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Recent research studies have highlighted the decrease in the coverage of Mediterranean

seagrasses due to mainly anthropogenic activities. The lack of data on the distribution

of these significant aquatic plants complicates the quantification of their decreasing

tendency. While Mediterranean seagrasses are declining, satellite remote sensing

technology is growing at an unprecedented pace, resulting in a wealth of spaceborne

image time series. Here, we exploit recent advances in high spatial resolution sensors

and machine learning to study Mediterranean seagrasses. We process a multispectral

RapidEye time series between 2011 and 2016 to detect interannual seagrass dynamics

in 888 submerged hectares of the Thermaikos Gulf, NW Aegean Sea, Greece

(eastern Mediterranean Sea). We assess the extent change of two Mediterranean

seagrass species, the dominant Posidonia oceanica and Cymodocea nodosa, following

atmospheric and analytical water column correction, as well as machine learning

classification, using Random Forests, of the RapidEye time series. Prior corrections are

necessary to untangle the initially weak signal of the submerged seagrass habitats from

satellite imagery. The central results of this study show that P. oceanica seagrass area

has declined by 4.1%, with a trend of −11.2 ha/yr, while C. nodosa seagrass area

has increased by 17.7% with a trend of +18 ha/yr throughout the 5-year study period.

Trends of change in spatial distribution of seagrasses in the Thermaikos Gulf site are

in line with reported trends in the Mediterranean. Our presented methodology could

be a time- and cost-effective method toward the quantitative ecological assessment of

seagrass dynamics elsewhere in the future. From small meadows to whole coastlines,

knowledge of aquatic plant dynamics could resolve decline or growth trends and

accurately highlight key units for future restoration, management, and conservation.

Keywords: Posidonia oceanica, Cymodocea nodosa,Mediterranean seagrasses, Thermaikos Gulf, RapidEye, time

series, change detection, Random Forests

INTRODUCTION

Seagrasses are one of the most vital constituents of the Mediterranean coastal environment.
Spanning a depth range between 0 and 45m where there is enough light availability for their
growth, these marine flowering plants play a major role in the great Mediterranean biodiversity
of 18% of all known marine species (Coll et al., 2010). In addition to enhancing biodiversity,
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Mediterranean seagrasses contribute to a plethora of valuable
ecosystem services (Costanza et al., 1997; Vassallo et al., 2013;
Campagne et al., 2015) including nursery grounds (Giannoulaki
et al., 2013), coastal erosion buffering (Pergent et al., 2012),
bio-indicator (Mtwana Nordlund et al., 2016), and carbon
sequestration (Fourqurean et al., 2012). Regarding the latter
ecosystem service, Mediterranean seagrass meadows store the
largest pools of the remineralization of organic carbon; nearly
three times greater mean living biomass is present in the
Mediterranean seagrasses than the global mean of nine seagrass
bioregions (Fourqurean et al., 2012).

Despite their ecological value and being a conservation
priority of national and international legislations, Mediterranean
seagrasses have faced regression between 10 and 38% during
the last 50 years (Tomas et al., 2005; Marbà et al., 2014;
Telesca et al., 2015). This regression has been mainly
attributed to anthropogenic activities including trawling,
coastal artificialization, anchoring of heavy ships, dredging,
and climate change (Leriche et al., 2006; Waycott et al.,
2009; Jordà et al., 2012; Bonacorsi et al., 2013). The slow
growth of 3–4 cm/yr of P. oceanica seagrass along with
the sparsity of data on the distribution of Mediterranean
seagrass habitats, mainly in the southern and eastern
Mediterranean (Telesca et al., 2015), hamper any effort for
their effective conservation management. The question then
arises: how can we conserve something which grows slow,
declines fast, and we have limited information on its spatial
distribution?

The answer to the above questionmay lie in Earth observation.
In contrast and somewhat parallel to the decreasing trend in
coverage of Mediterranean seagrass meadows, satellite remote
sensing technology has grown at an unprecedented pace, mainly
since the end of the 1990s (Dekker et al., 2006). Advances in Earth
observation have resulted from single sensors (e.g., Landsat 7
and 8, SPOT 4–7, QuickBird 2, WorldView 1–4) to constellations
of satellites (e.g., Sentinel-2, Planet’s RapidEye and Doves). This
swarm of satellites images the Earth’s surface with medium to
high spatial (0.31–30m), temporal (1–16 days), spectral, and
radiometric resolution.

Applied to the coastal environment, spaceborne image
archives allow multi-temporal analysis and change detection of
submerged ecosystems which could in turn permit identification
of possible degradation rates and boost conservation efforts
of these problematic areas (Purkis and Roelfsema, 2015).
Researchers have previously employed spaceborne time series
to map seasonal to decadal change detection of seagrasses
(Dekker et al., 2005; Knudby et al., 2010; Lyons et al., 2012;
Pu et al., 2014; Roelfsema et al., 2014; Hossain et al., 2015).
The time-series analysis of seagrass communities is as accurate
as the classification algorithms in use (Palandro et al., 2003).
More recently, machine learning algorithms (e.g., Random
Forests, Support Vector Machines, k-nearest neighbors) have
overruled simpler classification algorithms in the remote
sensing literature (Gislason et al., 2006; Mountrakis et al., 2011).
However, machine learning has been sparsely implemented
in the quantitative assessment of coastal environments
(Zhang, 2015).

In this study, our main aim is to combine recent advances in
high spatial resolution sensors and machine learning algorithms
to study the interannual dynamics of Mediterranean seagrasses
by processing and analyzing a multispectral RapidEye time series
in the Thermaikos Gulf, NW Aegean Sea (Greece) between 2011
and 2016. Featuring a great water transparency, small depth
slope and thriving in two seagrass species, Posidonia oceanica
and Cymodocea nodosa (Traganos and Reinartz, 2017; Traganos
et al., 2017), the southeastern shelf Thermaikos Gulf comprises
a suitable natural laboratory to apply our spaceborne change
detection analysis. The spatio-temporal dynamics and sources of
observed variations of Mediterranean seagrass habitats, namely
the intertidal Zostera noltii and C. nodosa species, have been
assessed before through spaceborne and airborne time series
(Barillé et al., 2010; Garrido et al., 2013). The ecological
status of the dominant and endemic in the Mediterranean,
P. oceanica, however, has not been assessed yet via change
detection analysis. RapidEye constellation of five satellites was the
first to provide high spatial resolution data with a daily revisit
time over the same area1. There have been few applications
of RapidEye data in aquatic habitat mapping (Roessler et al.,
2012; Giardino et al., 2015; Fritz et al., 2017). In general,
temporally separated satellite image sequences over coastal areas
acquired under different conditions (e.g., atmospheric, water
column composition) can impede the change detection mapping
of submerged habitats like seagrasses (Purkis and Roelfsema,
2015).

MATERIALS AND METHODS

Study Site
The study site is a submerged area of 888 hectares in the
eastern Thermaikos Gulf, NW Aegean Sea, Greece (eastern
Mediterranean Sea; Figure 1). The climate, oceanography, and
hydrography of its water have been comprehensively described
elsewhere (Poulos et al., 2000; Traganos and Reinartz, 2017).
Satellite-derived mapping has revealed that the Thermaikos Gulf
contains extensive beds of varying density of two seagrass species,
P. oceanica and C. nodosa, between 1.4 and 16.5m of depth
(Traganos and Reinartz, 2017; Traganos et al., 2017).

The coastal system of the eastern Thermaikos Gulf
administratively belongs to the Municipality of Nea Propontida.
With a population of 36,5002, Nea Propontida hosts numerous
socioeconomic activities including fishing, aquaculture, tourism,
agriculture, industry, and trade directly or indirectly influence
the marine environment. Furthermore, the administrative
region of Central Macedonia, which contains Nea Propontida,
features a total fishing catch of 11,869 t (18.5% of the total
Greek fishing catch)3. Last but not least, 19.3% of the total
citizens of the municipality are employed in the primary sector,
while 66 factories and 91 hotels are running in the coastal
region2.

1https://www.planet.com/products/satellite-imagery/files/160625-RapidEye

%20Image-Product-Specifications.pdf.
2National Statistics Service of Greece, 2011.
3National Statistics Service of Greece, 2015.
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FIGURE 1 | Location of survey site within (A) Thermaikos Gulf, (B) Aegean Sea, Greece. The displayed RapidEye imagery is a non-atmospherically corrected, true

color (band 1 as blue, band 2 as green, band 3 as red) composite in UTM (zone 34) system/WGS84 projection. The imagery was acquired on 22/06/2016 (RE16 in

text). The red polygon in (B) depicts the location of (A) within the Thermaikos Gulf. The deep water polygon represents a ∼160 × 160 pixel window implemented in

the water column correction of the image time series as it represents an area with very little water leaving radiance values in all three bands.

Satellite Data
Planet’s RapidEye constellation consists of five multispectral (five
bands between 440 and 850 nm) satellites which collect high-
spatial (5-m orthorectified pixel size) and temporal (daily off-
nadir and 5.5 days at nadir) imagery. Although designed to
operate for a minimum of seven years, RapidEye satellites have
already collected an 8-year image archive. Fourty-seven Level
3A image tiles fell within the extent of our study site. These
tiles are individual 25 × 25 km orthorectified imagery products
with applied geometric, radiometric, and sensor corrections1.
Based on a preliminary visual examination, we selected four from
these image tiles (Table 1) which satisfied optimum conditions
for remote sensing of optically shallow environment (e.g., cloud-
, sunglint- and skyglint-free, no or low concentration of water
column constituents, same season). The four images comprise a
time series which spans the years between 2011 and 2016. For
ease, we will refer to the four images with the abbreviation RE
(stands for RapidEye) and the two last digits from the year of
acquisition; RE11, RE12, RE15, RE16.

Field Data
The field data collection is described in Traganos and Reinartz
(2017). We collected these field data, namely habitat-related

TABLE 1 | Characteristics of the high spatial resolution satellite imagery and

respective input parameters for running FLAASH module.

Satellite

imagery

Scene acquisition

date (dd/mm/year)

Scene acquisition

time (local)

Atmospheric

model

Aerosol

model

RE11 13/05/2011 13:23 SAS1 Maritime

RE12 24/09/2012 13:16 MLS2 Rural

RE15 18/09/2015 12:57 MLS Maritime

RE16 22/06/2016 12:53 MLS Maritime

RE, RapidEye, 5 × 5m pixel, blue, green, red, red edge, nir.
1Sub-Arctic Summer. 2Mid-Latitude Summer.

points with associated coordinates and bathymetry data, during
a boat-based survey between 10 and 13 July 2016. Furthermore,
we added more data points following interpretation of the
high resolution RapidEye imagery. We selected data points that
have indicated the same habitat within the 5-year span of our
time series analysis. Four-hundred data points (Figure 1) were
used for both training and validation of the machine learning
classifier implemented here. In the bathymetry estimation step,
we employed the image chronologically closest to the field data
collection, RE16, to develop a pixel-based bathymetry map for
subsequent use in the water column correction step.
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Methodology
To derive quantitative information from coastal image time
series using remote sensing, the analyst has to address the
interference of the atmospheric, air-water interface, and
water column by applying the same processing protocol on
all satellite images which comprise the image time series.
Figures 2, 3 show a schematic and visual representation
of the processed protocol herein, respectively, until the
classification step. The pre-classification steps which we followed
in the present study included: (1) atmospheric correction
to derive at-water surface reflectances without atmospheric
interference (Figure 4B), (2) bathymetry estimation for use
in the water column correction step (Figure 4C), and (3)
water column correction to derive bottom reflectances without
water column interference (Figure 4D). The classification step
concerned the use of Random Forests (RF), an ensemble
supervised classification algorithm which has received
small attention in the remote sensing of optically shallow
environments. The accuracy assessment of the RF-derived results
was performed using the traditional error matrices reporting
overall, producer, user, and kappa accuracies (Table 2). Finally,
we conducted the interannual change detection of the two

Mediterranean seagrass species, P. oceanica and C. nodosa,
on the basis of area change and related trend throughout the
4 years.

Atmospheric Correction
The first step of the pre-classification procedure was the
atmospheric correction. We implemented the Fast Line-of-
sight Atmospheric Analysis of Spectral Hypercubes (FLAASH)
algorithm to correct the atmospheric interference on all RE
images. The input parameters to run the FLAASH module are
described in Table 1. All aerosol models were set as Maritime
type except from the RE12 imagery for which experiments using
the same type resulted to negative reflectances, therefore, we used
the Rural type. The FLAASHmodule resulted to at-water surface
reflectances, R, of all 5 RE bands (Figure 4B). The positional
accuracy on the initial Level 3A RE image tiles was found to be
adequate, hence we performed no additional coregistration on
the four RE images which is a necessary step otherwise due to
the pixel-based approach of the present study. In addition, due
to our preliminary visual examination of the Level 3A products,
no evident sunglint was found in the at-water surface reflectance
composites.

FIGURE 2 | Schematic representation of the methodology. 1L3A ortho products are the initial radiometric, sensor, and geometrically corrected RapidEye images in

UTM/WGS1984 projection, 2R represent atmospherically-corrected (FLAASH module), at-water surface reflectances, 3Rrs are remote sensing reflectances,

transformed from R using Equation (1), 4Rb are water-column-corrected, bottom reflectances using the analytical model of Maritorena et al. (1994).
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FIGURE 3 | Polynomial regression between the log-transformed ratio of blue and green remote sensing reflectances, Rrs, and in situ depth measurements from the

Thermaikos survey site. The shown polynomial equation was implemented to estimate the bathymetry map displayed in (C) of Figure 4.

Bathymetry Estimation
Bathymetry knowledge of a coastal site is crucial to reduce
reflectance changes due to water column attenuation and variable
depth. Differences between reflectances of coexisting submerged
habitats can hinder their detection through remote sensing. As a
result of the shading which occur within the canopy, P. oceanica
seagrass exhibit lower reflectances than its seaward neighbor,
optically deep water (Dekker et al., 2006). Coupled with the high
reflectances of a submerged sandy substrate, P. oceanica would
look deeper than the sandy substrate at the same true depth
(Traganos and Reinartz, 2017). Remote sensing researchers have
developed band ratios to tackle the aforementioned issues and to
measure bathymetry (Lyzenga, 1978; Dierssen et al., 2003; Stumpf
et al., 2003). The basic assumption of band ratios is that the
reflectance ratio in these bands remains constant irrespectively
of the submerged environment.

To further eliminate interference at air-water interface, we
chose to retrieve pixel-based bathymetry from the remote sensing
reflectance, Rrs, which is also less sensitive to water column
properties (Mobley, 1994). We derived Rrs from at-water surface
reflectances, R, using

Rrs =
tR

Q
(1)

where t is the transmittance of Ed, spectral downwelling plane
irradiance, and Lu, spectral upwelling radiance, through the air-
water interface and was calculated as 0.54 by Mobley (1994). Q
factor is the ratio of Eu, spectral upwelling plane irradiance, and
Lu just beneath the water surface and depends on the type and

depth of the bottom and the wavelength.We chose theπ value for
Q factor for the calculations of Rrs, which is the theoretical value
for Lambertian surfaces (Dierssen et al., 2003). We mapped the
bathymetry of our survey site using the log-ratio of Rrs blue to Rrs
green at 475 and 555 nm from RE16, respectively. We used RE16
because it is closer chronologically to our in situ data acquisition
of July 2016. The first two RapidEye bands are attenuated less
in the water column than the ones in the red, red edge and
NIR. Thus, they comprise the ideal contestants to develop a
second-order polynomial after plotting their ratio against in situ
estimated bathymetry, Z

Z = 24.135x2 − 70.038x+ 51.571 (2)

x = ln

(

Rrs(475)

Rrs(555)

)

(3)

which explained >91% of the variation (p < 0.001) in estimated
bathymetry in 32 points (Figure 3) which spanned the whole
depth range of habitat presence in our survey site. The site-
specific algorithm of (2) was subsequently employed to create a
pixel-based bathymetry map (Figure 4C). This bathymetry was
further smoothed with a 5 × 5 low pass filter to reduce local
variation and unwanted noise which would impede water column
correction and possibly decrease classification accuracy. Based on
the satellite-derived bathymetry and the findings of Traganos and
Reinartz (2017), we applied an optically deep watermask utilizing
the depth limit of 16.5m to enhance submerged features in the
classification step.
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TABLE 2 | Error matrices of the four water-column corrected bottom reflectance

images.

Classes Cymodocea

nodosa

Posidonia

oceanica

Rocky

algae

Sand Total User

accuracy (%)

Cymodocea

nodosa

16 1 2 2 21 76.2

Posidonia

oceanica

3 46 3 1 53 86.8

Rocky algae 2 3 38 0 43 88.4

Sand 29 0 7 47 83 56.6

Total 50 50 50 50 200

Producer

accuracy

32 92 76 94

2011—OVERALL ACCURACY: 73.5%

Cymodocea

nodosa

31 4 0 1 36 86.1

Posidonia

oceanica

0 45 0 0 45 100

Rocky algae 0 0 37 0 37 100

Sand 19 1 13 49 82 59.8

Total 50 50 50 50 200

Producer

accuracy

62 90 74 98

2012—OVERALL ACCURACY: 81%

Cymodocea

nodosa

30 11 0 0 41 73.2

Posidonia

oceanica

1 38 1 0 40 95

Rocky algae 0 1 40 1 42 95.2

Sand 19 0 9 49 77 63.6

Total 50 50 50 50 200

Producer

accuracy

60 76 80 98

2015—OVERALL ACCURACY: 78.5%

Cymodocea

nodosa

23 1 0 1 25 89.3

Posidonia

oceanica

6 49 3 0 58 79.3

Rocky algae 0 0 43 0 43 100

Sand 21 0 4 49 74 55

Total 50 50 50 50 200

Producer

accuracy

46 98 86 98

2016—OVERALL Accuracy: 82%

Date of each imagery is provided on the low left of each error matrix before Overall

accuracy.

Water Column Correction
The water column correction step is vital to retrieve bottom
reflectances from at-water surface reflectances. Here, we employ
the approximate analytical solution ofMaritorena et al. (1994) for
optically shallow waters.

R(λ) = R∞ (λ) + (Rb (λ) − R∞ (λ)) exp (−2Kd (λ)Z) (4)

where R(λ) is the atmospherically-corrected at-water surface
reflectance composite of Atmospheric Correction (Figure 4B);

R∞(λ) is the reflectance over an infinitely deep water
column; Rb(λ) is the bottom reflectance (Figure 4D); Kd(λ)
is the operational attenuation coefficient which expresses the
attenuation of both upwelling and downwelling stream as
these are originating from the seabed and from the water
column (Maritorena et al., 1994). Ideally, R∞(λ) and Kd(λ)
are estimated using in situ optical measurements and radiative
transfer simulations. In the absence of these, we used image-
based techniques and existing measurements (Traganos and
Reinartz, 2017). For the infinitely deep water column reflectance,
R∞(λ), we extracted mean values from the deep water polygon
of Figure 1A from the at-water surface reflectance RE16
composite, mean values which composed R∞(λ) for all four
images of the RE time series. For the Kd(λ), we used image-
based calculated values for the water column corrections of
all four dates from Traganos and Reinartz (2017) who used
Bierwirth et al. (1993) approximations in the same area. Bottom
reflectances (Figure 4D) were calculated for every pixel of the
first three bands of the atmospherically corrected, at-water
surface reflectance composites of all four RE images. We
selected RE bands 1, 2, and 3 at 475, 555, and 658 nm since
seagrasses and, generally, underwater habitats cannot be detected
by wavelengths past 680 nm due to the great attenuation of
pure water (Kirk, 1994). Last but not least, to save valuable
space in the remaining text, we will refer to each quantity
which is wavelength-dependent without its wavelength notation
except when it is needed i.e., to discriminate between two
quantities.

Random Forest Classification
The machine learning approach of Random Forests (RF)
comprises an ensemble supervised classification algorithm that
implements multiple self-learning decision trees to handle
collinearity and, more significantly, non-linearity between
predictor variables. Developed by Breiman (2001), RF are based
on the assumption that different independent tree predictors give
wrong predictions in different regions. By combining the results
of the predictions, RF improve the efficiency of the model. Every
decision tree in the implemented RF algorithm here is trained
with a bootstrapped sample of the training data and at every
split node, a subset of randomly selected features is utilized. The
outputs are then combined by a simple majority vote. Generally,
RF are robust against overtraining and noisy data in addition to
providing good results with relatively small datasets (Gislason
et al., 2006). Three parameters must be set before running the
RF classifier: (a) the number of decision trees (k), (b) the number
of randomly selected features (nr), and (c) the split selection. We
selected 100 trees to run all RF experiments as they featured the
best results out of a plethora of runs with different number of
trees. In addition, we chose two for the number of nr as well as
the Gini Index for the measurement of the best split selection.
We parameterized and ran all RF experiments using the EnMAP-
Box software (van der Linden et al., 2015). All the experiments
were performed using the bottom reflectance composites, Rb and
400 training and validation data for all four classes: (a) C. nodosa
seagrass, (b) P. oceanica seagrass, (c) Rocky algae, and (d) Sand.
The training and validation data were split equally into 50 data
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FIGURE 4 | Methodological steps from atmospheric to water column correction in order of successive processing. All four panels are true color RapidEye image

composites (22/06/2016; RE16 in text) projected in UTM (zone 34) system/WGS84. (A) Non-atmospherically corrected composite. (B) Atmospherically-corrected

composite using the FLAASH module. (C) Satellite-derived Bathymetry map of the survey site draped over the atmospherically-corrected composite of (B) using the

site-specific polynomial algorithm of Equation (2) as shown on Figure 3. We applied a 5 × 5 low-pass filter on the initial ratio-derived bathymetry (not shown here) to

reduce potential noise which would be transferred to the water-column corrected product. (D) Water-column corrected composite following application of the water

column correction algorithm of Maritorena et al. (1994) draped over the atmospherically-corrected composite of (B) and masked using the optically deep limit of

16.5m to enhance bottom features and potentially increase classification accuracies.

points per class for both training and subsequent validation
through accuracy assessment.

Accuracy Assessment
We used the error matrices (Table 2) to validate the results
of the Random Forest classifications. As discussed in Random
Forest Classification section, 50 data points per class were used
to validate the RF classifier. The error matrix contains a square
array of rows and columns where each of them represents one
habitat class in the classification. Each cell in this matrix is the
number of classified training samples, while the rows comprise
classified training data and the columns are validation data for
the assessment of the classified data. The error matrix outputs
the overall, producer, and user accuracy (Congalton, 1991). The
overall accuracy is the ratio of the number of correctly classified
validation samples to the total number of validation data (200 in
our study). On one hand, the producer accuracy expresses the

number of correctly classified validation data in one class divided
by the total number of validation data in the same class (50 in
our study). On the other hand, the user accuracy corresponds to
the number of correctly classified validation in one class divided
by the total number of validation data that were classified in the
same class. Although the producer accuracy is a solid statistical
value for the creator of the habitat map (the remote sensing
scientist as the case in point), the user accuracy is more vital
from a management point of view as it reports the quantitative
probability for the tangible presence of the habitat in the studied
region i.e., P. oceanica and C. nodosa seagrass meadows.

Change Detection
The ultimate aim of this study is to study the interannual change
of two Mediterranean seagrasses, P. oceanica, and C. nodosa,
exploiting the high spatial resolution of the RapidEye satellite
constellation and the theoretical superiority of the machine

Frontiers in Plant Science | www.frontiersin.org 7 February 2018 | Volume 9 | Article 96

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Traganos and Reinartz Time Series of Mediterranean Seagrasses

learning classifier of Random Forests. Here, the interannual
seagrass change detection (2011, 2012, 2015, and 2016) is
conducted on an area change basis following the machine
learning classification of water column corrected RapidEye
composites. We report the area change throughout the 5-year
time series in hectares in addition to the per-pixel gain, no
change and loss between 2011 and 2016. A standard linear
regression and associated slope coefficient are implemented to
show approximate trends in area over time as well.

RESULTS

Pre-classification Steps
All pre-classification steps are displayed schematically in Figure 2
and visually in Figure 4. It is visually apparent that both the
atmospheric and water column correction in Figures 4B,D,
respectively, enhance bottom features following the increase of
the seabed spectral variability from Figure 4A (initial top-of-the-
atmosphere reflectance composite).

After converting the atmospherically-corrected at-water
surface reflectances, R to Rrs (1), we developed a site-specific
polynomial algorithm (2) using the log-transformed ratio of the
blue to green RapidEye bands of the RE16 image (3) to map
bathymetry, Z, in our site (Figure 4C). The depth of the eastern
coast of the Thermaikos Gulf spanned the depth range between
0.8 and 18.9m with a mean depth of 7.7m and a mean slope
of 5.4◦. The validation of the Satellite-derived Bathymetry was
conducted using 14 in situ depth points and revealed an r-squared
value of 0.86 with a root mean square error (RMSE) of 2.6m
(Figure 5). It is worth noting that from the 32 points used in the

bathymetry estimation, 15 weremeasured above P. oceanica beds,
3 over C. nodosa beds, 11 over sandy seabed, and 3 over rocky
seabed with photophilous algae. On the other hand, from the 14
points used in the bathymetry validation, 8 were over P. oceanica
beds and 6 over sandy seabed.

Employing Equation (4), we performed water column
correction for every pixel in all RE images. Equation (4) takes
the at-water surface reflectance, R, the per-pixel Satellite-derived
bathymetry, Z, the reflectance of an optically deep column, R∞,
and, finally, the diffuse attenuation coefficient, Kd, as inputs and
outputs bottom reflectance, Rb. The reflectances of an optically
deep column were determined based on 25,599 pixels within
the deep water polygon of Figure 1; R∞ (475) = 0.033, R∞
(555) = 0.024, and R∞ (658) = 0.017. As mentioned in section
Water Column Correction, Kd values were selected for the whole
time-series from Figure 11 in Traganos and Reinartz (2017); Kd

(475) = 0.067, Kd (555) = 0.078, and Kd (658) = 0.134 (in m−1

as they are calculated based on the unitless R and depth).

Random Forest Classification
We employed the Random Forest machine learning classifier
on all bottom reflectance images which comprised the studied
time series (Figure 4D). The results of the random forest
classifications are presented in Figure 6. The accuracy assessment
of the classification results for all images and habitats is presented
in Table 2 with the form of four error matrices, one for each
image from RE11 to RE16. All experiments were run using
100 trees. The two Mediterranean seagrasses under study here,
P. oceanica and C. nodosa, showed a mean producer accuracy of
89 and 50%, respectively, with a mean user accuracy of 91.6 and

FIGURE 5 | Plot of Satellite-derived Bathymetry (SDB) vs. in situ measured depth for the validation of the bathymetry map of the Thermaikos Gulf (Figure 4C). SDB

was derived from Equation (2). Regressed SDB have been previously smoothed with a 5 × 5 low pass filter to reduce unwanted noise.
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FIGURE 6 | Classified water-column-corrected RapidEye composites from the 4 years using Random Forest machine learning classifier (100 trees). The frames on the

upper right of each panel indicate the date of each RapidEye image. (A) RE11—Overall accuracy: 73.5%. (B) RE12—Overall accuracy: 81%. (C) RE15—Overall

accuracy: 78.5%. (D) RE16—Overall accuracy: 82%.

63.1%, correspondingly. From the whole time-series, P. oceanica
seagrass was more accurately classified in RE16 (Figure 6D;
98% producer accuracy) and RE11 (Figure 6A; 92% producer
accuracy), but less accurately identified in the same images
according to the user accuracy of 84.5% of the former and 86.8%
of the latter. The best user accuracies concerning P. oceanica
were produced for the RE12 (Figure 6B; 100%) and the RE15
(Figure 6C; 95%).

As regards to C. nodosa species, RF correctly classified it
to 62% and 60% producer accuracies in RE12 (Figure 6B) and
RE15 (Figure 6C), while the former exhibited the second best
user accuracy of 86.1% following the 92% of RE16 (Figure 6D).
Generally, RE12 featured the second best overall accuracy (81%),
marginally behind RE16 (82%), but possessed the best mean
producer and user accuracies of the two seagrass habitats (76
and 93%, correspondingly). In the contrary, RE11 revealed
the worst results with the worst overall accuracy of 73.5%,
worst mean producer accuracy (62%), worst mean user accuracy
(81.5%). Generally, the error matrices indicate that errors in
both producer and user accuracies in all four images are mainly
attributed to confusion between the two seagrasses and less with
sandy or rocky seabed.

Based on the classified water column corrected RE16
composite, P. oceanica seagrass meadows covered an area of 264
ha in depths between 0.8 and 17.9m, with an average depth
presence of 8m. On the other hand, C. nodosa beds covered 242
ha and were spread between depths of 0.8 and 16.1m, with a
mean depth presence of 5.8m.

Change Detection
We report the interannual change detection of P. oceanica and
C. nodosa seagrasses here as change of their extent (Figures 7, 8)
following random forest classification of all four RE images
(Figure 6). Figure 7 shows the areas of both seagrasses and total
seagrass area in each of the four studied years in addition to
indicating change trends at species and total level (black lines).
We observe that P. oceanica area declined by 4.1% (from 275
to 264 ha) between 2011 and 2016, while its declining trend
was 11.2 ha/yr. On the contrary, C. nodosa area increased
by 17.7% (from 199 to 242 ha), while its increasing trend
was 18 ha/yr. Overall, therefore, the area of seagrasses in the
Thermaikos Gulf increased by 6.8% (474 to 506 ha) between
2011 and 2016, with an increasing trend of 6.8 ha/yr. The highest
decrease of P. oceanica seagrass was displayed between 2012
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FIGURE 7 | Interranual change detection of seagrasses in the Thermaikos Survey site between 2011 and 2016 using RapidEye satellite images. The trajectory plot

displays change of area (in hectares; y-axis) over the years (x-axis) of Posidonia oceanica and Cymodocea nodosa species, and of total seagrass area. Linear

regression black lines (m = slope) show approximate trend in area between 2011 and 2016. Posidonia oceanica seagrass is decreasing at 11.2 ha/yr, Cymodocea

nodosa seagrass is increasing at 18 ha/yr, while total seagrass area is expanding at 6.8 ha/yr.

and 2015 (−29.7%), while the highest decrease of C. nodosa
seagrass was shown between 2015 and 2016 (−20.5%), the same
period where we observe the greatest decrease of total seagrass
area (−10.2%).

Figure 8 reveals the change of both studied Mediterranean
seagrasses on a gain, no change and loss basis between 2011 and
2016. The greatest losses of P. oceanica meadows are depicted
on the shallow northwesternmost part and the southeastern
part of the center of our survey site (Figure 8A). On the other
hand, while C. nodosa exhibit gains throughout the extent of
the Thermaikos Gulf, its highest regression is also shown in the
shallower seabed of the northwesternmost part. The importance
of Figure 8 lies on its capacity to show possible losses of
P. oceanica seagrass area attributed to gains of C. nodosa area.
This is indeed the observation in the aforementioned area of the
highest regression of P. oceanica species (center of our survey
site; Figure 8) in addition to the southeasternmost extent of the
Thermaikos Gulf site.

DISCUSSION

Change Detection
The main objective of this study was to evaluate whether the
application of machine learning algorithms, namely Random
Forests, on a time-series of high resolution satellite images,
namely RapidEye, was effective for mapping the interranual
change detection of two Mediterranean seagrasses, P. oceanica
and C. nodosa, in 888 submerged hectares of the Thermaikos

Gulf, NW Aegean Sea, Greece between 2011 and 2016 (total
of four images). As attested by Figure 7, our main findings
reveal that the distribution of P. oceanica seagrass meadows have
declined by 4.1% with a decreasing trend of 11.2 ha/yr, while
C. nodosa beds have increased by 17.7% with a gain trend of
18 ha/yr. Generally, total seagrass area increased by 6.3% at a
+6.8 ha/yr trend throughout the 5 years. Approximate trends of
seagrass distribution change are indicated by the slope coefficient
of a standard linear regression between seagrass area and related
years (Figure 7). This method of presenting remotely sensed time
series of seagrass was utilized efficiently in 200 km2 of the Eastern
Banks, Moreton Bay, Australia (Lyons et al., 2013).

To the best of our knowledge, the studied regression of 4.1%
of P. oceanica meadows between 2011 and 2016 is the first
report of regression of this particular seagrass species in the
Greek seas and one of the first reports in the whole Eastern
Mediterranean, a poorly mapped area. It is also in line with
the reported trends in the Mediterranean and globally. Telesca
et al. (2015) estimated an average regression of 10.1% for the
whole extent of theMediterranean basin during the past 50 years,
which further increased to 33.6% for areas with existing historical
information; Greece lacks this significant information. Marbà
et al. (2014) further estimated that between 13 and 38% of initial
P. oceanicameadows have been lost since 1960, with a decreasing
trend of 1.74%/yr. On assessing 215 studies worldwide, Waycott
et al. (2009) has shown that since 1990, seagrass grounds are
disappearing at a median rate of 7%/yr, a 7-fold increase from
the median rate of 0.9%/yr before 1940.
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FIGURE 8 | Change in seagrass distribution in the Thermaikos survey site between 2011 and 2016 for (A) Posidonia oceanica and (B) Cymodocea nodosa. Between

2011 and 2016, P. oceanica seagrass meadows have declined by 4.1%, while C. nodosa seagrasses have increased by 17.7%.

Based on the ecological value of P. oceanica, its reported
regression of 4.1% in the Thermaikos Gulf translates into
loss of the relevant ecosystem services which it provides in
the broader region, including protection from coastal erosion,
carbon sequestration, nursery grounds, and nutrient cycling
among others. More specifically, the related economic loss to
the declining rate of P. oceanica of 11.2 ha/yr is 19.264 million
e/yr (Vassallo et al., 2013). This regression is more alarming
due to the slow growth of P. oceanica meadows and the existing
pressure from climate change. Mortality rates of P. oceanica
seagrass are expected to increase 3-fold with an increase of
3◦C in maximum annual seawater surface temperature (SSTmax)
(Marbà and Duarte, 2010). In addition, the temperature of 28◦C
is the critical SSTmax, above which P. oceanica functional losses
accelerate. Study of the specific drivers of the observed P. oceanica
regression is out of our scope in the present study. Future studies,
however, of the temporal dynamics of SSTmax and the extent
of P. oceanica seagrass meadows could unravel the underlying
causes of their regression in the Thermaikos Gulf and elsewhere
in the Mediterranean.

On the other hand, C. nodosa seagrass area faced a 17%
increase of its extent, gaining 43 hectares between 2011 and 2016.

We could attribute part of this increase to a combination of
two physical factors. First, C. nodosa is a fast-growing seagrass
with a reported rate of horizontal growth of up to 2 m/yr.
Second, the decline in terms of P. oceanica seagrass allowed
the fast recolonization of its regressed beds by the former
seagrass, causing the expansion of its area. This substitution of
P. oceanica by C. nodosa between 2011 and 2016 is particularly
observed in the shallower parts of the northwesternmost, the
middle and the southeasternmost regions of the Thermaikos Gulf
(Figure 8).

Temporal dynamics of C. nodosa distribution have been
sparsely studied elsewhere. C. nodosa populations have shown
a progression of up to 42% between 1994 and 2011 in the
Western Mediterranean, following a regression of 49% between
1973 and 1994 (Garrido et al., 2013). Furthermore, C. nodosa
seagrass has been found to re-colonize the shallower regressed
beds of P. oceanica seagrass (Montefalcone et al., 2007). All in
all, C. nodosa seagrass competes with P. oceanica in terms of its
expansion, while it is also considered as a significant step in the
ecological succession prior to beds of the latter. Further research
efforts are needed to increase the body of literature on C. nodosa,
in terms of its spatio-temporal dynamics, associated drivers, and
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especially potential links with the ongoing climate change, and its
provided ecosystem services.

As regards to the harness of the variety of existing satellite
data, numerous studies have assessed seagrass dynamics in a
plethora of spatial and temporal scales. In one of the first and
most important seagrass change detection assessments, Dekker
et al. (2005) exploited four Landsat 5 and 7 images spanning a
total of 14 years to map four seagrass species, including ones with
great ecologically sensitivity, in Wallis Lake, an estuarine lake in
Australia. Pu et al. (2014) also used Landsat 5 data to evaluate
seagrass dynamics between 2003 and 2005 in Florida coast. While
the two studies monitored change detection of seagrass extent
and cover, respectively, Roelfsema et al. (2014) mapped seagrass
species, cover and above ground biomass processing a 142-km2

time-series of high spatial resolutionWorldView-2, IKONOS and
Quickbird imagery between 2004 and 2013 with an object-based
approach in Moreton Bay, Australia. In another yet exploitation
and longest, to the best of our knowledge, of the Landsat archive,
Lyons et al. (2012) developed an object-based approach to assess
seagrass extent between 1972 and 2010 in Moreton Bay as well.
The common denominator of the aforementioned four time-
series studies is that they assessed shallow waters up to 7m in
contrast to the 16.5-m deep limit in our study. They also all
highlight the significance of remote sensing time series of seagrass
habitats for seagrass ecology. Roelfsema et al. (2014) argued that
the study of the correlation of seagrass-related physicochemical
parameters like water quality and temperature with seagrass
distribution and composition is vital. Future approaches to this
direction could benefit time-series studies and more broadly the
management and conservation of seagrasses.

Generally, there is a need for the development of an
automated workflow which would exploit the great quantity of
remote sensing information and develop time series of seagrass
distribution and othermanagement-related parameters in a time-
and cost-efficient as well as accurate fashion. This workflow
would enable fast assessment of problematic areas (areas of
existing or ongoing regression) and raise the need for appropriate
management and conservation measures. As mentioned in the
Introduction section, however, to achieve accurate time series of
seagrass and broadly coastal submerged habitats, one has to select
suitable classifier(s) to the subject in study, as classification of
these habitats always precede time series analysis.

Classification of Submerged Habitats
We selected Random Forests to solve the classification problem
of discriminating between four habitats in the optically shallow
waters of the Thermaikos Gulf, NW Aegean Sea. We run the
classification experiments on atmospherically and water-column
corrected RapidEye reflectance composites using 100 trees which
yielded better quantitative results than other numbers of trees.
We also used 50 data for each habitat for both the classification
and validation to avoid possible overestimation of any of the
classes (Traganos and Reinartz, 2017). It is noteworthy, as
Figure 1 shows, that we chose training data only from the
southeastern part of our survey site and validation data only from
the northwestern part of our survey site. This could have led to
biased classified results.

Overall, as reported in the error matrices of Table 2, RF
exhibited high accuracies in classifying and identifying both
seagrass species and especially P. oceanica species, up to 98%
and 100% producer and user accuracy, respectively. The 5-m
pixel-based random forest classification of P. oceanica and
C. nodosa species displayed slightly worse producer accuracies,
but higher user accuracies than similar efforts using Sentinel-
2A 10-m imagery in the same waters (Traganos and Reinartz,
2017). Particularly for the latter species, its sparse and mixed
nature with sandy beds inhibits classification and identification
approaches causing the so-called “mixed” pixels. Higher than
5-m resolution approaches employing linear unmixing models
and/or object-based classifications could solve this classification
issue.

We chose RF to classify and identify Mediterranean seagrasses
to achieve more accurate results than simpler, theoretically,
algorithms like Maximum Likelihood (Traganos and Reinartz,
2017) which has had a wide application history in the literature
of both single- and multi-date studies of seagrass ecosystems
(Dekker et al., 2005; Pasqualini et al., 2005; Pu and Bell, 2013; Pu
et al., 2014). MLC assumes a normal distribution of classes which
is rare in the nature of the examined classes, thus producing
inferior results to the more sophisticated machine learning
classifiers (Traganos and Reinartz, 2017). RF produced promising
results concerning classification of seagrasses recently in two
studies (Zhang, 2015; Traganos and Reinartz, 2017). (Zhang
et al., 2013) demonstrated the advantage of RF over MLC using
hyperspectral imagery. Utilizing 150 trees to run the RF-based
experiments, Zhang (2015) achieved better accuracies than the
machine learning classifiers of Support Vector Machines (SVMs)
and k-Nearest Neighbor (k-NN) in identifying patchy seagrass in
a 40-km2 area in lower Florida Keys, but slightly lower accuracy
for continuous seagrass. Traganos and Reinartz (2017) compared
RF, SVMs and MLC classifiers in a small section of the surveyed
site in the present study. They showed that both RF and SVMs
performed evidently better than MLC on classifying P. oceanica
and C. nodosa habitats. In the same study, both RF and SVMs
displayed lower accuracies on the classification of C. nodosa than
P. oceanica due to the smaller number of field data for the former
in addition to its mixed ground with sand.

In summary, machine learning classifiers like RF and SVMs
gain more and more interest in coastal habitat remote sensing
and, more broadly, in the remote sensing literature (Gislason
et al., 2006; Mountrakis et al., 2011). Deep learning techniques
concerning submerged habitats are still in their infancy (Call
et al., 2003; Calvo et al., 2003) and it is still unknown whether the
extra processing power and time to design the experiments are
worthy for the potentially better identification that they would
offer than machine learning classifiers.

Pre-classification Steps in Detection,
Mapping, and Time Series of Submerged
Habitats
The steps which precede the classification and subsequent
development and analysis of the time series of submerged
habitats include geometric, atmospheric, and water column
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corrections of satellite data in addition to developing satellite-
derived bathymetry. In the present study, geometric corrections
were already done in the Level 3A RapidEye imagery which we
processed in the time series. The FLAASHmodule, implemented
for the atmospheric correction, has been already deployed by
several studies for studying the change detection of underwater
habitats (Lyons et al., 2010, 2011; Pu and Bell, 2013; Roelfsema
et al., 2014).

Regarding the water column correction, the analytical
model of Maritorena et al. (1994) accurately retrieved bottom
reflectances of both P. oceanica and C. nodosa seagrass species
in the RE time series of the present study. In the same area,
Traganos and Reinartz (2017) employed successfully the same
model to perform water column corrections for the mapping of
the two same species. Dierssen et al. (2003) discussed the good
agreement of the model’s calculated bottom reflectances with
in situ ones over dense Thalassia testudinum beds in contrast to
overestimated seabed reflectances over beds of the same species
of sparse to intermediate density up to depths of 9m in Lee
Stocking Island, Bahamas. In addition, Pu et al. (2014) conducted
water column corrections following the same analytical model
to identify three seagrass species (T. testudinum, Syringodium
filiforme, and Halodule wrightii) in depths up to 4m in Florida,
USA. A similar to ours image pre-processing and processing
methodological approach to seagrass change detection led to 14%
improved overall accuracies than studies which used analogous
data. In another application of Maritorena et al. (1994) water
column correction model, Dekker et al. (2005) mapped the
change detection of Posidonia australis, Halophila ovalis, Zostera
capricorni, and Ruppia megacarpa in the waters of Wallis Lake
in Australia, in depths of <3m. In antithesis to the field optical
measurements of the latter study, we used and developed image-
based estimations of both the diffuse attenuation coefficient
and infinitely deep water column reflectance. Future in situ
optical measurements are expected to increase accuracies in
water column corrections and succeeding classifications and time
series analyses, however, thesemeasurements would also raise the
cost of the given study.

Regarding the satellite-derived bathymetry, we created a
5-m resolution bathymetry map of the Thermaikos Gulf using
RapidEye imagery to aid the RE-based time series of the two
Mediterranean seagrass beds. We should note here that we
employed the closest imagery to our in situ depth estimations,
RE16, to estimate bathymetry for all four images. Traditionally,
remote sensing scientists have calculated depth in optically
shallow regions by using the band ratio (Lyzenga, 1978).
Employing the ratio of blue to green, but in the different central
wavelengths of Sentinel-2, 490 and 560 nm, than in the present
study, Traganos and Reinartz (2017) developed a bathymetry
model for a subsection of the survey site of the present study.
They also applied a low pass filter before the estimation of the
bathymetry in contrast to the present study where we applied
a low pass filter after mapping depth. The lower wavelength of
the blue band of RapidEye at 475 nm, however, in comparison to
the 490m of Sentinel 2 is anticipated to produce more accurate
bathymetry estimation due to the higher penetration of the blue
band in the water column in this case. Moreover, we chose

to convert at-water surface reflectances to the remote sensing
reflectances for the development of the bathymetry model as the
latter are considered more robust to interactions in the air-water
interface and water column constituent composition (Dierssen
et al., 2003; Dekker et al., 2011).

The dense canopy and the incidental shading produce the
often lower than the adjacent optically deep waters reflectance
of P. oceanica seagrass (Dekker et al., 2006). This issue imposes
a problem to accurate bathymetry estimations over this type of
seabed. Traganos and Reinartz (2017) overcome this problem by
modifying the widely utilized bathymetry algorithm of Stumpf
et al. (2003) which displayed negative values over P. oceanica
beds in relevant experiments. It is worth noting that due to the
lack of extensive in situ depth data, we tuned our polynomial
algorithm using data, mainly from the southeasternmost part of
the Thermaikos Gulf. Nevertheless, as we presented in section
Pre-classification Steps, we chose in situ depth data over all four
habitats, namely the two seagrasses, sand and rocky seabed with
algae, achieving an accuracy of 91% in the development of the
site-specific depth algorithm and a r-squared value of 0.86 with a
RMSE of 2.6m in the validation of this site-specific bathymetry.

Other studies have used either existing pixel-based depth
maps produced with acoustic equipment (Pu and Bell, 2013;
Pu et al., 2014), have developed their own satellite-derived
bathymetry maps implementing either linear or ratio algorithms
(Lyons et al., 2011) or have run simulation experiments of
the bathymetry effects using HYDROLIGHT, a robust radiative
transfer model. It would be interesting to compare in the future
bathymetries derived from all of the above sources to study how
accuracies deviate in turn.

CONCLUSIONS

The present study demonstrates an off-the-shelf methodology to
quantitatively assess the spatio-temporal dynamics of seagrasses
and other submerged habitats in clear and homogeneous
optically shallow waters using Planet’s RapidEye time series
of four 5-m satellite images. The methodology includes three
stages: (a) pre-processing including atmospheric and water
column correction of the satellite data along with satellite-
derived bathymetry, (b) machine learning classification using the
Random Forest algorithm, and (c) interannual change detection
which is presented here as a change of area and associated
trend. We applied these three steps to study the dynamics of
two Mediterranean seagrasses, P. oceanica and C. nodosa, in
the waters of the Thermaikos Gulf (NW Aegean Sea, Greece)
between 2011 and 2016. Total seagrass area has increased by
6.3% at a rate of +6.8 ha/yr, while P. oceanica seagrass has
regressed by 4.1% at a rate of−11.2 ha/yr and C. nodosa seagrass
has progressed by 17.7% at a rate of +18 ha/yr throughout
the 5 years. In some occasions, C. nodosa has been studied to
substitute the regressed beds of P. oceanica. The aforementioned
trends, especially in terms of the regression of the P. oceanica,
are in line with the reported regression of this valuable seagrass
elsewhere in the Mediterranean. This study is the first to report
spatio-temporal dynamics of both seagrasses in large scales using
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remotely sensed data. The remote sensing of seagrasses lying in
optically shallow waters (where the observed surface reflectance
contains signal from the bottom in contrast to an optically
deep column) faces a plethora of inherent obstacles due to the
complex nature of the media above the seagrass beds themselves.
Obstacles like water column constituents, sunglint, and skyglint
presence, air-water interface interference could impede the
detection of seagrasses and require, usually, consideration
through relevant algorithms. The presented methodological
workflow could act like an alternative ecological assessment
showing current trends, revealing regressing seagrasses, and
allowing better conservation of these complex but also significant
ecosystems. Potential improvements in the given approach
could be the existence of in situ optical measurements of
several relevant parameters, broader bathymetry field data,
advanced radiative transfer simulations, possible comparison of
different machine learning algorithms for the improvement of
classification and identification of seagrasses and better tuning
of those algorithms. Currently, seagrasses are decreasing in
alarming rates in a global scale. Linkage of this decreasing
trend with the anthropogenic and natural interference through
Earth observation of climate change, eutrophication, coastal
development as well as temperature, salinity, and hydrodynamic
change could develop and refine machine learning models to

ecologically assess seagrass status worldwide. Harnessing the
wealth of Earth observation data that this century offers and
state-of-the-art machine learning algorithms, we could better
understand the thresholds of different seagrass habitats in
different aquatic environments and strengthen their conservation
management, allowing a brighter future for these significant
ecosystem service suppliers.
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