) is very much important
in metal allocation. Interaction between membrane localized
transporters and ion chelators adjust the VSC in response to
changing environment (Peng and Gong, 2014). The regulation
of the VSC will decide the toxicity of heavy metals to the
plants. It is important to study the regulatory mechanisms
of VSC and its ultimate impact on metal transport and
sequestration. Additionally, study of metals signal perception and
transmission by the plants in regulating themetal transport is also
important.

This review will majorly emphasize on impact andmechanism
of action of heavy metals, different signaling modules and other
regulators triggered by heavy metal stress, the impact of plant
signaling on downstream defense responses and the fragmentary
work performed on regulation of metal transporters by MAPKs
that still remains unexplored in plants.

Plant Signaling in Response to Heavy
Metals
The inability of plants to escape from environmental stresses
such as metal pollution has driven the evolution of multiple
mechanisms to efficiently sense, respond, and therefore adapt
to such stresses. Sensing of heavy metals by plants generates
a response such as modulation of molecular and biochemical
mechanisms of cell. Certainly, this response is evoked by
important signal transduction network operated in plant cell
formed by several signal transduction units. The ultimate
response of plant is shown by synthesizing metal transporter
proteins and metal binding proteins helping the plant to
counteract excessive metal stress (Maksymiec, 2007; Peng and
Gong, 2014; Singh S. et al., 2015).

In many crops, the early sign of metal toxicity is known
to be similar to other environmental stresses like osmotic or
dehydration stress, oxidative stress in addition to defects in
nutrient balance, photosynthesis, and development (Chen et al.,
2001; Yadav, 2010; Rucinska-Sobkowiak, 2016). This similarity of
the response reflects interconnection between intricate signaling
networks. The interplay and convergence of these signaling
pathways finally results in regulation of various transcription
factors activating several stress responsive genes. The genes that
normally get regulated in context of metal stress include the
genes for metal chelators and transporters (Singh S. et al., 2015)
(Figure 2). Several signal transduction units operate in response
to heavy metal toxicity, with different signaling pathways
acting in response to different species and concentrations of
metals. Some of these signaling pathways are discussed in
detail below.
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FIGURE 1 | Metal detection, plant signaling, and sequestration. Different transporters are involved in metal ion uptake. Elevated level of heavy metals triggers different

signaling modules which transmit the signals inside cell, thus triggering defense response. The toxicity of these metals inside the cell is sequestered by metal chelators

like phytochellatins and metallothionines. The chelated metals are then ultimately transported to the vacuoles with the help of metal transporters present on the

vacuole membrane. PC, phytochelatins; MT, metallothionines; GSH, Glutathiones.

FIGURE 2 | Crosstalk of signaling pathways and its ultimate response in heavy metal stress. This figure displays the involvement of several signaling components

working during metal stress. Sensing of significant level of heavy metals by plants initiates signaling network causing activation of various metal responsive

transcription factors. These transcription factors (TFs) regulate the expression of metal responsive and other stress related genes ultimately helping the plant to

counteract stressed situation. These stress related genes are mainly metal transporters, phytochellatins, metallothionine, antioxidant genes, and miRNA genes (MIR

genes). The ROS produced in response to metal stress either by respiratory burst oxidase homolog (RBOH) activity or by alteration in electron transport is also known

to activate signal transduction. This figure also exhibits the crosstalk between different signaling modules and the feedback regulation of MAPK cascade by miRNA. P

= phosphorylated.
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MAPK Signaling in Heavy Metal Stress
MAPKs are some of the most important and highly conserved
signaling molecules that function in response to many diverse
stresses and during many developmental pathways (Sinha
et al., 2011). MAPK cascade consists of three tier components
MAPKKKs, MAPKKs, and MAPKs mediating phosphorylation
reactions from upstream receptor to downstream target (Hamel
et al., 2006). MAPK signaling mediates the transmission of stress
related signals thus regulating large number of cellular processes
(Hamel et al., 2006; Rodriguez et al., 2010). Among abiotic
stresses, heavy metal stress has conferred profound effect on
MAPK signaling pathways. MAPKs are known to be activated by
perception of specific metal ligand and also by ROS molecules
produced in the metal stress (Jonak et al., 2004; Smeets et al.,
2013; Jalmi and Sinha, 2015).

There are plenty of reports showing the activation of MAPKs
in response to heavymetals like Cd, Cu, andAs (Jonak et al., 2004;
Yeh et al., 2007; Ding et al., 2011; Rao et al., 2011; Smeets et al.,
2013), however studies in response to othermetals such as Pb, Zn,
Fe are very scant. Likewise, in depth investigation to decipher a
complete MAPK signaling cascade in response to specific metal
stress still remains elusive. In Arabidopsis, the best-characterized
MAPKs are MPK3 and MPK6, which are activated by diverse
stimuli are also known to induced by CdCl2 and CuSO4 (Asai
et al., 2002; Pitzschke et al., 2009; Liu et al., 2010; Takahashi
et al., 2011; Sethi et al., 2014). Similarly in rice, OsMSRMK2
(OsMPK3 homolog), OsMSRMK3 (OsMPK7 homolog), and
OsWJUMK1 (OsMPK20-4 homolog) transcripts increased in
response to Cu2+ and Cd2+ treatment in leaves and roots (Yeh
et al., 2007; Rao et al., 2011). In Alfalfa, activation of four distinct
MAPKs: SIMK, MMK2, MMK3, and SAMK was demonstrated
in response to CuCl2 or CdCl2. SAMK and SIMK are the
orthologs of rice OsMPK3 and OsMPK6, respectively. Higher
concentrations of CuCl2 induced the activity of SIMK, MMK2,
andMMK3, and to a lesser extent of SAMKwhile CdCl2 showed a
similar but delayedMAPK activation (Jonak et al., 2004). Copper-
mediated induction of SIMKK specifically activated SIMK and
SAMK and not MMK2 and MMK3 manifesting specificity in the
signaling cascades in response to different metals (Jonak et al.,
2004; Opdenakker et al., 2012) (Table 1).

Beside the activation of MAPKs by Cu2+ and Cd metals,
there are several other heavy metals that cause the activation of
MAPKs, but are not studied in detailed aspect. In yeast, Al3+

tolerance was provided by over-expression of a MAP kinase gene
in Al3+-sensitive mutant, indicating the association of MAPK
with Al3+-resistance (Schott and Gardner, 1997). Similarly, in
wheat root apex Al3+ treatment led to the activation of 48-
kDa MAPK, playing significant role in transmitting Al related
signals and Al-resistant in wheat (Mossor-Pietraszewska, 2001).
In rice, a 42-kDa MAPK found to activate myelin basic protein
(MBP) in response to iron. Pre-treatment of rice roots with an
antioxidant, glutathione (GSH), decreased iron-induced root cell
death, and MAPK activation, demonstrating the involvement
of ROS induced MAPK activation in iron-triggered signaling
(Tsai and Huang, 2006). Although, Zn is a non-redox metal,
however MAPK activation by Zn results from the activation of
oxidative stress in rice. Zn stimulates a rapid activation of MBP

by three MAPKs with approximate molecular weights of 34, 40,
and 42 kDa in rice roots (Lin et al., 2005). Pb stress leads to
the upregulation of four MAPKs such as MAPKKK7, MAPK6,
MAPK18, and MAPK20 in radish (Wang et al., 2013). Arsenite
severely affect the growth of rice seedlings. OsMKK4 and
OsMPK3 transcripts were found to be induced in arsenite treated
rice leaves and roots (Table 1). In-silico homology modeling and
docking analysis supported OsMKK4–OsMPK3 interaction (Rao
et al., 2011), suggesting the role of this MAPK module in arsenic
stress. Accumulating evidences suggest that metal ions such as
arsenic and chromium are able to induce reactive oxygen and
nitrogen species, thereby altering nitric oxide (NO) induced cell
signaling. NO has been shown to modulate the activity of MAPK,
NO donors, and recombinant NOS were shown to cause the
activation of SIPK (Rao et al., 2011).

Heavy metal induced ROS production is already known in
plants and the role of these ROS molecules in activating MAPK
signaling is very well-accepted. In Arabidopsis, two important
completely characterized MAPK cascade MEKK1-MKK4/5-
MPK3/6 (Asai et al., 2002) and MEKK1-MKK2-MPK4/6 are
known to work downstream of ROS, participating in both abiotic
and biotic stress signaling (Pitzschke et al., 2009; Jalmi and
Sinha, 2015). Apart from this, MAPK cascades also exert positive
feedback regulation on ROS production. A cascade OXI1-MPK6
activated by ROS also positively regulates ROS production
(Asai et al., 2008). MEKK1-MKK4-MPK3/6 is known to act
upstream of NADPH oxidase stimulating ROS production in
pathogen attack and H2O2 produced is in turn known to activate
MPK3 and MPK6 (Kovtun et al., 2000). These studies provide
a speculation and link of MAPK cascades that might work
in different metal stress depending upon the activation by the
ROSmolecules produced. Furthermore, MEKK1-MKK4/MKK5-
MPK3/MPK6 module working downstream of receptor FLS2
and receptor like kinase (RLKs), eventually giving resistance
against pathogen is very well known (Asai et al., 2002).
These RLKs are also reported to be regulated by Cd2+

speculating the involvement of similar MAPK cascade working
downstream of RLK in metal stress. Recent study reported that
MEKK1-MKK5-MPK6 mediates salt induced expression of iron
superoxide dismutase gene further inducing ROS production.
Iron superoxide dismutases (Fe-SOD) are the metal binding
SOD and require Fe3+ metal ion as cofactor (Myouga et al.,
2008; Xing et al., 2015). These reports suggest involvement
of MAPKs in mediating metal stress however a detail study
of a complete MAPK cascade working in heavy metal stress
is required.

Calcium Signaling in Heavy Metal Stress
The calcium ion (Ca2+) as corroborated by different studies acts
as a universal secondary messenger in the normal functioning of
plants as well as in response to various environmental stresses
(Sanders et al., 2002). The cytosolic free Ca2+ concentration
changes in response to various stress stimuli triggering complex
interactions and signal transduction pathways (Rudd and
Franklin-Tong, 2001). This transient increase in the cytosolic
concentration is perceived by highly sensitive calcium sensing
proteins that mediate this chemical signal into a biological
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TABLE 1 | Signaling components involved in metal stress.

Heavy metal Plant Signaling components

MAPK Calcium Hormone

Cd Arabidopsis MEKK1, MPK3, MPK6

(Jonak et al., 2004; Liu et al., 2010)

Unknown Auxin: 2PAT1, 2CYP79B2, 2CYP79B3, 2YUCCA,
2GH3, 2TIR1, 1,2,3PINs, 2ABCB, 2ARFs,
3AXR3/IAA17

(1Hu et al., 2013; 2Wang et al., 2015; 3Yuan and

Huang, 2016)

Cytokinin: IPT, CKX

(Vitti et al., 2013)

Ethylene: 4,5ACS, 5ACC, 4ETR2, 4ERF1,5,
5GSH1, 5GSH2

(4Weber et al., 2006; 5Schellingen et al., 2015)

Rice MAPK2, MPK3, MPK6, MSRMK3,

WJUMK

(Agrawal et al., 2003; Yeh et al., 2007; Rao

et al., 2011)

Unknown Auxin: MAPK3/6/7, YUCCA, PINs, ARF, and IAA

(Zhao et al., 2014)

M. sativa SAMK, SIMK, MMK2, MMK3

(Jonak et al., 2004)

Unknown Unknown

Zea mays MPK3

(Wang et al., 2010)

Unknown Unknown

Radish Unknown Ca2+/CaM

(Rivetta et al., 1997)

Unknown

B. natalensis, R.

crispus

Unknown Unknown Cytokinin: PI-55, INCYDE

(Gemrotová et al., 2013)

Glycin max Unknown Unknown Ethylene: ACS, MAPK2, MAPKK2

Chmielowska-Bak et al., 2014

Cu Arabidopsis MPK3, MPK6

(Liu et al., 2010; Schellingen et al., 2015)

Unknown Auxin: 2PAT1, 2CYP79B2, 2CYP79B3, 2YUCCA,
2GH3, 2TIR1, 2PINs, 2ABCB, 2ARFs, 1,2DR5

(1 Peto et al., 2011; 2Wang et al., 2015)

Ethylene: 4COPT5, 3ACS, 3ERF

(3Weber et al., 2006; 4Carrió-Seguí et al., 2015)

Rice MAPK2, MPK3, MPK6, MSRMK3,

WJUMK

(Agrawal et al., 2003; Yeh et al., 2007; Rao

et al., 2011)

Unknown Unknown

M. sativa SIMKK, SAMK, SIMK, MMK2, MMK3

(Jonak et al., 2004)

Unknown Unknown

As Arabidopsis Unknown Unknown Auxin: AUX1, PIN1, PIN2

(Krishnamurthy and Rathinasabapathi, 2013)

Ethylene: ERFs

(Fu et al., 2014)

Rice MKK4, MPK3, MPK4

(Rao et al., 2011)

CaM, CaM kinase, CaM like

protein

(Chakrabarty et al., 2009;

Huang et al., 2012)

Unknown

B. juncea 46Kda MAPK

(Gupta et al., 2009)

Unknown Unknown

Al Arabidopsis Unknown Unknown Auxin: 1,2PIN2, 2AUX1

(1Shen et al., 2008; 2Sun et al., 2010)

Wheat Unknown Myosin, Calpain,

Phospholipase C,

Phospholipase A2
(Jones and Kochian, 1997)

Unknown

T. aestivum 48Kda MAPK,

42Kda Protein kinase

(Osawa and Matsumoto, 2001)

Unknown Ethylene: 3ALMT1, 4ACS, 4ACO

(3Tian et al., 2014; 4Yu et al., 2016)

M. sativa Unknown Unknown Auxin: AUX1, PIN2

(Wang S. et al., 2016)

(Continued)
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TABLE 1 | Continued

Heavy metal Plant Signaling components

MAPK Calcium Hormone

Hg Arabidopsis Unknown Unknown Auxin: PAT1, CYP79B2, CYP79B3, YUCCA, GH3,

TIR1, PINs, ABCB, ARFs

(Wang et al., 2015)

Rice MSRMK2, MSRMK3, WJUMK

(Agrawal et al., 2003)

Unknown Ethylene: OsACS2,

OsACO1, OsACO2, OsACO5 and OsACO6, 5

MAPKKK, 1 MAPKK and 2 MAPK

(Chen et al., 2014)

M. sativa Unknown Unknown Ethylene: ACCS, ACCO, AP2, ERF1

(Montero-Palmero et al., 2014)

Pb Arabidopsis Unknown CNGC1

(Sunkar et al., 2000)

Auxin: PAT1, CYP79B2, CYP79B3, YUCCA, GH3,

TIR1, PINs, ABCB, ARFs

(Wang et al., 2015)

Ethylene: EIN2

(Cao et al., 2009)

Rice 34Kda, 40Kda & 42Kda MAPK

(Huang and Huang, 2008)

CDPK-like Kinase

(Huang and Huang, 2008)

Unknown

tobacco Unknown CBP4

(Arazi et al., 1999;

Sunkar et al., 2000)

Unknown

R. sativus MAPKKK7, MAPK6, MAPK18, MAPK20

(Wang et al., 2013)

Unknown Unknown

Zn Arabidopsis Unknown Unknown Auxin: PAT1, CYP79B2, CYP79B3, YUCCA, GH3,

TIR1, PINs, ABCB, ARFs

(Wang et al., 2015)

Rice 34Kda, 40Kda & 42Kda MAPK

(Lin et al., 2005)

Unknown Auxin: MAPK3/6/7, YUCCA, PINs, ARF, and IAA

(Zhao et al., 2014)

Wheat Unknown Myosin, Calpain,

Phospholipase A2
(Jones and Kochian, 1997)

Unknown

Cr Zea mays MPK5

(Ding et al., 2009)

Unknown Unknown

Foxtail millet Unknown TPC1, MRC5, CaM

(Fang H. et al., 2014)

Unknown

Mn Arabidopsis Unknown ECA1

(Wu et al., 2002)

Unknown

Ni Arabidopsis Unknown Unknown Auxin: PAT1, CYP79B2, CYP79B3, YUCCA, GH3,

TIR1, PINs, ABCB, ARFs

(Wang et al., 2015)

Tobacco Unknown CBP4

(Arazi et al., 1999)

Unknown

Ba Faba bean Unknown Ca2+ channels

(Hamilton et al., 2001)

Unknown

B Barley Unknown Calmodulin, Ca2+- binding

proteins

(Tombuloglu et al., 2015)

Unknown

response. Plants harbor myriads of calcium sensing proteins such
as Calmodulins (CaMs), CaM like proteins (CMLs), Calcineurin
B-like proteins (CBLs), and Ca2+-dependent protein kinases
(CDPKs) that bind to Ca2+ and trigger different downstream

signaling pathways (Luan et al., 2002; Sanders et al., 2002;
Steinhorst and Jörg, 2003; Dodd et al., 2010).

Multiple studies in different plant species, such as chickpea,
Glycine max, Vitis vinifera, and tomato have been carried out
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to discern the contribution of Ca2+-binding like proteins and
Ca2+ sensing proteins in augmented tolerance to various abiotic
stresses (Tripathi et al., 2009; Li Z. Y. et al., 2012; de la Torre
et al., 2013). There have been reports demonstrating that the
application of Ca2+ exogenously can modulate the physiological
and biochemical responses in order to alleviate the heavy metal
stress. The activity of antioxidant enzymes such as ascorbate
peroxidase, glutathione reductase, and superoxide dismutase has
been shown to be enhanced upon the application of exogenous
Ca2+ (Ahmad et al., 2015). Though there have been several
reports that substantiate the role of Ca2+ and Ca2+-dependent
signaling pathways in imparting tolerance to heavy metal stresses
in plants, our understanding of the mechanisms by which
these responses are regulated is still meager and invites further
elaboration.

Cd is one of the heavy metals physiochemical properties very
similar to that of calcium (Choong et al., 2014). This naturally
results in an exchangeability of the two ions in Ca2+ binding
proteins and studies have provided evidence that Cd displaced
Ca2+ from its binding sites in calmodulin, sarcolemma and
troponin C in vitro (Langer and Nudd, 1983; Chao et al., 1984;
Ellis et al., 1984). The high similarity in the ionic radii of Ca2+

and Cd indicates a possibility of Cd uptake through receptor-
or voltage-gated Ca2+ channels and this uptake could possibly
be inhibited (at least to some extent) by blocking the Ca2+

channels (Choong et al., 2014). Plants exposed to cadmium
exhibit a higher level of intracellular Ca2+, inducing adaptive
mechanisms in order to mitigate the toxic effects of the heavy
metal (Yang and Poovaiah, 2003). One of the mechanisms used
for the increase in Ca2+ level is the production of IP3 which
triggers the release of sequestered calcium from the intracellular
calcium reserves as indicated in few reports (Smith et al., 1989).
A study of Brassica juncea in consistence with the above report
proves that application of Ca2+ attenuates the toxicity and makes
the plant withstand the deleterious effects of Cd consequently
improving the growth and seed quality of the plants (Ahmad
et al., 2015). Moreover, studies on different plant species have
demonstrated that exogenous application of calcium and silica,
calcium and spermidine and Ca2+ and/or K2+ can promote
the alleviation of cadmium toxicity and reduction in metal
accumulation (Siddiqui et al., 2012; Srivastava et al., 2015; Gong
et al., 2016).

An interesting study on Arabidopsis seedlings has shown that
Ca2+ mitigates the toxic effects of Cd through maintaining
auxin homeostasis indicating a crosstalk between signaling
pathways in order to combat heavy metal stress (Zhao et al.,
2015). Moreover, studies on yeast cells have proposed the role
of Ca2+-ATPases (Pmr1p and Pmc1p) of vacuolar and Golgi
membrane in coping with Cd toxicity. This is achieved through
cooperation with a Glutathione-conjugated transporter Ycf1p
whose activity is controlled by phosphorylation once again
insinuating an interface between different signaling pathways
in response to environmental stresses (Mielniczki-Pereira et al.,
2011).

The Ca2+/Calmodulin system is also involved in response to
toxicity mediated by heavy metals other than Cd such as Pb2+

and nickel (Ni2+) (Ahmad et al., 2015). It was demonstrated by

Arazi et al. that transgenic tobacco plants expressing the plasma
membrane associated NtCBP4 (Nicotiana tobacum calmodulin-
binding protein) exhibit higher levels of tolerance to Ni toxicity.
Contrastingly, the same plants were found to be hypersensitive
to Pb2+, depicting an exclusion of Ni2+ and augmented
accumulation of Pb2+ as compared to wild type plants (Arazi
et al., 1999) (Table 1).

In foxtail millet (Setaria italica), hydrogen sulfide was found
to interact with Ca2+ signaling in imparting improved tolerance
to Chromium (Cr VIIV)-mediated heavy metal stress. It has
also been discerned that Ca2+ provides tolerance against Cr
stress by enhancing the activity of antioxidant enzymes (Fang
H. et al., 2014). Additionally, an involvement of CDPKs has also
been suggested through transcriptional profiling of the rice roots
exposed to long or short durations of Cr stress. Increasing Cr(VI)
concentration was found to be correlated with an increase in
CDPK-like protein activity, reflecting the role of Ca2+ signaling
in the stress response (Huang et al., 2014) (Table 1).

Differential expression of Calmodulins in response to arsenic
stress indicates the possible role of Ca2+ signaling components
in the stress response (Chakrabarty et al., 2009). Besides, a study
has demonstrated that cytosolic free Ca2+ played a key role in
the regulation of root activity, metal contents and biomass in
close relation to lanthanum (La) dose and acid rain strength.
The adverse effects on the roots caused by acid rain could be
alleviated by low concentrations of LaIII and synergistic effects
on the roots were observed upon combined exposures at higher
concentrations of La(III) and acid rain (Zhang et al., 2016). The
release of intracellular Ca2+, the subsequent activation of Ca2+

channels and the generation of H2O2 was observed in response
to elevated levels of Cu2+ in the marine alga, Ulva compressa.
It was evidenced that the gene expression of antioxidant system
is regulated via cross-talk among the various cellular signals and
levels of Ca2+, NO, and H2O2 (González et al., 2012).

It is established that in response to environmental changes
CDPK work together with MAPK for transmission of signals
to adapt against changing environment (Takahashi et al., 2011;
Wurzinger et al., 2011; Opdenakker et al., 2012) (Figure 2). A
CDPK, CPK18 was found to be an upstream kinase of MPK5
in rice, wherein MPK5 was phosphorylated on Threonine 14
and 32 by CPK18 (Xie et al., 2014). Also, MKK3 together with
Ca/CaM is known to activate MPK8, which negatively regulates
the expression of RBOHD (NADPH oxidase) in response to
mechanical stress (Takahashi et al., 2011). A study suggest that
Ca2+ is involved in Pb2+-mediated cell death and triggering of
MAPK activity via CDPK pathway by enhancing the activity
of CDPK like kinase (Huang and Huang, 2008). Besides this,
the role of calmodulins has been reported to modulate MAPK
signaling pathway (Tebar et al., 2002), which defines a possibility
of their interplay in response to metal stress. All these findings
outline a vital function for the Ca2+ regulatory loop, which
is critical for maintaining the redox homeostasis of the cell
and ion balance in response to heavy metal stress. In animals
this crosstalk has been elaborately studied in metal stress than
in plants. Hence, it will be highly advantageous to study the
importance of this signaling crosstalk and further the regulation
of Ca2+ signaling in heavy metal stress in plants.
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Hormone Signaling in Heavy Metal Stress
The root architecture is of great importance in plant grown in
metal-polluted areas, as the remodeling of root architecture in
response to metals can be used as a strategy to escape from
heavy metal stress. Interestingly, auxin, ethylene, and cytokinin
modulate patterning (Vanstraelen and Benková, 2012) and lateral
root formation (De Smet et al., 2015). Thus, there are several
studies reporting the involvement of these phytohormones in
remodeling of the root system architecture in response to heavy
metal stress.

Auxin is an essential plant growth hormone playing role
in developmental as well as environmental stress responses. It
directly affects plant responses to metal stresses by modulating
auxin homeostasis including auxin stability, transport, and
redistribution (Potters et al., 2007). Basipetal auxin transport
through the outer root cell layers is mediated by AUX1 and
PIN2 (Marchant et al., 1999; Rashotte et al., 2000). The
regulation of auxin signaling in heavy metal stress is evident
by various studies conducted over the years. Recently, it
was reported that in response to metal stress plants regulate
the location and accumulation of auxin by differential and
dynamic expression of auxin-related genes like Phosphoribosyl
Anthranilate Transferase 1 (PAT1), CYP79B2 and CYP79B3,
YUCCA (YUC), Gretchen Hagen (GH3) genes, (TIR1), PIN
family, and ABCB family (Wang et al., 2015) (Table 1). Cu2+

toxicity in Arabidopsis leads to changes in auxin and cytokinin
accumulations and mitotic activity within the primary and
secondary root tips (Lequeux et al., 2010). It is also reported
that in excess of Cu2+ lack of auxin leads to an increase in NO
levels thereby diminishing root elongation (Peto et al., 2011).
This inhibition of primary root elongation by Cu is also due to the
modulation of auxin redistribution by PIN1 (Yuan and Huang,
2016). Further, Al was also studied to inhibit root growth by
inhibiting the transport of PIN2 vesicles from plasmamembranes
to endosomes, further disturbing IAA synthesis in apical buds
and imbalance of IAA transportation and distribution in roots
(Shen et al., 2008; Wang S. et al., 2016). It was further revealed
that aux1-7 and pin2 mutants exhibited better tolerance to
Al3+ than wild-type plants implying the plausible involvement
of AUX1 and PIN2 proteins in Al3+ induced inhibition of
root elongation. Apart from this, Cd disrupts the maintenance
of auxin homeostasis in Arabidopsis seedlings by increasing
IAA oxidase activity and altering the expression of several
auxin biosynthetic and catabolic genes (Hu et al., 2013). Cd-
mediated up-regulation of biosynthesic gene NITRILASE (NIT)
resulted in increased IAA concentration in Arabidopsis roots
promoting lateral root growth, thus protecting roots from Cd
(Vitti et al., 2013).Moreover, recent report revealed the inhibition
of root meristem growth through Cd-induced NO accumulation,
which in turn represses auxin transport and stabilizes AUX/IAA
proteins to repress auxin signaling (Yuan and Huang, 2016).
A positive role for auxin transport through AUX1 on plant
tolerance to As stress via ROS-mediated signaling was also
disclosed in a study (Krishnamurthy and Rathinasabapathi, 2013)
(Table 1).

MAPK signaling is established in influencing auxin signaling
and its transport (Mockaitis and Howell, 2000). A captivating

report unveiled the interplay of auxin/cytokinin and MAPKs,
in which OsMKK4/5-OsMPK3/6 was elucidated as key player
in auxin/cytokinin interaction regulating the expression pattern
of OsPIN1b/9 (Singh P. et al., 2015). However, the involvement
of MAPK signaling regulating auxin response in metal stress
is still uncertain. Appealing study performed in rice displayed
relationship between auxin signaling and MAPK signaling in Cd
stress. It was analyzed that expression of most of the key genes
of auxin signaling including YUCCA, PIN, ARF, IAA, and cell
cycle related genes was negatively regulated by MAPK in Cd
stress (Zhao et al., 2014). This certainly implicates the major role
of MAPK signaling in regulating auxin signaling in heavy metal
stress.

Cytokinins (CKs) are N6-prenylated adenine derivatives
involved in the regulation of plant growth and development
and in biotic and abiotic stresses (Perilli et al., 2010). There are
reports of CKs in plants activated upon heavy metal stress that
are able to alleviate heavy metal induced toxicity. The inhibition
of photosynthetic pigment and chloroplast membranes by Cd
was restored by CKs, increasing photosynthetic capacity and
primary metabolite levels (Piotrowska-Niczyporuk et al., 2012).
Exogenous kinetin application can also modulate antioxidant
enzyme activity, proline, free amino acids, and soluble sugars
that counteracted Cd caused inhibitory effects on growth and
photosynthesis (Al-Hakimi, 2007).

Ethylene (ET) is a gaseous plant hormone regulating various
important growth aspects. It is biosynthesized by ACC synthase
(ACCS) that convert AdoMet to ACC, while ACC oxidase
(ACCO) catalyzes the conversion of ACC to ethylene. ACCS and
ACCO are encoded by multigene families and regulated by many
biotic and abiotic factors (Kende, 1993). Several reports support
the role for ethylene in the regulation of plant metal stress
responses. The effects of metal stress on ethylene production in
plants are both metal and concentration dependent (Thao et al.,
2015; Keunen et al., 2016) (Table 1). Major five ET synthesis
genes from rice OsACS2, OsACO1, OsACO2, OsACO5, and
OsACO6 (Chen et al., 2014) along with transcription factors
AP2 and ERF1 from Medicago sativa (Montero-Palmero et al.,
2014) were found to be upregulated in Hg treatment. However
in rice, genes involved in cytokinin signaling (OsRR1, 3, 4, 6,
and 11) were down regulated, suggesting both ET and CK may
regulate the Hg-induced inhibition of rice root growth (Chen
et al., 2014). Additionally, Cu and Al were also found to increase
ACS transcript level in Arabidopsis, Medicago truncatula and
Lotus japonicus (Weber et al., 2006; Sun et al., 2010). There was
inhibition in root growth under Al stress which was correlated
to enhanced ethylene production upon Al treatment (Sun et al.,
2010). Recently, it was revealed that in wheat ET negatively
regulates Al-induced efflux of malate ions using ET8, which is
an important mechanism for Al tolerance (Tian et al., 2014; Yu
et al., 2016) (Table 1).

Besides the effect of heavy metals on ethylene synthesis,
they even exert effect on ethylene signaling. Cu treatment
increases expression of number of ethylene responsive factors
like ERF1, ERF2, and ERF5 (Weber et al., 2006). Apart from
these, Cd was exhibited to establish its role in regulating ethylene
synthetic genes (ACS2 and ACS6) along with MAPK cascades,
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NO generation, and polyamine metabolism (Chmielowska-Bak
et al., 2014; Schellingen et al., 2015) (Table 1).

Like the interplay of MAPK with auxin signaling, there
are also evidences of involvement of MAPKs in ethylene
biosynthesis and signaling, however its importance in metal
stress is still unknown (Opdenakker et al., 2012). Two important
MAPKs, MPK3 and MPK6 are known to be responsible for
phosphorylation of ACS2 and ACS6, thus increasing ethylene
production (Liu and Zhang, 2004; Li G. et al., 2012). This
ACS2/6 is very well reported to be induced by metal stress.
Further, putresciene, an essential signaling molecule involved
in modulating plant resistance to Al stress by inhibiting ACS
and ET production (Yu et al., 2016), was found to be regulated
by AtMPK3/6 (Kim et al., 2013). Moreover, a MAPK cascade
MKK9-MPK3/6 acting downstream of ethylene receptor CTR1
was found to control a key transcription factor EIN3 involved in
ethylene biosynthesis (Xu et al., 2008; Yoo et al., 2008). Roots
of rice plants exposed to Cr showed an increased expression
of the EIN3 and EIN4 genes (Trinh et al., 2014) suggesting
the putative role of this MAPK cascade heavy metal induced
ET biosynthesis. Recently, Chmielowska-Bak et al. (2014)
revealed that cadmium causes induction of ethylene responsive
genes and MAPKs in soybean seedlings also suggesting an
elevation in MAPKK2 gene expression. Further, Schellingen
et al. (2015) suggested a link between MPK3/6 mediated
ROS production and ethylene signaling during Cd stress
in Arabidopsis.

Regulation of microRNAs during Heavy
Metal Stress
Besides the contribution of signaling pathways in transmitting
heavy metal related stimuli and regulating the plant response,
other regulators like small RNAs are majorly found to have
profound effect on metal stress response. Small RNAs such
as microRNAs are a 20–24 nucleotide non-coding RNAs
that regulate the gene expression at post-transcriptional level
by targeting mRNA degradation or by translation repression
(Raghuram et al., 2014). It has been shown that different miRNA
families are differentially regulated temporally as well as spatially,
differing in concentration from species to species (He et al.,
2016). All these data indicate that differential regulation of any
miRNA depends upon the function of miRNA target, physiology,
and metabolism of the plant.

Recently genome wide, transcriptome analysis, and high
throughput sequencing have been used to identify the
microRNAs, which are responsive to heavy metal stress in
many plant species. It has been shown that various conserved
miRNAs are differentially regulated during the normal and stress
conditions (Figure 3). Differential expression of miRNAs in
heavy metal stress indicates the possible involvement of miRNAs
in heavy metal stress detoxification and tolerance (Ding et al.,
2011; Liu and Zhang, 2012; Zhou et al., 2012; Bukhari et al.,
2015; Noman and Aqeel, 2017). Here, we have focused on studies
showing differential expression of conserved miRNA in metal
stress and regulation of signaling pathway by miRNAs or vice
versa in response to heavy metals.

Plant exposed to excess concentration of Cd, employed
differential regulation of miRNAs. For example in rice,
Cd exposure modulates expression of various novel and
evolutionarily conservedmiRNAs. Upon exposure to Cd,miR441
expression was significantly upregulated while 12 miRNAs
were found to be down-regulated. Among the down-regulated
miRNAs, miR192 predicted to target ABC transporter, which is
shown to be involved in heavymetal transport. Overexpression of
miR192 significantly reduced rice seed germination and seedling
growth under Cd stress compared to wild-type plants. This
suggests that decrease in the amount of miR192 leads to the
accumulation of ABC transcripts which eventually leads to Cd
sequestration by ABC transporter during Cd stress (Ding et al.,
2011; Tang et al., 2014; He et al., 2016) (Figure 3).

Contemplating these studies carefully we found that cadmium
stress downregulates major miRNAs like miR159 and miR166
in most of the plant species (Figure 3). The targets of several
Cd responsive miRNAs, including miR398 and miR408 have
been shown to target the heavy metal detoxification genes. The
Cu–Zn superoxide dismutase (CSD), is an essential enzyme
for the detoxification of superoxide radicals and reduced
accumulation of respective miRNAs lead to the accumulation
of these scavengers during stress, hence protecting the plants
against heavy metal induced oxidative damage. Recent studies
have identified many As responsive miRNAs by deep sequencing
in rice and mustard (Liu and Zhang, 2012; Srivastava et al.,
2013; Pandey et al., 2015; Sharma et al., 2015) (Figure 3). They
have reported that the expression of miR172 was significantly
down-regulated whereas miR393, miR397, and miR408 were
upregulated. Studies revealed that miR408 has a direct role in
targeting Cu containing proteins or superoxide dismutase (Ma
et al., 2015). Also, it has been reported that during heavy metal
stress, ROS leads to the induction of lipid peroxidation and
downregulation of miR397, which has been shown to target
laccase. This may lead to positive regulation of lignin biosynthesis
through the accumulation of laccase enzymes (Jones-Rhoades
and Bartel, 2004) (Figure 3).

Aluminum (Al) is being considered as a major limiting
factor for plant development interfering with cellular redox
equilibrium. Similar to other metals, Al stress also downregulates
most of the miRNAs in rice such as miR156, miR395,
miR398, miR159 except miR399, miR166, miR168 which
showed upregulation (Lima et al., 2011). Contrastingly, in
maize the similar miRNAs showed upregulation except miR171
and miR396 which showed downregulation (Kong et al.,
2014) (Figure 3). MicroRNAs also play a key role in metal
complexation wherein two important genes ATP sulfurylase
(APS) and SULTR2:1 were identified as targets of miR395 which
is reported to induce by Al stress, Cd stress, and sulfur deficiency.
Both of these genes lead to the production of GSH and PCs which
are chief molecules in metal chelation (Matthewman et al., 2012)
(Table 2).

Other metals such as mercury, lead, and chromium have also
been shown to affect miRNA expression. Mercury treatment
differentially regulated miRNAs inM. truncatula where miR156,
miR172, miR164, miR169, miR398 were downregulated whereas
miR167 andmiR172 were upregulated (Zhou et al., 2012). Cotton
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FIGURE 3 | Differential expression of heavy metal responsive microRNAs in plants. The figure represents the data taken from genome wide study of differentially

expressing miRNAs in different plant species. Green color and red color indicates up regulated and down regulated miRNAs respectively.

seedlings treated with Pb showed downregulation of miR156,
miR398, miR399 and upregulation of miR162, miR167, miR169,
miR395, miR396, and miR397 (He et al., 2014). Chromium
showed upregulation of miR156, miR167, miR169, miR171, and
downregulation of miR166 (Bukhari et al., 2015) (Figure 3).
Among the heavy metal responsive miRNAs, miR156, miR159,
miR166, and miR398 were shown to be differentially regulated.
The currently available data about miRNA targets suggests

that most of the miRNAs such as miR169, miR390, miR394,
mir395, miR397, miR399, and miR528 are directly involved in
the heavy metal stress tolerance by regulating the transcripts
of ROS scavenging enzymes, laccases, or metal transporters.
Apart from their direct involvement in heavy metal stress,
some of the miRNAs play important role in plant growth
and development. For example, miR156 regulate the important
transitions in shoot development while miR159 is known to
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TABLE 2 | Heavy metal responsive conserved miRNAs, their targets, and functions.

miRNAs Targets Target functions References

miR156 SQUAMOSA-PROMOTER BINDING PROTEIN

(SBP)-like proteins (SPL)

Floral development Schwab et al., 2005

miR159 MYB transcription factors Floral development Achard et al., 2004

miR160 ARF transcription factors Auxin signaling, Floral organ development Wang et al., 2005

miR162 DCL1 Micro RNA biogenesis Xie et al., 2003

miR164 NAC, CUC genes Drought resistance, Leaf margin serration Nikovics et al., 2006; Fang Y.

et al., 2014

miR165/166 HD-ZIP transcription factors, KANADI Root development Singh et al., 2017

miR167 ARF transcription factors Auxin signaling Wang et al., 2015

miR168 AGO1 MicroRNA pathway Vaucheret et al., 2004

miR169 Nuclear factor Y Drought resistance Li et al., 2008

miR171 GRAS domain transcription

factors/SCARECROW-like (SCL)

Floral development Ma et al., 2014

miR172 APETELA2-like transcription factors Transcriptional regulation, Developmental phase

transition

Aukerman and Sakai, 2003

miR319 TCP family transcription factor JA biosynthesis, Senescence Schommer et al., 2008

miR390 Stress-responsive leucine-rich repeat receptor-like

kinase(SRK), ARF

Cd stress tolerance Fahlgren et al., 2006; Ding et al.,

2016

miR393 TIR1, AFB family Auxin signaling Chen et al., 2011

miR394 LEAF CURLING RESPONSIVENESS (LCR) Abiotic stress tolerance Song et al., 2016

miR395 ATP sulfurylases (APS), ARABIDOPSIS SULFATE

TRANSPORTER 68 (AST68)

Sulfate assimilation Matthewman et al., 2012

miR396 GROWTH-REGULATING FACTOR(GRF) TFs,

bHLH74

Cell proliferation regulation Debernardi et al., 2012

miR397 Laccase Lignin biosynthesis Jones-Rhoades and Bartel, 2004

miR398 Cu–Zn superoxide dismutase (CSD) ROS response Jones-Rhoades and Bartel, 2004

miR399 ubiquitin-conjugating enzyme E2 24

(UBC24)/PHOS2

Phosphate starvation Chiou et al., 2006

miR408 Cu containing proteins, Cu/Zn superoxide

dismutase, Cu chaperon

Abiotic stress tolerance Ma et al., 2015

miR441 Unknown – –

miR444 MADS-box TFs Root development Wang H. et al., 2016

miR528 MATE transporter family, Cu binding protein(CBF) Enhances Tolerance to Salinity Stress and Nitrogen

Starvation, Arsenite Tolerance

Liu et al., 2015; Yuan et al., 2015

miR529 SPL family Phase transition Morea et al., 2016

miR818 Serine/threonine kinase Flowering time regulation Liu and Zhang, 2012; Ding et al.,

2013

miR827 ubiquitin E3 ligase Suppress immune responses Hewezi et al., 2016

miR2111 PHO2 and GmPT5 Responses to phosphate starvation Xu et al., 2013

miR2118 MEL1 gene, TIR-NBS-LRR Determinate fate acquisition of panicle meristems,

drought stress responses

Wu et al., 2015; Ta et al., 2016

inhibit growth and promote programmed cell death by regulating
R2R3 MYB transcription factors (Alonso-Peral et al., 2010;
Xu et al., 2016) (Table 2). miR166 regulate diverse aspects
like formation of apical and lateral meristem, leaf polarity
vascular development, and floral development while miR398 is a
major plant stress regulator (Jung and Park, 2007). Differential
regulation of these important miRNAs by heavy metals might
severely affect plant development by altering variousmechanisms
(Table 2).

A connection between miRNA and MAPK signaling was
deciphered by a study which showed regulation of miR398b/c

by OXI upon Cd and Cu treatment (Smeets et al., 2013).
OXI is a component of MAPK cascade working upstream to
MPK6, regulating ROS production (Asai et al., 2008) (Figure 2).
Apart from this, several transcription factors which are known
to be downstream target of MAPKs have also been found
to be target of miRNA. Transcription factors of Squamosa
promoter binding like protein (SPL) family, known to be
involved in flower development, were studied to be the targets
of miR156/157 and are regulated by Cd, Hg, and Al (Zhao
et al., 2014) (Table 2). Additionally, SPLs binds to Cu responsive
elements in the promoter of miR398 gene (Cu-responsive gene),
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regulating the expression of miR398 in Cu stress (Yamasaki et al.,
2009). These studies uncover the concept of how plants exhibit
interaction among different components in responding against
the environmental stress.

Modulation of Transcription Factors during
Heavy Metal Stress
Heavy metal toxicity is the serious problem of the modern
world. For combating heavy metal stress, plants have evolved
numerous detoxification and mobilization mechanisms as
described earlier. Beside these, activation of complex signaling
network is another important factor in heavy metal stress
tolerance. Genome wide expression analysis have also reported
modulation in the expression of transcription factor families
upon exposure to heavy metals (Yanhui et al., 2006; Ogawa
et al., 2009; Shim et al., 2009; Farinati et al., 2010; Wang et al.,
2010; Smeets et al., 2013). Several studies have reported that
upon heavy metal exposure, MAPK signaling cascade activates
the downstream transcription factor targets (Figure 2). The
transcription factors such as MYB (MYeloBlastosis), WRKY
(containing a conserved WRKYGQK domain and a zinc finger-
like motif), ZAT (C2H2-type zinc finger transcription factor),
bZIP (basic region leucine ZIPper), AP2 (Activator Protein
2), ERF (ethylene-responsive factor), and DREB (dehydration
responsive element-binding protein), have been identified as
potential downstream targets of MAPKs (Roelofs et al., 2008; Li
et al., 2016).

Transcription factors are important regulators of gene
expression affecting many developmental processes and defense
responses in plants (Yanhui et al., 2006). Studies have showed that
upon exposure to Cd, expression of most of the transcription
factors belonging to MYB, AP2, DREB, WRKY, and NAC up-
regulates at different time intervals in rice (Ogawa et al., 2009).
The MYB family is one of the largest families of transcription
factors having diverse functions in eukaryotes (Dubos et al.,
2010). Previous report have shown that MYBs such as MYB4,
MYB28, MYB43, MYB48, MYB72, and MYB124 were highly
induced in Cd and Zn metal stresses in Arabidopsis (van de
Mortel et al., 2008). They have also found that the MYB72
loss of function mutant exhibits increased metal sensitivity
in Arabidopsis than the related Zn/Cd-hyper accumulator
Thlaspi caerulescens. In another study, it was reported that Cd
inactivates MYB2 by induction of NO production which causes
nitrosylation of cysteine residues in the MYB2 transcription
factor in Arabidopsis (Serpa et al., 2007). Recent reports
have also established role of OsMYB45 in Cd toxicity (Hu
et al., 2017). They found that mutation in OsMYB45 resulted
in Cd hypersensitive phenotype with significant increase in
H2O2 content in the leaves of mutant and decrease in
CAT activity as compared to the wild-type. In recent times,
Wang F. Z. et al. (2017) have established the role of rice
MYB transcription factor OsARM1 (ARSENITE-RESPONSIVE
MYB1) that regulates As-associated transporters genes. He found
that OsARM1 binds to the conserved MYB binding sites in
the promoters of OsLsi1, OsLsi2, and OsLsi6, which encode
key As transporters and affects their expression. Several studies

suggest MYB TFs to be the downstream targets of MAPKs.
Most recently, Li et al. (2016) found that MPK4 induced
by light, regulates photoprotective anthocyanin biosynthesis
by regulating MYB75/PAP1 transcription factor (Li et al.,
2016). An altered gene expression and activity of MYBs
as well as MAPKs in Cd stress gives us a clue of MYB
being potential substrates of MAPKs during heavy metal
stress.

WRKY transcription factors specifically bind to W-box in the
promoters of many genes that are responsive to many biotic and
abiotic environmental stress factors. Opdenakker et al. (2012)
have reported significantly higher expression of members of
WRKY family upon Cu and Cd metal exposures. They found
that the transcription factors WRKY22, WRKY25, and WRKY29
were overexpressed in response to short-term exposure of roots
to Cu. In contrast, only the expression ofWRKY25 andWRKY29
affected upon exposure to Cd over a period of 24 hr (Opdenakker
et al., 2012). In Cd treated T. caerulescens, expression ofWRKY53
was found to be highly induced (Wei et al., 2008). Previous
reports also showed that the flagellin induced MAPK cascade
MEKK1-MKK4/MKK5-MPK3/MPK6 activates WRKY22 and its
close homologWRKY29 (Asai et al., 2002). Also there are reports
showing SA dependent activation of WRKY25 and WRKY33
by MKS1 that directly interacts with MPK4 and negatively
regulates defense responses in plants (Andreasson et al., 2005).
In accordance with this, a tobacco WRKY1 was found to
be phosphorylated by the defense-activating MAP-kinase SIPK
(Menke et al., 2005). Also, it was reported that MPK3 and MPK6
phosphorylates WRKY33 and induces phytoalexin biosynthesis
in Arabidopsis (Mao et al., 2011). Previous studies revealed that
MEKK1 directly interact with WRKY53 on the protein level and
also bind to its promoter (Miao et al., 2007). Most recently,
expression of WRKY25, a downstream target for MPK4 was
found to be up-regulated following Cd exposure (Smeets et al.,
2013). Overall, these reports suggest that WRKY transcription
factors can work coordinately with MAPK cascade during heavy
metal stress tolerance.

Plant bZIP transcription factors are another class that
provides defense against various environmental stresses
including heavy metal stress. Reports have suggested induced
expression of bZIP transcription factors upon Cd exposure
(Ramos et al., 2007). Previous studies showed that the bZIP
transcription factor from B. juncea, BjCdR15, is a regulator of
Cd uptake, transport and accumulation in shoots and confers
cadmium tolerance in transgenic plants (Farinati et al., 2010).
In Soybean, Cd treatment significantly up-regulates bZIP62
expression while the expression of bZIP44 and bZIP78 is
down-regulated (Chmielowska-Bak et al., 2014). Likewise,
bZIP1 from Tamarix hispida showed increased expression in Cd
stress in tobacco (Wang et al., 2010). Recent study on a novel
bZIP gene, BnbZIP3 from ramie (Boehmeria nivea) plant has
showed that it positively regulates heavy metal stress tolerance
by improving root growth upon overexpression (Huang et al.,
2016). Though the direct link for bZIP transcription factors with
MAPKs was not discovered in context to heavy metal stress but a
report suggests that Arabidopsis bZIP transcription factor VIP1
(VirE1-Interacting Protein 1) localization and VirE2/T-DNA
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complex nuclear import may require phosphorylation by MPK3
(Djamei et al., 2007).

Apart from the abovementioned transcription factors, Cd also
modulate expression of AP2/ERF family members, namely, ERF1
and ERF5 in Arabidopsis (Herbette et al., 2006). Similarly, Cd
induces ERFs in A. thaliana and A. halleri (Weber et al., 2006). It
has been reported that dehydration-responsive element-binding
protein (DREB) transcription factors which are members of ERF
family of transcription factors gets up-regulated upon heavy
metal treatment. Cd leads to elevated expression of DREB1A and
DREB1B in rice (Ogawa et al., 2009) while inhibited expression
of transcription factors belonging to DRRB family was found in
Solanum torvum plants (Yamaguchi et al., 2010). Recent studies
have demonstrated that MPK3 and MPK6 regulates ethylene
signaling by regulating ERF104 and Ethylene-Insensitive 3
(EIN3) which enhances the expression of ERF104 (Yoo et al.,
2008; Bethke et al., 2009). In a recent study, a zinc finger
transcription factor (C2H2-type), ZAT12 expression modulated
upon short-term exposure to Cu while no such influence was
observed upon long-term Cd exposure (Opdenakker et al., 2012).
Recently, Arabidopsis ZAT6 was found to be positive regulator
of Cd tolerance through the glutathione-dependent pathway
(Chen et al., 2016). They identified that ZAT6 positively regulates
expression of PCs synthesis pathway genes such as GSH1, GSH2,
PCS1, and PCS2. Studies through protein-protein interaction also
showed ZAT10 as direct substrate for MPK3 and MPK6 (Nguyen
et al., 2012), suggesting involvement of MAPKs in regulation of
heavy metal stress via ERFs and ZAT transcription factors.

Altogether, heavy metal stress activates various signaling
components including MAPK cascades. Though, the reports on
involvement of MAPKs upstream to transcription factors are
rather scarce under metal stress but the above data demonstrated
that they indeed interacts with transcription factors and mediates
heavy metal stress tolerance response in plants.

MAPK Signaling in Metal Sequestration
and Transport
Encounter of heavy metal by plant roots generates many
responses. This starts with binding of metal to the root cell
wall and exudates, followed by metal influx across the plasma
membrane. The high degree of metal influx is taken care by
efflux of metal ions into the apoplast and chelation in the
cytoplasm by PCs, metallothionines, organic, and amino acids.
These metal ligand complexes are transported to the tonoplast
and sequestered into the vacuoles (Sharma and Dietz, 2006;
Verbruggen et al., 2009; Mendoza-Cózatl et al., 2011) (Figure 1).
There are several molecules involved in this whole process of
metal uptake, transportation, chelation, and sequestration. These
are metal transporters and chelators accomplishing their task and
protecting plants in metal toxicity (Singh S. et al., 2015).

MAPKs are one of the important signaling modules
transmitting various stress related signals and are also known
to get activated by heavy metal stress as discussed previously.
The best characterized MAPKs MPK3 and MPK6 are the ones
that are known to get expressed and activated by wide range
of metals. Cadmium and copper have shown profound effect

on these MAPKs in number of species. Up-regulation of MPK3
and MPK6 in these heavy metals gives us a clue about their
function in metal homeostasis by either regulating downstream
metal transporters or chelators that function in response to Cd
and Cu. However, studies on ultimate effect of their activation
on regulation of metal transporters, other TFs and proteins are
still elusive in plants. Even though, there are significant reports
on regulation of metal transporters by MAPKs in animals which
gives an idea about this crosstalk occurring even in plants.

A number of metal transporters involved in metal ion
homeostasis have been identified from different plants. The
major groups of metal transporters studied are ZIP, heavy metal
transport ATPase (CPx- and P1B-ATPase), NRAMP, CDF, and
ABC transporters (Park et al., 2012; Singh S. et al., 2015). Several
studies report their role in metal translocation and uptake based
on expression pattern in different heavy metals. ZIP members
were the first to be reported in plants, having ability to transport
divalent cations like Zn2+, Fe2+, Mn2+, and Cd (Eide et al.,
1996). IRT1 gene from Arabidopsis belonging to ZIP family is
major transporter of iron leading to high affinity Fe uptake. In
iron limiting environment IRT1 is present only in roots and is
studied to be induced within 24 h of iron deficient conditions.
Plants overexpressing IRT1 accumulate high levels of Cd and
Zn along with Fe (Connolly et al., 2002). Other ZIP members
ZIP1 and ZIP2 were studied to be Zn and Mn transporters in
roots contributing to remobilization of Mn/Zn from vacuole
to cytoplasm in root stellar cells and further movement from
root stele to xylem parenchyma. According to their role, the
expression of both the genes is mainly localized to the root stele
(Milner et al., 2013). An interesting study on iron deficiency
induced ethylene production in Arabidopsis reports the role of
MPK3 and MPK6 in iron transport. The expression of iron
transport and chelator genes (IRT1, FRO2, and FIT) was down
regulated in mpk3 and mpk6 mutants under Fe deficiency (Ye
et al., 2015), which suggests a possibility of these iron responsive
genes working downstream ofMAPK cascade (Table 3). This also
suggests a crosstalk of MAPK signaling and hormone pathways
in metal translocation in plants. Whilst in plants, there is single
report of MAPK involvement in regulating metal transporter;
in animals this concept is well-explored. It is not only the
MAPKs known for regulating metal transporters but metal
transporters are also equally involved in activating MAPKs. A
report on chicken cell line suggest a role of ZIP transporter
ZIP9/SLC39A9 in elevating intracellular zinc level and thereby
regulating the activation of ErkMAPK signaling (Taniguchi et al.,
2013) (Table 3).

Other metal transporter family NRAMP functions in diverse
organisms ranging from bacteria to humans. In plants there are
two subfamilies of NRAMP genes and several of them upregulate
in Fe, Mn, and Cd deficiency. NRAMP proteins are studied to
be localized on intracellular membranes of plastid and vacuolar
membrane (Thomine and Schroeder, 2004). Expression analysis
of NRAMP in plants suggests that unlike ZIP family (expressed
mainly in roots) these metal transporters are expressed both
in root and shoot, thus participating in metal homeostasis
in all plant tissues. However, functional characterization of
plant NRAMP transporters remains limited. Couple of studies
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TABLE 3 | Metal transporters regulating MAPK signaling and vice versa.

Family Metal transporter Metal ions MAPKs Model organism Reference

METAL TRANSPORTERS REGULATING MAPKs

1 ZIP family ZIP9/SLC39A9 Zn ERK MAPKs Chicken Taniguchi et al., 2013

2 NRAMP family NRAMP1 (SLC11A1) – P38MAPK Mammals Moisan et al., 2006

3 CTR family CTR1 Cu MEK1-ERK1 Mammals Tsai et al., 2012; Turski et al., 2012

4 CDF family ZnT1 Zn, Co, Cd Raf1-MEK-ERK C. elegans Jirakulaporn and Muslin, 2004

5 Metallothioneins Zn P38 MAPK Mammals Rice et al., 2016

MAPKs REGULATING METAL TRANSPORTERS

1 ZIP family IRT1 Fe MPK3, MPK6 Arabidopsis Ye et al., 2015

2 NRAMP family NRAMP1 – P38MAPK, p42/44 MAPK Mammals Zhang et al., 2000

3 ABC family MRP1 – ERK/MAPK pathway Mammals El Azreq et al., 2012

4 ABCA1, ABCG1 Ras-MAPK pathway Mammals Mulay et al., 2013

5 Zn transporter family Zrc1 Zn Pbs2-Hog1-RCK1/RCK2 Yeast Bilsland et al., 2004

6 Phytochelatins – Unknown MAPK S. mansoni Rigouin et al., 2013

in animal suggest the regulation of NRAMP1 transporter by
MAPKs. This ion transporter was known to work downstream of
p38 and p42/44MAPK pathway activated upon proinflammatory
mediators and bacterial infection in mammalian cells (Zhang
et al., 2000). Also, another study implied the role of NRAMP1
in modulation of MAPK pathway (Moisan et al., 2006)
(Table 3).

ABC transporters comprises of largest family, classified into
eight subfamilies playing roles in diverse cellular processes
like nutrient uptake, osmotic homeostasis, hormone transport,
pathogen resistance, fatty acid import, and metal tolerance (Park
et al., 2012). Arabidopsis ABC transporter, AtPDR8 is identified
as cadmium extrusion pump conferring resistance to heavy metal
Cd and Pb (Kim et al., 2007). Owing to their metal transportation
capacity ABC C-type transporters AtABCC1 and AtABCC2
have been identified as major phytochelatin-heavy metal(oid)
complex transporters. In recent study in wheat, expression of
13 ABC transporter genes was analyzed in different metals,
which suggested that these genes were differentially regulated by
Cd, indicating their participation in Cd uptake, transport, and
sequestration (Wang X. et al., 2017). Yet another transporter
of ABC family named as MRP1 (multidrug associated protein)
is known to be regulated in ERK/MAPK pathway dependent
manner in leukemic T cells (El Azreq et al., 2012). ABC
transporters are known for their role in vacuole sequestration
in plants. Besides this Ras/MAPK pathway is also reported to
regulate ABCmetal transporters (ABCA1 andABCG1) in human
hepatic cells (Mulay et al., 2013) (Table 3). A study in yeast
proves the fact of activation of metal transporter byMAPKsmore
firmly. A MAPK cascade consisting of Pbs2-Hog1-Rck1/Rck2 in
yeast is studied to activate a transcription factor (Yap2) and Zn
transporter (Zrc1) thereby providing oxidative stress resistance
(Bilsland et al., 2004) (Table 3).

Another metal transporter involves CTR transporter having

an important role in maintaining Cu homeostasis in various

species. CTR transporters are either plasma membrane proteins
transporting Cu from extracellular spaces to cytosol or lysosome
membrane proteins transporting Cu from lysosome to cytosol.

In mammals, a study on high affinity copper transporter CTR1
was reported to activate MAPK cascade, wherein the mutation of
CTR1 and Cu chelators reduces the activation of Erk1 (MAPK)
by MEK1 (MAPKK) (Table 3). This is due to the fact that
Erk1 phosphorylation by MEK1 requires Cu binding which
diminishes in ctr1 mutant (Tsai et al., 2012; Turski et al.,
2012). Likewise, another report suggest that CDF proteins which
are famous for the transport of Zn2+, Co2+, Cd in plants,
modulates the activity of Raf1-MEK-ERK pathway in C. elegans.
Its homolog in mammals, ZnT1 binds directly to the Raf1 in its
regulatory domain thus activating it (Jirakulaporn and Muslin,
2004) (Table 3). Besides this, there are wide array of metal
transporters that mediate Ca transport and its sequestration into
the vacuole. Cation/proton exchangers (CAX) and isoforms have
broad specificity and are widely implicated in Ca transport and
other heavy metals like Mn2+ and Cd. CAX have been identified
in salt tolerance, cadmium transport and tolerance. In mammals
NHE1, one of the CAX was found to regulate MAPKs wherein it
inhibited ERK1/2 and stimulated JNK1/2 activity (Pedersen et al.,
2007).

Apart from the transporters activating MAPKs or vice versa,
there are also studies suggesting the activation of MAPKs by
metal chelators. The important metal chelators are PCs and
metallothioneins and these are small cystein rich peptides with
metal binding capacity (Singh S. et al., 2015). Two reports suggest
MAPK activation by metallothioneins mainly by the release of
the metal ions chelated (Chung et al., 2008; Rice et al., 2016).
Additionally, PCs and phytochelatin synthase are hypothesized
to be acting downstream of MAPK pathway in plants and human
parasite respectively (Rigouin et al., 2013) (Table 3).

CONCLUSION

From this review it is implied that metal exerts tremendous
effect on plant by modulating its functioning at various levels.
Metal stress activates several signaling pathways, known to have
important role in imparting resistance against environmental
stresses. Of these, an important signaling pathway contributing
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majorly in managing stress response is MAPK signaling pathway.
Activation of signaling pathways magnifies the activation
and functioning of various downstream components like
transcription factors and other cytosolic protein thereby altering
the expression of genes. In this review, the impact of heavy metals
on activation of MAPK, calcium and hormone signaling along
with other regulators like transcription factors and miRNAs
is certainly reported. Several studies performed throughout
different scientific groups suggest important role of MAPK
signaling in heavy metal stress. However, a detailed evaluation
of complete MAPK cascade working in combating heavy metal
stress is required. Further, this review compiles the results
revealing interplay of MAPK signaling with calcium, auxin, and
ethylene signaling in response to heavy metal stress. All these
findings outline the regulatory function of MAPKs acting either
upstream or downstream to other signalingmolecules. In animals
this regulatory network has been elaborately studied in metal
stress than in plants. Hence, it will be highly advantageous
to study the importance of this signaling crosstalk in heavy
metal stress in plants. Additionally, this review also summarizes
interplay between MAPK signaling and other regulators like
miRNAs and transcription factors in conveying a response
against metal stress. However, scarce reports on regulatory
network of MAPKs with transcription factors suggest a need for
more in depth experiments in response to heavy metal stress in
plants. Though, there are ample numbers of reports on activation
of different signaling components, studies on deciphering of a
complete regulatory network in heavy metal stress in plants are

still lacking. Furthermore, the studies on activation of MAPKs

by metals and metal transporters and in turn their regulation
by MAPKs in animals and yeast, suggests occurrence of this
phenomenon even in plants. However, the fragmentary work
performed keeps this area mysterious in plants. Exploring the
regulators of these metal transporters will contribute significantly
in unraveling the mechanisms of metal stress tolerance in plants.
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