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The development of cauliflower (Brassica oleracea var. botrytis) is highly dependent
on temperature due to vernalization requirements, which often causes delay and
unevenness in maturity during months with warm temperatures. Integrating quantitative
genetic analyses with phenology modeling was suggested to accelerate breeding
strategies toward wide-adaptation cauliflower. The present study aims at establishing
a genome-based model simulating the development of doubled haploid (DH) cauliflower
lines to predict time to curd induction of DH lines not used for model parameterization
and test hybrids derived from the bi-parental cross. Leaf appearance rate and the
relation between temperature and thermal time to curd induction were examined in
greenhouse trials on 180 DH lines at seven temperatures. Quantitative trait loci (QTL)
analyses carried out on model parameters revealed ten QTL for leaf appearance rate
(LAR), five for the slope and two for the intercept of linear temperature-response
functions. Results of the QTL-based phenology model were compared to a genomic
selection (GS) model. Model validation was carried out on data comprising four field trials
with 72 independent DH lines, 160 hybrids derived from the parameterization set, and
34 hybrids derived from independent lines of the population. The QTL model resulted in
a moderately accurate prediction of time to curd induction (R2

= 0.42–0.51) while the
GS model generated slightly better results (R2

= 0.52–0.61). Predictions of time to curd
induction of test hybrids from independent DH lines were less precise with R2

= 0.40
for the QTL and R2

= 0.48 for the GS model. Implementation of juvenile-to-adult phase
transition is proposed for model improvement.

Keywords: quantitative trait loci, genomic selection, phenology model, cauliflower, vernalization, curd induction

INTRODUCTION

Floral or curd induction is a temperature-mediated process in cauliflower. While temperature
optima for curd induction are around 15◦C for many summer cultivars, temperatures above 20◦C
delay or inhibit curd induction. Wide harvest windows resulting from high ambient temperatures
lead to several selective harvests on the same field causing high workloads for growers (Wiebe,
1980). Phenology models are useful tools to cope with uncertainties in time to curd induction
and harvest (Jensen and Grevsen, 2005). Several modeling approaches have been made to predict
harvest time in cauliflower: The earliest models used linear relations between curd diameter and
temperature sum to predict time to maturity, which required curd diameter measurements in
the field (Salter, 1969; Hand, 1988; Wurr, 1989; Wurr et al., 1990a,b). Later models integrated
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earlier development stages beginning at transplanting (Pearson
et al., 1994; Grevsen and Olesen, 1994). Several models divided
development before curd induction into the juvenile phase,
ending after a certain number of leaf primordia is initiated and
during which plants are insensitive to vernalization, and the adult
vegetative or vernalization phase, characterized by temperature
sensitivity (Wiebe, 1972a,b,c; Wurr, 1989; Kage and Stützel,
1999). Olesen and Grevsen (2000) established a model simulating
time to maturity and enabling curd quality prognosis based on
weather data. Jensen and Grevsen (2005) presented a web-based
management tool for growers and wholesale traders predicting
harvest time by applying the temperature-sum rule. In addition
to crop phenology, Kage et al. (2001a,b) modeled the dry matter
production and partitioning by means of absorbed photoactive
radiation and light use efficiency.

The mentioned models are valid for single or few cultivars.
Using crop growth or phenology models in plant breeding was
firstly proposed by Yin et al. (2003) via integrating QTL and
ecophysiological models. QTL-based phenology models have
already been established for crops like wheat (Bogard et al.,
2014), barley (Yin et al., 2005b), soy (Messina et al., 2006),
and B. oleracea (Uptmoor et al., 2012). The studies revealed
that QTL can be detected for model parameters describing
the response curve of time to flowering, heading or floral
induction in relation to the environmental factors photoperiod
and/or temperature and that flowering time of progenies within
bi-parental crosses can be predicted based on QTL effects.
However, most of the studies used no or only few independent
lines from the respective populations for model validation,
which is apart from QTL detection a prerequisite for possible
applications in plant breeding. GS was first introduced in animal
breeding (Meuwissen et al., 2001) and has emerged as a new
tool in plant breeding by using genome-wide markers and
their corresponding effects to predict phenotypes of untested
genotypes (Desta and Ortiz, 2014). While most GS studies
were conducted in populations with a broad genetic basis,
also bi-parental crosses were used (Lorenza and Bernardo,
2009). Combined GS and phenology models have already been
tested and are likely to replace QTL-based modeling approaches
since predictions can be made across bi-parental populations
(Heslot et al., 2014; Technow et al., 2015; Onogi et al., 2016;
Uptmoor et al., 2016). Both, QTL-based modeling approaches
and combined GS and crop models may dissect complex traits
into underlying physiological factors and have in common that
QTL or marker effects are estimated for parameters of the
response curves of the trait or underlying physiological factor
to environmental influences like temperature. While QTL-based
modeling approaches consider only main effect loci, GS models
estimate effects for all markers and, thus, capture small effect loci
as well.

Since B. oleracea is closely related to Arabidopsis thaliana
(Lagercrantz et al., 1996), for which the main regulators of
flowering time are known (Jack, 2004; Blázquez, 2005), QTL
and flowering-time regulator co-localizations gave hint that these
genes may account for flowering-time variation in B. oleracea.
One important flowering time integrator is FLOWERING LOCUS
C (FLC), an inhibitor of flowering, which is downregulated

by vernalization and has a significant impact on flowering-
time variation in A. thaliana (Koornneef et al., 1994). The
B. oleracea genome carries several FLC homologs (Lagercrantz
et al., 1996; Okazaki et al., 2007; Axelsson et al., 2001) and
co-localizations with flowering-time QTL indicated that allelic
variation of FLC might play an important role in flowering-
time regulation in B. oleracea (Schranz et al., 2002; Brown
et al., 2007). However, Okazaki et al. (2007) and Razi et al.
(2008) suggested that several tested FLC homologs unlikely
induce flowering-time variation in B. oleracea. While Ridge et al.
(2015) found evidence for functional relevance of BoFLC2 in
floral induction, Matschegewski et al. (2015) found no consistent
BoFLC2 transcription patterns in cauliflower breeding lines for
different climates and seasons. QTL for curd induction were not
only identified in regions harboring FLC and FRI homologs but
also on O6, where BoAP1-a and BoAP1-c are located (Hasan et al.,
2016).

Despite the efforts spent in elucidating genetic mechanisms
underlying floral induction in cauliflower, it is still widely
unknown, how temperature-dependent development toward
curd induction is regulated, which, in turn, hampers the
development of new cultivars with stable time to maturity
in a broad range of different environments. Identification of
candidate genes underlying flowering-time QTL may benefit
from integrated modeling approaches since model parameters
allow to distinguish vernalization from flowering-time per se
QTL. To date, most studies integrating genetic and eco-
physiological models used QTL rather than genome-wide marker
effects, even though state of the art marker-assisted plant
breeding strategies rely on GS. Therefore, the present study aims
at (1) the identification of QTL for parameters of a phenology
model, assuming a linear relation between temperature and
thermal-time to curd induction, (2) model parameterization
based on both QTL and genome-wide marker effects, (3) model
evaluation on multi-environment field data from independent
genotypes including DH-lines per se and lines crossed with a
tester, and (4) comparison of both parameterization principles.

MATERIALS AND METHODS

Plant Material
The present study was carried out on a population consisting of
265 DH lines derived from the F1 of a cross between homozygous
parental lines P1 with good harvest-time reliability at higher
temperatures and P2 that is less resistant to elevated temperatures
but produces high-quality curds. More details about reliability
in time to curd induction and harvest time of the PLs are
provided by Hasan et al. (2016). A subset of 180 lines was used
for model parameterization, while the validation sets included
three subsets with 72 additional DH lines per se, 160 test hybrids
from the parameterization set, and 34 test hybrids obtained from
the 72 additional DH lines. Plant material was obtained from
SYNGENTA Seeds B.V., Enkhuizen, Netherlands. The PLs were
genotyped with a 20k B. oleracea Illumina Infinium iSelect single-
nucleotide polymorphism (SNP) array (Matschegewski et al.,
2015). A subset of SNPs of the array was selected based on
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polymorphisms between PLs and genome coverage to genotype
the DH-population with 176 SNP markers. The genetic map was
constructed using MapMaker 3 and the Haldane function. The
total map length was 891.2 cM spanning over nine chromosomes.
Average distance between SNP markers was 5.3 cM. Physical
marker positions are available from Hasan et al. (2016).

Model Parameterization Trials
Model parameterization is based on controlled temperature
treatments described in Hasan et al. (2016). Six trials were carried
out in greenhouses with mean temperatures of 11.8, 15.5, 17.3,
19.0, 21.4, and 27.0◦C and one in climate chambers with a
mean air temperature of 26.5◦C. Seeds of all DH lines of the
parameterization set were sown in seedling trays and raised in the
greenhouse at 22◦C until all plants had two to three visible leaves.
Afterward, seedlings were planted into 3 l pots, transferred to
the temperature treatments in greenhouses or climate chambers,
and arranged in randomized complete block designs. Plants were
grown at a photoperiod of 16 h, providing 200 µmol m−2 s−1

additional light by Phillips SON-T Agro lamps when day length
was below 16 h or natural radiation during the day below 5
klux. Plants were fertigated daily with 0.5 g l−1 Scotts Universal
solutions. All trials were terminated after 120 days.

Time to visible curd induction was recorded daily. A curd
diameter of 1 cm was used as threshold for considering visible
curd induction to have been occurred. Number of leaves larger
than 1 cm was counted twice a week. Leaf appearance rate (LAR)
was computed as the slope of the regression of leaf numbers on
growing degree-days assuming a base temperature of zero.

Model Validation Trials
For model validation, a field trial was carried out with 72 lines
in 2013 in Rostock, Germany. Twelve seeds per line were sown
on May 6 into seedling trays and raised in the greenhouse. Eight
plants of each line were planted into the field on June 5 when
most plants had two to three leaves. Field trials were carried out
in a randomized complete block design with two replications and
four plants per replication. Seedlings were planted in rows with
distances of 50 cm between and within rows. A border row was
planted to provide similar conditions for all plants. Irrigation was
applied as required and the plot was covered with a net to protect
plants during the first weeks from cabbage fly (Delia radicum)

and other pests. The trial ended on August 16. Time to curd
induction was scored twice a week. Beginning of curd formation
was defined as curd diameter ≥ 1 cm.

Additional validation trials with similar growing conditions
were carried out in 2013 in Ruthe, Germany and in 2011 and 2012
in Zeewolde, Netherlands. In Ruthe, seeds of the validation set
were sown on May 14 and eight plants per line were transplanted
to the field on June 13 when they had two to three visible
leaves. Zeewolde field trials were carried out on the whole DH-
population and transplanting took place on June 14, 2011 and
May 24, 2012. Mean air temperatures during the experiments
were 17.9◦C in Rostock, 19.0◦C in Ruthe, and 17.4 and 17.2◦C
in Zeewolde 2011 and 2012, respectively. Only 44 DH lines were
used in Zeewolde 2011, whilst all other trials comprised the whole
DH per se validation set.

Further trials were conducted on the 160 F1 test-hybrids
derived from the parameterization set and the 34 hybrids in Ócsa,
Hungary, where plants were transplanted on July 7, 2011 and
July 6, 2012 and in Zeewolde, where transplanting took place
on June 13, 2012. Mean air temperatures in Ócsa were 21.4
and 22◦C, respectively; mean air temperature in Zeewolde was
17.4◦C. Harvest time was recorded in all Ósca and Zeewolde
trials. Sowing was assumed to have taken place 30 days before
transplanting and duration from visible curd induction to harvest
was assumed to be 30 days (Table 3).

Data Analysis and Model Description
The cauliflower phenology model was divided into a juvenile
and a vernalization phase. During the juvenile phase, plants
were assumed to be insensitive to temperature, i.e., development
followed the temperature-sum rule. Although it is known that
genotypic variation in the number of initiated or visible leaves
at juvenile-to-adult transition exists (Hand and Atherton, 1987),
juvenility was assumed to end for all genotypes after 7 leaves were
visible. In contrast, LAR and phyllochron (P, d), the reciprocal
of LAR, was assumed to be genotype specific. The genotype
specific temperature sum for juvenile-to-adult transition (TSf )
was calculated as follows:

TSf = 7× P

The model assumed genetic variation in temperature response
from end of juvenility to visible curd induction (curd

TABLE 1 | Population means and standard deviations (SD) of temperature sums (TS) required for visible curd induction at different temperatures.

Temperature [◦C] TS parameterization set [◦Cd] TS parental lines [◦C]

Mean Mean SD P1 P2

11.75 1533 63.6 1629.5 1556.7

15.51 1462 65.7 1640.8 1519.8

17.33 1557 85.6 1923.8 1516.5

19.03 1570 85.4 1868.5 1607.8

21.44 1930 242.3 – 1888.4

26.49 1862 192.5 – 1911.1

27.00 2370 384.2 – 2346.0

Shown are means across DH-lines used for model parametrization TS of parental lines.
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diameter > 1 cm). Accelerating or retarding temperature effects
on phenological development may end at floral transition, which,
however, was not observed. Instead, the relation between thermal
time to visible curd induction in seven different treatments
and temperature was estimated by linear regression, where
the intercept T0 (◦Cd) describes the extrapolated (theoretical)
minimum thermal time to curd induction and the slope S
(◦Cd ◦C−1) the temperature sensitivity, i.e., a genotype with
S= 0 is insensitive while a genotype with a large positive S shows
strong vernalization response. The daily development rate kij

(d−1) for the ith day and jth line was calculated based on daily
mean air temperatures Ti as follows:

kij =
Ti

(Ti × Sj + T0j)

kij was added up until the cumulative kj became ≥ 1, i.e., when
the adult vegetative phase was completed and curd development
started.

A linkage map was constructed with MapMaker 3 by
simultaneous multipoint-analysis using the Haldane function
(Lander et al., 1987; Lincoln et al., 1993). On basis of the results
of parameterization trials, QTL analyses were conducted on
LAR, S, and T0 using PlabQTL 1.2 (Utz and Melchinger, 1996).
Composite interval mapping (CIM) based on multiple regression
with co-factors was applied (Haley and Knott, 1992; Jansen and
Stam, 1994; Zeng, 1994; Miller, 2002). The LOD threshold to

define a significant QTL was 2.5. The linkage map was drawn with
MapChart 2.3 (Voorrips, 2002).

Additive QTL effects were assigned to all detected loci and
QTL based parameters for T0, S, and LAR were calculated using
the following equation:

yj = m+
∑

eigij

where yj is the estimated value of parameter y of the jth line, m is
the population mean for the parameter, ei is the additive effect of
the ith QTL, and gij is the allelic state of the ith QTL in line j. gij
can be−1 or+1.

In addition to linkage mapping, marker effects of the three
parameters were estimated by genomic selection using the ridge-
regression best linear unbiased prediction (rrBLUP) package
for R 3.2.4. with the following restricted mixed model (REML)
solution:

y = Xβ+ Zv+ ε

where y is the vector of phenotypic observations, X is the matrix
of fixed effects β, Z is the matrix of random effects υ, and ε is
the residual effects matrix (Endelman, 2011). rrBLUP was carried
out on the three model parameters LAR, S, and T0. Effects were
assigned to all markers and the sum of marker effects was used
to calculate additive genomic estimated breeding values (GEBV)
of the individuals of the validation sets. GEBVs for LAR, S, and
T0 were implemented into the phenology model as parameter
input values to simulate heading date of the individuals in field
trials.

TABLE 2 | Population mean, standard deviation, and maximum and minimum estimates for leaf appearance rate (LAR), slope (S), and intercept (T0) of DH lines used for
model parameterization and estimates of the parental lines P1 and P2.

Parameter Mean SD Max. Min. P1 P2

LAR 0.0216 0.0021 0.0293 0.0161 0.0161 0.0214

S 50.0 20.5 106.0 4.17 39.8 46.7

T0 631.3 296.5 1374.6 −194.6 1133.2 840.3

TABLE 3 | Number of lines of the parameterization and validation sets used in field trials at different locations in 2011, 2012, and 2013; mean, minimum and maximum
temperatures during field trials and means with standard deviations (SD), minima and maxima for time to curd induction.

Trial Zeewolde 2011 Zeewolde 2012 Ruthe 2013 Rostock 2012 Ócsa 2011 Ócsa 2012

Number of lines

Parameterization set (DH lines per se) 140 154 – – – –

Validation set (DH lines per se) 44 69 68 67 – –

Parameterization set (F1 hybrids) – 156 – – 134 146

Validation set (F1 hybrids) – 31 – – 20 24

Temperature [◦C]

Mean 17.4 17.2 19.0 17.9 21.4 22.0

Min. 13.0 9.1 12.1 11.7 14.9 13.6

Max. 25.4 21.9 26.9 27.4 29.6 29.4

Thermal time to curd
induction [◦Cd]

Mean 1276.3 1261.7 1417.0 1494.7 1427.4 1597.7

SD 102.6 73.5 139.4 99.5 82.9 135.2

Min. 1075.3 1006.8 1178.2 1237.9 1291.3 1364.0

Max. 1477.2 1509.6 1810.6 1750.4 1621.3 1868.7
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FIGURE 1 | Linkage map of B. oleracea with marker names and positions and confidence intervals of QTL for leaf appearance rate (LAR), slope (S) and Intercept (T0).

TABLE 4 | List of QTL for leaf appearance rate (LAR), slope (S), and intercept (T0) including confidence intervals, LOD-scores, % variation explained (R2) and effects of
the P1 allele.

Trait Chromosome Position (cM) Confidence interval (cM) Nearest marker LOD-score R2 (%) Additive effect

LAR 1 24 22–26 S1066 4.68 12.5 −0.504

1 58 54–62 S0528 6.62 17.2 0.795

1 78 72–80 S0598 2.70 7.5 −0.508

3 32 28–34 S0623 3.42 9.3 −0.388

5 0 0–2 S0359 2.70 7.6 −0.425

5 20 18–28 S0975 4.61 12.4 0.541

6 32 30–36 S0509 2.99 8.2 0.593

7 28 22–34 S0289 4.09 11.0 0.504

7 80 64–84 S0728 2.96 8.1 −0.398

9 38 24–48 S0501 7.04 18.3 0.623

S 1 74 68–80 S1119 4.12 11.7 −4.972

4 114 108–116 S1115 4.42 12.4 −5.217

6 12 46–18 S1114 8.00 21.3 −8.885

6 32 30–36 S0509 4.55 12.7 −6.891

9 48 44–52 S0501 3.98 11.2 −4.797

T0 1 74 66–80 S1119 2.91 8.5 64.62

6 12 4–20 S1114 4.49 12.6 100.54

RESULTS

Phenotypic Variation for Traits and
Model Parameters
Thermal time from transplanting to curd induction under
different constant temperatures was measured in the
parameterization trials. In general, the higher the temperature,

the higher was the temperature sum required for curd induction.
Population means ranged from 753 to 1590◦Cd (Table 1).

Mean LAR of individual genotypes averaged across all
parameterization trials ranged from 0.016 to 0.029. The
population mean was 0.022 with a standard deviation of ±0.002.
Mean S was 50.0 (±20.5) and ranged from 4.2 to 106.0.
Population mean of T0 was 631◦Cd± 296◦Cd (Table 2). Mean R2
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of the relation between temperature and thermal time to curd
induction was 0.65 (±0.13), maximum R2 was 0.87 and minimum
was 0.05.

In the validation trials the thermal time to curd induction was
measured for the parameterization set, the validation set and F1
hybrids of both sets. Mean thermal time to curd induction ranged
from 1276.3 to 1597.7◦Cd across all trials and the different subsets
(Table 3).

QTL and Genome-Wide Marker Effects
for Model Parameters
QTL analyses were carried out on model parameters LAR, S, and
T0. In total, ten QTL were detected for LAR. Three of them were
located on chromosome O1 and two on O5 (Figure 1). Five QTL
were identified for S. Both S QTL on O6 co-localized with T0
QTL, while one of them was also found to co-localize with an LAR
QTL. The third QTL for S on O9 was located close to a LAR QTL.

Genetic positions, LOD scores, and additive effects of all QTL are
summarized in Table 4. LAR QTL on O9 and O5 revealed highest
LOD scores of 7.04 and 6.62, respectively. LOD scores of the two
QTL for S on O6 were found to be highest with 8.0 and 4.6.

Genome-wide marker effects for the model parameters LAR,
S, and T0 were estimated by rrBLUP and are displayed in
Figure 2. Large marker effects on O6 support linkage-mapping
results, which indicated a promising hotspot region on O6.

Genome-Based Prediction of Curding
Time
To get an idea about the power of the phenological model,
curd induction of the parameterization set was simulated with
both QTL-effects and original parameters. A very high prediction
accuracy of R2

= 0.98 was observed applying original parameters
to predict time to curd induction of the parameterization trials.
Figures 3A,C show means across seven temperature treatments.

FIGURE 2 | Effects of 176 SNP markers for the parameters leaf appearance rate (LAR, 1/◦Cd), slope (S, in ◦Cd/◦C) and intercept (T0, in ◦C) estimated by
genome-wide analysis. Markers are shown in the order of their position on the genome, vertical lines indicate linkage groups.
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FIGURE 3 | Predicted vs. observed mean time to curd induction of the DH lines used for model parameterization. Shown are means of seven greenhouse trials
(A,C) and means of field trials in Zeewolde 2011 and 2012 (B,D). Predictions are based on original parameters (A,B) and QTL effects (C,D).

R2 decreased to 0.44 if original parameters were replaced by
QTL-based estimates. A similar situation with an overall reduced
R2 was observed if mean time to curd induction of field data
from Zeewolde 2011 and 2012 was simulated (Figures 3B,C). R2

diminished to 0.47 if mean curd induction of F1 hybrids derived
from the parameterization set in field trials in Ócsa 2011, 2012
and Zeewolde 2012 was modeled using original parameters (data
not shown).

For model evaluation, QTL effects were used as parameter
inputs to predict time to curd induction of the validation set.
Figure 4 shows predicted vs. observed time to curd induction
of different field trials. In Rostock, mean observed time to
curd induction was 83.5 days (±11.5), while predicted time
to curd induction was 79.1 days (±4.9). The coefficient of
determination was R2

= 0.45 (Figure 4A). With R2
= 0.47,

prediction accuracy was slightly higher in Ruthe (Figure 4B),
while the model performed best in the Zeewolde trial in
2011 (R2

= 0.51, Figure 4C). Interestingly, prediction of
independent lines resulted in higher R2 values if compared
to the parameterization set. However, the slope was 1.08 for
the parameterization set (Figure 3D) but ranged between 1.22
and 1.54 when curding time of independent lines was modeled
(Figure 4).

As an alternative method, genome-wide marker effects were
estimated. The GS model led to higher prediction accuracies
in all field trials if applied on the validation set (Figure 5). R2

increased on average by 10.3%. However, a relatively strong bias
was observed in the Zeewolde trials (Figures 5C,D).

Applying the QTL-based model on test hybrids developed
from the parameterization set resulted in moderate prediction
accuracies (R2

= 0.34, Figure 6A). If QTL effects were replaced
by genome-wide marker effects, R2 increased to 0.50 (Figure 6C).
The QTL based simulation of time to curd induction of F1-
hybrids derived from the validation set revealed also moderately
good results (R2

= 0.41, Figure 6B), which were outperformed by
the GS based model (R2

= 0.48; Figure 6D).

DISCUSSION

QTL Analyses and Genomic Selection
QTL were found for all examined parameters. QTL for S and
T0 were almost congruent in their positions, which was not
surprising, as S and T0 were highly correlated (r = −0.95) and
lines with a steep slope do have a low intercept and vice versa.
Similar to the present study, Uptmoor et al. (2008) found QTL
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FIGURE 4 | Predicted vs. observed time to curd induction of the validation set in field trials conducted in Rostock 2013 (A), Ruthe 2013 (B), Zeewolde 2011 (C),
and Zeewolde 2012 (D). All predictions are based on QTL effects.

for ‘slope’ on chromosomes O9 and O6 in a B. oleracea var.
alboglabra × B. oleracea var. italica cross. QTL for ‘slope’ were
not detected on chromosomes O4 or O1 but an additional QTL
was identified on O3, which was not confirmed in the present
study. Uptmoor et al. (2008) detected four QTL for the parameter
‘intercept.’ One was also located O6 but three further QTL on
O3, O4, and O5 were not verified in this study. Even if positions
are not completely comparable since both studies used different
markers and linkage maps, clear parallels between the detected
QTL are evident.

At the positions of three of the five QTL for slope,
across environment QTL with significant QTL × environment
interactions were detected in an earlier study using the same
population and phenotype data (Hasan et al., 2016), indicating
that input parameters of ecophysiological models are suitable
traits for QTL detection. In contrast to the statistical interaction
of a QTL with its environments (i.e., different effect sizes in
different environments), model parameters display the trait’s
response to an environmental factor allowing precise estimations
of a new genotype in untested environments (Onogi et al., 2016).
The QTL regions on O6 harbor BoAP1-c and BoAP1-a, the latter

of which was suggested to interact with temperature (Labate et al.,
2006). The QTL region on O9 harbors an FLC paralog and a
FRIGIDA LIKE (FRL) ortholog (Hasan et al., 2016).

Usually, a relatively large sample size is required for QTL
analyses and several hundreds of lines are recommended for
good results (Hyne et al., 1995; Beavis, 1998; Lynch and Walsh,
1998). In general, the higher the number of genotypes used for
analyses, the more accurate are the results. QTL with relatively
small effects, so called minor QTL, are detected only in large
populations, while major QTL can still be found with fewer
genotypes (Vales et al., 2005; Slate, 2005), which, however, leads
to an underestimation of the total number of QTL, while QTL
effects are overestimated since a part of the variation is due to
undiscovered minor QTL (Beavis, 1994; Xu, 2003). All significant
QTL were tested for QTLxQTL interactions by pairwise linear
regression analysis. The only significant interaction was detected
for the parameter slope (QTL at 114 cM on O4 and at 12 cM
on O6). However, including the interaction effect into the model
improved estimations for the slope only slightly and had no
positive impact on the simulation studies (data not shown). Hill
et al. (2008) found that additive variance accounts often for close
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FIGURE 5 | Predicted vs. observed time to curd induction of the validation set in field trials conducted in Rostock 2013 (A), Ruthe 2013 (B), Zeewolde 2011
(C), and Zeewolde 2012 (D). All predictions are based on genomic selection.

to 100% of the total genetic variance, which might be the reason
for the missing positive impact of QTLxQTL interactions on the
QTL-based simulation model of the present study.

Genomic selection is a useful tool to overcome these
limitations as effects are assigned to all markers. GS was used as
an alternative method for model parameterization and regions
with large marker effects on O4 and O6 reflect findings from
linkage mapping quite well; but in contrast to the QTL model,
GS still accounts for genome regions with minor effects.

Genome-Based Simulation Models
The original model was able to predict time to curd induction
by means of chosen parameters in a satisfactory manner. The
possibility to simulate cauliflower development from temperature
data only has already been shown (Olesen and Grevsen, 2000).
The QTL-based approach was rather successful as well, although
predictions based on original parameters were more precise.
Assumptions made by Reymond et al. (2003) and Uptmoor et al.
(2008) that replacement of model parameters by QTL effects
would lead to higher prediction accuracies due to the reduction

of random errors were not confirmed in the present study. While
the prediction of hybrids derived from the DH population was
possible, prediction accuracies were not as high as those of DH
lines per se.

Considering simulation studies carried out on independent
genotypes of the cross, results adequately reflected expectations
if compared to similar studies without independent genotypes
(Quilot et al., 2005; Yin et al., 2005a; White et al., 2008; Uptmoor
et al., 2012). However, Bogard et al. (2014) attained relatively high
prediction accuracies (mean R2

= 0.58) for predicting heading
date of independent bread wheat genotypes using a common
phenology model and genome-wide association studies for QTL
detection. Less precise predictions of the present study may result
from existing variation in juvenile-to-adult transition, for which
the curd-induction model did not account.

Unexpectedly, the genome-based prediction of independent
DH lines exceeded the accuracy of the simulations of lines
used for parameterization and even the prediction of F1 hybrids
resulted in a slightly higher R2. If subsamples of a population are
large enough, different random subsamples will provide similar
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FIGURE 6 | Predicted vs. observed time to curd induction of F1-hybrids derived from lines used for model parameterization (A,C) and the independent validation set
(B,D). Shown are means of three field trials in Ócsa 2011 and Zeewolde 2011 and 2012. Predictions are based on QTL effects (A,B) and genomic selection (C,D).

results regarding QTL positions and effects, hence, prediction
accuracies for independent lines are likely to be on the same
level as for lines used as parameterization set. Therefore, higher
accuracies for independent lines in this study can only be
explained by chance. In fact only R2 values were higher, while
slopes > 1 illustrate that the variability in curding time within
the validation set was overestimated.

Simulations using genome-wide marker effects led to more
precise predictions in comparison to QTL-based simulations,
which held true for both independent DH lines of the validation
set and test hybrids. The major reason might be explained by
missing effects of minor loci in the QTL model. Comparing
different models to predict hybrid performance in maize, Guo
et al. (2013) found the genome-wide prediction approach being
more accurate than predictions based on QTL effects.

In the present study, a simple approach with only
three model parameters was used to predict time to curd
induction of cauliflower lines and hybrids. Combining GS and
ecophysiological models could reduce efforts spent in field trials
to test germplasm across wide ranges of different environments

in silico since GS models are able to predict phenotypes only
in relatively similar environments while integrated models
account for both genotypic and environmental variations in
equal measure. Even though model parameterization requires
large phenotyping efforts under controlled conditions, more
precise predictions may be attained from more complex models.

The uncertainty about juvenile-to-adult transition might be
considered as main error source impairing prediction accuracies.
Juvenility is assumed to be independent from temperature and
to end after a certain number of leaves are initiated (Salter and
James, 1974; Hand and Atherton, 1987). Since large variations
in juvenile-to-adult transition are present in cauliflower cultivars
(Booij and Struik, 1990), certain variation may exist in the
examined population as well. Genotype specific estimations of
leaf numbers at the end of juvenility should be made in further
experiments via reciprocal transfers to improve the model’s
accuracy by integrating the onset of sensitivity to temperature.

In the present model, LAR was assumed to be constant
throughout the vegetative phase. However, it is known that LAR
changes with time and more sophisticated models already took
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this into account (Kage and Stützel, 1999). Similar approaches
are conceivable to further improve simulation accuracies of
integrated modeling approaches.

While the model of the present study simulates the
development of cauliflower until visible curd induction, other
phenology models already implemented curd development to
predict harvest time (Pearson et al., 1994; Olesen and Grevsen,
2000). The practical use of a model predicting harvest time
instead of time of curd induction is undoubtedly higher since
accurate harvest-time predictabilities in diverse environments are
a great challenge not only for growers but also for breeders.

CONCLUSION

We conclude from the present study that parameters describing
the response of a genotype to an environmental factor
are suitable traits for QTL detection. Identified loci reflect
across environment QTL with significant QTL × environment
interactions, while having beneficial effects since the response to
the influencing factor is quantifiable. The latter allows predicting
untested genotypes in a broad range of untested environments.
Simulation studies carried out on independent genotypes

comprising new DH lines and hybrids in new environments,
revealed that models integrating GS with ecophysiological
modeling provides better results than combined QTL and
ecophysiological models do since GS based approaches take
minor effect loci into account.
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