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The increasing demand for healthy edible oil has generated the need to identify
promising oil crops. Tree peony (Paeonia section Moutan DC.) is a woody oil crop
with α-linolenic acid (ALA) contributing for 45% of the total fatty acid (FA) content
in seeds. Molecular and genetic differences that contribute to varied FA content and
composition among the wild peony species are, however, poorly understood. Analyses
of FA content and composition during seed development in three tree peony species
(Paeonia rockii, P. potaninii, and P. lutea) showed varied FA content among them with
highest in P. rockii, followed by P. potaninii, and P. lutea. Total FA content among
these species increased with seed development and reached its maximum in its final
stage. Seed FA composition analysis of the three species also revealed that ALA
(C18:3) was the most abundant, followed by oleic (C18:1) and linoleic (C18:2) acids.
Additionally, quantitative real-time RT-PCR analyses of 10 key seed oil synthesis genes
in the three tree peony species revealed that FAD3, FAD2, β-PDHC, LPAAT, and
Oleosin gene expression levels positively correlate with total FA content and rate of
accumulation. Specifically, the abundance of FAD3 transcripts in P. rockii compared with
P. potaninii, and P. lutea suggests that FAD3 might play an important role in synthesis
of ALA via phosphatidylcholine-derived pathway. Overall, comparative analyses of FA
content and composition in three different peony species revealed a correlation between
efficient lipid accumulation and lipid gene expression during seed development. Further
characterization and metabolic engineering of these key genes from peonies will allow
for subsequent improvement of tree peony oil quality and production.

Keywords: alpha-linolenic acid, edible oil, fatty acid biosynthesis, fatty acid desaturases, omega-3, peony
species, seed oil

Abbreviations: ALA, α-linolenic acid; DAG, diacylglycerol; DAP, days after pollination; DGAT, DAG acyltransferase; DW,
dry weight; ER, endoplasmic reticulum; FA, fatty acid; FAD, fatty acid desaturase; FAMEs, fatty acid methyl esters; G3P,
glycerol-3-phosphate; GC-MS, gas chromatography-mass spectrometry; GPAT, G3P acyltransferase; LA, linoleic acid; LD,
Lipid droplet; LPAAT, lysophosphatidic acid acyltransferase; PAP, phosphatidic acid phosphatase; PC, phosphatidylcholine;
PUFA, polyunsaturated fatty acid; qRT-PCR, quantitative real-time polymerase chain reaction; TAG, triacylglycerol.
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INTRODUCTION

Tree peony is a perennial deciduous shrub, belongs to section
Moutan of the genus Paeonia in the family Paeoniaceae (Picerno
et al., 2011; Li et al., 2012). Peonies are referred as ‘the king
of flowers’ in China, where all nine wild species are endemic
(Picerno et al., 2011; Yuan et al., 2011, 2012; Li et al., 2015a). Tree
peonies in China have more than 2000 years of history (Zhou
et al., 2014); they are cultivated in more than 20,267 hectares in
hilly regions of China and their annual seed production exceeds
57,855 tons (Li et al., 2015b). Peony seeds are a good source
of edible oil with higher percentage of unsaturated FA (92%).
Specifically, α-linolenic acid (ALA/18:3), an ω-3 PUFA is the
most predominant (∼45% of the total FA content) FA in peony
seed, 18:3 (Li et al., 2015a,b).

Linoleic acid (18:2), an ω-6 FA and ALA are essential for
humans as they cannot synthesize these two FAs and must be
obtained from diet (Zhou et al., 2014). A lower percentage of ω-3
FA combined with a high percentage of ω-6 FA in the human
diet has been implicated in chronic diseases such as diabetes,
inflammatory and cardiovascular diseases, whereas increased
levels of ω-3 FA (a high ω-3: ω-6 ratio) exert suppressive effects
(Harbige, 2003; Bhunia et al., 2016). In plants, the proportion
of LA to ALA varies significantly among different oilseed crops.
For example, in most common edible oils derived from peanut,
corn, olive, sunflower, sesame and camellia have less than 3%
of 18:3 (Lee et al., 1998; Simopoulos, 2001; Bhunia et al., 2016).
Notably, in tree peony seed oil while 18:3 accounts for ∼45% of
the total FA content, 18:2 is less than 25% (Li et al., 2015a,b).
With the exception of flax and perilla seed oils (Su et al., 2016),
such high levels of ω-3 FAs are uncommon in oil crops. Tree
peony, especially being a woody oil crop is therefore an attractive
model for dissecting PUFA metabolic pathways and develop an
alternative source of healthy edible oil.

Fatty acid biosynthesis and the mechanisms of triacylglycerol
(TAG/oil) accumulation in seeds involve multiple subcellular
organelles and require extensive lipid trafficking (Bates et al.,
2013). Within developing seeds of oil crops, FA biosynthesis
mainly occurs in plastids, which are subsequently exported to
ER in the form of acyl-Coenzyme A (acyl-CoA) of mostly
oleic acid (18:1), along with minor amounts of palmitic (16:0)
and stearic (18:0) acids (Rawsthorne, 2002; Weselake et al.,
2009; Troncoso-Ponce et al., 2011). Acyl-CoAs are typically
utilized in the acylation of G3P or further elongated and/or
desaturated in ER through acyl editing mechanism. In many oil
crop seeds, most of the 18:1 enters into sn-2 position of glycerol
backbone of membrane lipids as PC, where it can be further
desaturated to 18:2 or 18:3 with the addition of double bonds
catalyzed by ER-localized FA desaturases (FAD2 and FAD3).
These PUFAs from PC can be hydrolyzed and incorporated
into sn-3 position of DAG to form TAG by phospholipid
diacylglycerol acyltransferase (PDAT). This pathway is referred
to as acyl-CoA independent pathway, which is one of the major
pathways for TAG biosynthesis in plants (Wickramarathna et al.,
2015). Additionally, TAG can be synthesized through Kennedy
pathway in an acyl-CoA dependent manner. In this process, the
de novo assembly of TAG from G3P and acyl-CoAs involves

three sequential acylations where the first two acylations of
G3P are catalyzed by GPAT and LPAAT, respectively, followed
by dephosphorylation by PAP to produce DAG; the last and
final acylation is catalyzed by DGAT to produce TAG. The
preferred pathway for TAG synthesis differs among plant species
ranging from an acyl-CoA dependent Kennedy pathway to an
acyl-CoA independent pathway (Bourgis et al., 2011; Troncoso-
Ponce et al., 2011); in seeds, however, more than 90% FAs
flux through PC before entering into TAG (Vrinten et al.,
2005; Bates et al., 2013). More recently, additional pathways
that include monoacylglycerol intermediates contributing to
TAG synthesis were also proposed (El Tahchy et al., 2015;
Simpson and Ohlrogge, 2016). Newly synthesized TAGs in
seeds are typically stored within LD that are stabilized by LD-
associated proteins such as oleosins and caleosins (Murphy,
1993; Murphy and Vance, 1999; Winichayakul et al., 2013).
Additional or alternate proteins may also be associated with
stabilization of LD in non-seed oil-accumulating tissues such
as mesocarps of avocado and oil palm (Gidda et al., 2013;
Horn et al., 2013). Although several oil biosynthesis genes
are cloned and characterized and competing pathways are
established for some oil crops (Rahman et al., 2016), the
underlying molecular mechanisms of PUFA biosynthesis and
accumulation such as that of 18:3 are poorly understood.
Together, these studies suggest continual need for exploration
and identification of preferred TAG biosynthetic pathways in
diverse species for increasing the productivity of desired oil
composition.

The use of select genes from wild relatives of crop
plants to improve productivity is well practiced for more
than 60 years (Hajjar and Hodgkin, 2007). Interestingly, FA
composition and content vary significantly among different
wild tree peony species suggesting a differentially regulated FA
and/or TAG synthesis pathways in developing seeds. Previously,
a transcriptome study of tree peony seeds (Paeonia section
Moutan DC.) revealed FAD2 and FAD8 might play a role in
FA synthesis and TAG accumulation (Li et al., 2015a). Here,
a comparative approach was taken to associate differences in
FA accumulation among three wild relatives of tree peony
species that varied in seed oil content from low to high
(150.1–271.8 mg g−1), with transcript levels of select lipid
genes during seed development. Such comparative analyses
are expected to identify potential candidate genes that likely
contribute to differential accumulation of PUFAs and thus
provide molecular tools for further modification to yield more
and diverse lipids in peonies and other agronomically relevant
species.

MATERIALS AND METHODS

Plant Material
Nine wild tree peony species (Paeonia rockii, P. ostii, P. ludlowii,
P. decomposita, P. qiui, P. potaninii, P. jishanensis, P. lutea,
and P. delavayi) were used in this study. Seeds of tree peonies
were collected in 2015 from the Wild Tree Peony Germplasm
Repository at Gansu Forestry Science and Technology Extension
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Station, China (36◦03′N, 103◦40′E). Repository is located at an
average elevation of 1520 m, where the average annual rainfall
is 327 mm and temperature is 10.3◦C, with sunshine duration
of 2446 h, and frost-free period of more than 180 days. Wild
tree peony germplasm seeds were introduced to the repository
and were cultivated under same environmental conditions for
13 years. We monitored their seed development process from
pollination until maturation (the pods break open and the color
of seeds turn black) from May to August 2015. Pods from
nine wild tree peony species were collected at five sampling
points (S1 to S5) from 0 to 100 days at 20 days intervals.
Each analysis was conducted with three biological replicates
and each replicate included pod samples from a mixture of
three trees. For RNA extraction at a later time, a portion of
the collected seeds from different developmental stages was
flash frozen in liquid nitrogen and stored at −80◦C. Remaining
seeds were dried naturally at room temperature and stored
in a brown dryer filled with nitrogen for more than 48 h,
and were subsequently used for FA content and composition
analysis.

Chemicals and Standards
Fatty acids were named using the formula Cx:y1nc, as
described previously (Simopoulos, 2006). FAME of myristic acid
(C14:0), palmitic acid (C16:0), palmitoleic acid (C16:119c),
heptadecanoic acid (C17:0), stearic acid (C18:0), oleic acid
(C18:119c), LA (C18:219c,12c), ALA (C18:319c,12c,15c),
γ-linolenic acid (C18:3 D6c,9c,12c) and Supelco R© 37-component
FAMEs Mix (C4–C24 unsaturated) were purchased from
Sigma–Aldrich (St. Louis, MO, United States). HPLC-grade
methanol, chloroform, n-hexane, and n-pentane were used
in this study, which were purchased from Alltech Scientific
(Chaoyang District, Beijing, China). n-hexane was used as
a solvent to prepare standard stock solutions and dilutions.
Heptadecanoate (C17:0) was used as an internal standard because
it is generally not present in biological samples. All compounds
and stock solutions were stored according to manufacturer’s
protocol.

Lipid Extraction
Total lipids were extracted as described previously (Li
et al., 2015b), with some modifications. Briefly, dried tree
peony seeds were pulverized in liquid nitrogen using a
Tissuelyser-24 (Jingxin Limited Company, Shanghai, China).
Fifty milligrams of seed powder was extracted with 1.0 mL
chloroform–methanol (1:2, v/v) and C17:0 was added as an
internal standard (0.5 mg mL−1). Samples were homogenized
with a Vortex Mixer S8223 (American Scientific Products,
Lakewood, WA, United States) and kept at 4◦C for overnight.
Subsequently, 0.6 mL KCl (1 M) was added to make the final
ratio of chloroform: methano1: KCl to 1:1:0.9. The mixture
was vortexed vigorously and centrifuged at 10,000 rpm
for 10 min. After centrifugation, the lower chloroform
phase with lipids was collected and dried with a Savant
SPD111V SpeedVac (Thermo Fisher Scientific, Waltham, MA,
United States). FAs in total lipids were derivatized to methyl
esters.

Preparation of Fatty Acid Methyl Esters
(FAMEs)
The dried FAs were methylated as previously described (Li et al.,
2015b), using methanol-sulphuric acid as a methylating reagent.
Briefly, 0.5 mL methanol containing 5% concentrated sulphuric
acid was used to resuspend dried lipids by 1 h incubation in a
90◦C water bath (Thermomix, Eppendorf, Hamburg, Germany).
After cooling to room temperature, 0.5 mL of deionized water
was added to terminate the derivatization reaction. FAMEs were
subsequently extracted with 0.75 mL of n-pentane, centrifuged
(10,000 rpm for 10 min) and the upper phase was then collected
and dried with a speed vacuum as mentioned above. The dried
pellet was resuspended in 200 µL n-hexane and 1 µL was injected
for GC-MS analysis.

Fatty Acid Analysis by GC–MS
Quantitative FA analysis was carried out using gas
chromatography coupled with mass spectrometry
(GC7890A/MS5975C, Agilent Technologies, Waldbronn,
Germany). The GC was equipped with a G4513A autosampler
and HP-88 column (100 m × 0.25 mm i.d., 0.20 µm film
thickness). Ultra-high purity helium was used as carrier
gas at a flow rate of 1.0 mL min−1 and analyses were
performed in constant flow mode. The temperature of the
transfer line, ion source, and quadrupole were set at 280,
230, and 150◦C, respectively, while the injector temperature
was set at 250◦C for split injection at a split ratio of 10:1.
The initial oven temperature was maintained at 120◦C for
1 min before it was increased by 10◦C min−1 to 175◦C and
kept isothermal for 10 min, and then at 5◦C min−1 the
temperature was ramped to 210◦C for 5 min and 230◦C
for 5 min with a total run time is 37.5 min. Qualitative FA
analysis was achieved by comparing the mass spectra to those
available in the database (NIST08 Library) and co-elution
with corresponding standards. A standard curve method with
an internal standard was used as a quantitative approach to
construct five calibration plots of analyte/internal standard peak-
area ratio vs. standard concentration, as determined by the least
squares method. FAMEs in each sample were measured using
methyl heptadecanoate as the internal standard and expressed as
milligrams per gram DW of a sample. All samples were analyzed
in triplicates.

Hierarchical Cluster Analysis
Total FAs and the content of five major FAs in seeds of nine wild
tree peony species (Supplementary Table S1) were subjected to
a cluster analysis using cluster program SPSS 17.0 (version 17.0
for Windows; SPSS Inc., 2008). A dendrogram was generated
from the cluster analysis using Ward’s method. The members
of the same cluster indicate relatively similar FA content and
composition.

Total RNA Extraction and Quantitative
Real-Time RT-PCR
Total RNA was extracted from tree peony seeds using TIANGEN
RNA Prep Pure Plant kit (Tiangen Biotech Co. Ltd., Beijing,
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China), and the quality and quantity of RNA were determined
by Nanodrop and agarose gel electrophoresis. The first-strand
cDNA was synthesized using PrimeScript R© RT reagent Kit with
gDNA Eraser (DRR047A, Takara, Dalian, China) according to
the manufacturer’s instructions. The qRT-PCR was performed
using a SYBR R© Premix Ex TaqTM kit (DRR041A, Takara, Dalian,
China) on a LightCycler480 Real-Time PCR System (Roche
Diagnostics, Basel, Switzerland). The temperature cycle of qRT-
PCR reaction was as follows: 95◦C for 15 s, followed by 40 cycles
of 95◦C for 5 s, 58◦C for 30 s, and 72◦C for 31 s. The fluorescence
data were analyzed with LightCycler480 analysis software
during the 72◦C extension step. All reactions were carried
out in triplicates. A wide range of reference genes including
actin (ACT), tubulin, polyubiquitin (UBQ), glyceraldehyde-3-
phosphate dehydrogenase (GAPDH), elongation factor-1α, and
ribosomal genes are used in plants and animals to normalize
the qRT-PCR data (Goidin et al., 2001; Bustin, 2002; Kim
et al., 2003; Dheda et al., 2004; Li et al., 2015a). Here we
tested ACT, UBQ, GAPDH2, and 18S-26S internal transcribed
spacer (ITS) in different tissues of several tree peony species
and 18S–26S ITS was selected as the best candidate, based on
its stable expression profile (data not shown). Gene specific
primers used in this study for select genes (Supplementary
Table S3) were described previously (Li et al., 2015a). For
qRT-PCR data analysis, expression values (Ct) of select genes
were normalized to 18S–26S ITS transcript levels, and 2−11Ct

values were shown as relative expression to transcript levels
of S1 within each species (Supplementary Figure S1 and
Supplementary Table S4) and 20 DAP of P. rockii (Figure 5).
Transcript abundance was quantified relative to S1 of P. rockii
in order to observe the differences in gene expression level
between the three species at the same developmental stage,
especially at the initial stage when oil synthesis is at its lowest
(Figures 2B,C).

Statistical Analysis
All experiments included three biological replicates and technical
replicates as previously indicated. Mean ± SD were determined
and one-way analysis of variance was carried out using SPSS
(version 17.0 for Windows; SPSS Inc., 2008), to determine
significance at P-value< 0.05.

RESULTS AND DISCUSSION

A lower ratio of ω-3 to ω-6 essential FAs has been implicated
in chronic diseases in humans (Simopoulos, 2002; Harbige,
2003). Compared with traditional oil crops, tree peony seed
oil, with its high rate of oil synthesis and 18:3 levels (∼45%)
(Li et al., 2015a,b) contributes to nearly 5:3 ratio of ω-
3 to ω-6 FAs (Figures 1–3), which represents a balanced
source of PUFAs for human health and nutrition (Zhou
et al., 2014). Our comparative study revealed subtle but
key differences in rate and duration of oil accumulation
(Figures 1–3) and associated gene expression (Figures 4, 5) that
might contribute to varying seed oil content in three tree peony
species.

Nine Wild Tree Peony Species Exhibit
Distinct FA Profile in Mature Seeds
Seed development process in wild peony species takes about
100 days from pollination to maturation at which time the pods
break open and the seeds turn black in color. Developing seeds
were harvested 20 days after pollination (DAP; stage 1, S1) and
subsequently at 20-day intervals until maturation (stage 5, S5).
Total FA content of mature seeds (at stage S5) of nine wild tree
peonies varied significantly, ranging from 150 to 272 mg g−1

DW (Figure 1A). In all nine species, unsaturated FAs (18:3, 18:2,
and 18:1) were most abundant, while saturated FAs (18:0 and
16:0) contributed to less than 10% of the total FA of matured
seeds (Supplementary Table S1). FA content in seeds that were
harvested at 10 days interval increased up to nine developmental
stages and slightly decline in the last developmental stage
(Li et al., 2015a). Despite the overall differences in FA content in
mature stage, profile of dominant unsaturated (ALA, LA, OA)
and saturated (PA, SA) FAs were consistent (Li et al., 2010,
2015a,b; Han et al., 2016; Yu et al., 2016). Cluster analysis,
using the content of five major FAs in seeds of nine peony
species (Supplementary Table S1) generated a dendrogram with
three major clusters (Figure 1B). Species in cluster I, P. rockii,
P. decomposita, and P. qiui were characterized by higher ALA, LA,
and total FA content. Cluster II included P. potaninii, P. ludlowii,
and P. ostii, with mid-level content of major FAs, while Cluster III
included P. jishanensis, P. lutea, and P. delavayi, with lower levels
of major FAs (Supplementary Table S1). Tree peony species
within a cluster had a relatively similar range of FA content
and composition suggesting that perhaps key steps in their
FA biosynthesis and regulation are also conserved. To identify
distinct biochemical and molecular differences that contribute
to diverse levels of oil accumulation among closely related wild
tree peony species, P. rockii, P. potaninii, and P. lutea, each
representing a cluster with varying levels of FA content in mature
seeds (Figure 1) were selected for further study.

Rate of FA Accumulation during Seed
Development Is Different among the
Three Tree Peonies
Seeds from P. rockii, P. potaninii, and P. lutea varied in their
size, color, total FA content, and rate of FA accumulation during
seed development (Figure 2). As reported previously, mature
seeds (S5) of all the three species were black in color while
immature (S1) seeds varied from pale green in P. rockii, yellow
in P. potaninii, to dark red in P. lutea (Figure 2A; Li et al., 2015a).
Overall seed size was smaller with more seeds per fruit in P. rockii,
relative to the other two species (Figure 2A). Quantification of
FA content in the three species during seed development revealed
differences not only in content and composition but also rate of
lipid accumulation (Supplementary Table S2 and Figures 2B,C).
In all the three species, FA content peaked during seed maturation
(S5; Figure 2B). A higher rate of FA accumulation was, however,
observed only during the initial stages of seed development (S1
to S2) and not in the later stages (>S3; Figure 2C). During S1
to S2 development, among the three species, P. rockii (∼4.9 mg
g−1 day−1) and P. potaninii (∼5.1 mg g−1 day−1) attained the
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FIGURE 1 | Association of nine tree peony species based on fatty acid content and composition. (A) Nine species were divided into groups I, II, and III based on
their FA abundance. Data are mean ± SD with n = 3. Bars with no letters in common are significantly different (p < 0.01). (B) Dendrogram showing the association of
nine species in clusters based on their FA content and composition.

highest rate of FA synthesis, while P. lutea showed the lowest
(∼3.0 mg g−1 day−1; Figure 2C). Interestingly, while P. rockii
maintained a higher rate of FA synthesis during S2 to S3 stages
of seed development (∼4.3 mg g−1 day−1), both P. potaninii and
P. lutea showed a 50% decline in their rate. As a general trend,
however, in all the three species, the rate of FA accumulation
declined as the seed development progressed from S2 to S4 but
a slight increase was noted during S4 to S5 (Figure 2C). While
reduced protein synthesis in terminal seed development period
might contribute to increase in over all oil production, the rate
and duration of oil accumulation are likely regulated by Wrinkled
1 (WRI1) transcription factor (Kanai et al., 2016). To determine
such role for WRI1 in tree peony seeds would be pertinent in
order to enhance oil accumulation. Over all these results suggest

that early stages of seed development (S1–S3) are crucial periods
for differential FA accumulation among the three wild peony
seeds. These findings are also consistent with the previous study
done by Li et al. (2015a), where FA accumulation in P. ostii was
found to be rapid in early to mid stages of seed development
rather than at maturation (Li et al., 2015a).

Alpha-Linolenic Acid Is the Most
Abundant FA Type in Matured Peony
Seeds
Analysis of FA distribution during seed development of P. rockii,
P. potaninii, and P. lutea (Supplementary Table S2) revealed
that the three major unsaturated FAs (18:3, 18:2, and 18:1)
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FIGURE 2 | Phenotypic observation and fatty acid quantification of developing
seeds of three peony species. (A) The developmental progress of three wild
peony species seeds (S1–S5). Pods were harvested at 20 days after
pollination (DAP, immature stage), and then every 20 days until 100 DAP (pods
containing mature seeds). (B) Total fatty acids content was measured at five
developmental stages during seed development of three wild peony species
(mean ± SD, n = 3). (C) Rate of FA accumulation between stages was
calculated per day (mean ± SD, n = 3).

contributed to about 90% of total content in stages 2–5
while it was about 76–78% in S1 (Figure 3A). ALA (36.3–
46.0%) was the most predominant unsaturated FA followed
by 18:2 (12.1–21.9%), and 18:1 (23.0–32.9%) in the mature
stage (S5) of seed development (Supplementary Table S2 and
Figure 3A). Among the saturated FAs, 16:0 was the most
predominant followed by 18:0. These five major FAs together
account for 98.9% of total FA in mature seed (S5), the
developmental stage at which FA content was at its highest
(Supplementary Table S2). Five other minor FAs (<1.0%)
including myristic acid (C14:0), palmitoleic acid (C16:119c), cis-
11-octadecenoic acid (C18:1111c), eicosanoic acid (C20:0) and

cis-11-eicosenoic acid (C20:1111c) were also detected at trace
levels in mature tree peony seeds (Supplementary Table S2).
In all the three species, total amount of 16:0 increased with
seed development and was highest in matured seed (S5;
Supplementary Table S2). This increase in 16:0 was, however,
not as rapid as other unsaturated FAs and thereby the relative
abundance of 16:0 in total FA acid content decreased from 20%
in S1 to 10% in S5 (Figure 3A). The rapid increase in unsaturated
18C FAs during tree peony seed development, as supported by
previous studies (Li et al., 2015a,b) suggests an active role for
ketoacyl-ACP synthase II (KAS II) and 18:0-ACP desaturase
(SAD). The relative proportions of 16:0 and 18:1 FAs, which are
the main products of plastid FA synthesis (Figure 4) are also
determined by the activities of acyl-ACP thioesterases (FAT) A
and B (Bates et al., 2013).

Further comparison of the temporal changes in FA content
demonstrated that 18:3 is actively accumulated throughout the
seed development and is the major contributor to seed oil
synthesis in these select wild peony species (Figure 3B). Among
the three, P. rockii had highest 18:3 content, which rapidly
increased from S1 to S5, while an increase in 18:2 and 18:1 was
relatively moderate and peaked in S3 (Figure 3B). In P. potaninii
seeds, while 18:1 and 18:3 increased till maturation, 18:2 reached
its highest level at S2. In seeds of P. lutea, although 18:2 did not
vary with development, 18:3 and 18:1 continued to accumulate
at a relatively slow rate (Figure 3B). These data together indicate
that P. rockii, relative to other peonies, perhaps has mechanisms
in place for rapid accumulation of FAs, specifically 18:3. These
data also suggest that 20–60 DAP, the period during which fruits
of tree peony expand rapidly as a key period for differential rate
of FA accumulation that determines the final FA content and
composition of mature seeds.

Gene Expression Analysis Reveals
Differential Transcript Abundance among
the Tree Peony Species
Based on the previous studies (Fatima et al., 2012; Wang et al.,
2012; Zhou et al., 2014), 10 lipid biosynthesis genes (Figure 4)
were selected to determine if their expression pattern during
seed development correlated with changes in lipid content and
composition (Supplementary Table S2). Nine of the 10 select
genes (β-PDHC, MCAT, EAR, KAS II, SAD, FATA, FAD2, FAD3,
and LPAAT) encode for enzymes that play a major role in FA
synthesis and TAG assembly, while oleosin (OBO) is essential
for packaging of TAG into oil bodies in seed tissues (Figure 4).
Since multiple genes encode several of the proteins involved
in oil biosynthesis, we relied on transcriptome data from a
previous study on P. ostii to select those unigenes that were
upregulated by several fold during oil accumulation period in tree
peony seeds (Li et al., 2015a). In all the three species, expression
levels for β-PDHC, MCAT, EAR, KASII, SAD, and FATA peaked
within 60 DAP (during S1–S3; Figure 5 and Supplementary
Figure S1 and Supplementary Table S4) suggesting that an active
de novo FA synthesis might be occurring during early to mid
developmental stages of tree peony seeds, which is typical of
several other oilseeds (Troncoso-Ponce et al., 2011). These peak
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FIGURE 3 | Fatty acid composition during seed development in three wild species. Changes in the (A) proportion of various FAs, and (B) content of three major
unsaturated FAs during seed development (mean ± SD, n = 3).

FIGURE 4 | An overview of (A) major genes involved in fatty acid synthesis and triacylglycerol assembly. Substrates are in bold: ACP, acyl carrier protein; DAG,
diacylglycerol; G3P, glycerol-3-phosphate; LPA, lyso-phosphatidic acid; LPC, lyso-phosphatidylcholine; PA, phosphatidic acid; PC, phosphatidylcholine; PUFA,
polyunsaturated fatty acids; TAG, triacylglycerol. Enzymatic reactions are in bold italics: β-PDHC, pyruvate dehydrogenase beta subunit; MCAAT, malonyl-CoA:ACP
transacylase; EAR, enoyl-ACP reductase; KAS II, ketoacyl-ACP synthase II; SAD, stearoyl-ACP desaturase; FAD3, 115 (ω-3) linoleic acid desaturase; FATA,
acyl-ACP thioesterase A; FAD2, 112 oleic acid desaturase; LPAAT, 1-acylglycerol-3-phosphateacyltransferase; OBO, oil-body oleosin.

expression levels at S3 in P. rockii, relative to its S1 were 25-fold
higher for β-PDHC and 5-fold higher for MCAT (Supplementary
Figure S1 and Supplementary Table S4), genes that encode for
crucial precursors acetyl-CoA and malonyl-ACP, respectively, for

FA synthesis. In P. rockii, expression levels for KAS II and SAD
were also more than ninefold higher in their peak stage, S2 and
S3, respectively, relative to S1, which correlates with abundance
of 16:0 in early developmental stage followed by increase in
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FIGURE 5 | Quantitative real-time polymerase chain reaction analysis of genes
involved in seed oil synthesis in three wild species at different developmental
stages. Relative expression values, normalized to 26S-18S ITS gene, were
shown as 2−11Ct relative to 20 DAP of P. rockii. Error bars represent the SD
of three biological replicates with three technical replicates each.

18:1 at later stages (Figure 3A). Such increase remained below
twofold in P. potaninii and P. lutea (Supplementary Figure S1
and Supplementary Table S4), suggesting a correlation between
the plastidial FA gene expression levels and oil accumulation.
Furthermore, expression levels for most plastidial FA genes
remained higher or similar to the levels at S-1 during the entire
seed development period in P. rockii but reduced below S1
levels by 80 DAP in P. potaninii and even earlier in P. lutea
(Supplementary Figure S1 and Figure 5), suggesting that
the duration of transcriptional activity might affect overall oil
accumulation and thus contribute to differential oil content in
matured tree peony seeds (Kanai et al., 2016).

Triacylglycerol assembly via DGAT catalyzed acyl-CoA-
dependent or a PC-derived pathway (Figure 4) utilizes PC as a

central intermediate in maintaining the flux of FAs and/or DAG
(Ohlrogge and Browse, 1995; Bates and Browse, 2012). Since
the sn-2 position of PC is the major site for ER localized FA
modification such as desaturation, and hydroxylation (Sperling
et al., 1993; van de Loo et al., 1995), understanding the acyl flux
into and out of PC is crucial for improving the production of
PUFA (18:3)-enriched TAG (Wallis et al., 2002). The expression
of FAD3 in P. rockii was characterized by a bell-shaped curve,
with low levels of expression at the initial stage followed by a
substantial increase during the rapid phase of oil accumulation
and a subsequent decline toward seed maturation (Figure 5
and Supplementary Figure S1), a conserved pattern that was
previously observed in oil-rich Arabidopsis, Brassica napus and
sea buckthorn seeds (Hu et al., 2009; Peng and Weselake,
2011; Fatima et al., 2012). Together, the expression pattern and
transcript abundance of FAD3 and FAD2, with FAD3 being
much higher than FAD2 in P. rockii suggest that its high 18:3
content might be the result of FAD3-dependent active PC-derived
pathway (Bates et al., 2013). Expression of FAD3 in perilla and
sacha inchi seeds also coincided with the accumulation of 45–
53% of total FA as ALA (Chung et al., 1999; Wang et al.,
2012), further suggesting FAD3 as a valuable target for genetic
engineering and improving ALA content in oil crops. On the
other hand, relatively low expression levels of FAD2 and FAD3
in seeds of P. lutea (Figure 5) might account for its lower
proportion of LA and ALA content (Figure 3). Transcript levels
for LPAAT, which with its high substrate specificity determines
acyl composition of TAG at the sn-2 position (Baud and
Lepiniec, 2010), were fivefold higher in P. rockii at 60 DAP
relative to 20 DAP (Supplementary Table S4). In P. rockii
seeds, transcripts for OBO, as expected, peaked in S4, toward
the end of FA synthesis phase as needed for packaging TAG
(Figure 5 and Supplementary Figure S1). Interestingly OBO
expression levels for P. potaninii peaked by 60 DAP and were
higher than that of P. rockii. Oleosins typically determine the
size of the oil bodies (Siloto et al., 2006) and it remains to be
determined if there is variation in oil body size in tree peony
seeds.

Temporal changes in the expression pattern of these 10
genes during seed development, relative to the transcript levels
in S1 of P. rockii also revealed highest expression levels
mostly during S2–S3 stages in P. rockii and P. lutea, and
S3 stage of P. potaninii (Figure 5). These stages with higher
transcript abundance also correlated with the stages during
which higher rate of FA accumulation (Figure 2C). Conversely,
reduced transcript abundance was observed during initial (S1)
and late (S4 and S5) developmental stages, coinciding with
the periods of low rate of FA accumulation (Figure 2C).
Specifically, a three–fourfold higher expression level for β-
PDHC, FAD2, FAD3, LPAAT, and OBO in P. rockii were
noted relative to P. lutea (Figure 5), which was in agreement
with its higher total FA and ALA content (Figures 2, 3).
Transcript abundance for MCAT, EAR, KAS II, SAD, and
FATA differed by less than twofold between the species
suggesting these genes might not play a significant role in
differential FA accumulation in developing seeds of peonies
(Figure 5).
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CONCLUSION

Alpha-linolenic acid cannot be synthesized by the human
body (Sinclair et al., 2002; Liu et al., 2012), and yet is
an essential precursor for the synthesis of eicosapentaenoic
acid and docosahexaenoic acid, which exert a wide range
of biological activities and prophylactic effects (Shahidi and
Miraliakbari, 2004; Shahidi and Miraliakbari, 2005). Considering
the increasing population (Chapman and Ohlrogge, 2012) there
is a need for the development of oil crops with beneficial
proportions of ω-3 and ω-6 FAs. In this study, we conducted
comparative FA and gene expression analyses of developing seeds
of three peony species with differences in the rate, content and
composition of FAs to identify fundamental determinants of FA
content and composition. Our results indicate that a higher and
sustained lipid gene expression levels in P. rockii might contribute
to its increased rate and duration of TAG accumulation and thus
to an overall increase in seed oil content. Furthermore, although
the expression pattern of all the ten genes do not correlate with
the pattern of oil accumulation, the data together suggest that
P. rockii has a more efficient metabolic pathway to synthesize
ALA compared with P. potaninii and P. lutea, which is likely
due to the abundance of FAD3 transcripts in the PC-derived
pathway. Although transcript levels do not necessarily reflect
protein or its activity, the temporal expression patterns for FAD2
and FAD3 associated with PUFA-enriched FA profile suggests
an important role for them in determining the FA composition
in peony seeds. These results also revealed a significant role
for β-PDHC, LPAAT, and oleosin since their high expression
level was in agreement with the highest total FA content in
P. rockii. An increase in oil content even after the decline in
transcript levels might suggest involvement of additional genes
that might also play an important role in PUFA synthesis. In
conclusion, however, FAD3, FAD2, β-PDHC, LPAAT, and oleosin
were identified as potential targets for molecular cloning and
functional characterization and to further improve oil content
and composition in tree peonies as well as other crops. Among
the tree peonies, P. rockii is an excellent germplasm resource for
cultivating high yielding and high quality peony oil and could be
of further improved with identification of molecular markers and
using transgenic approaches.

AUTHOR CONTRIBUTIONS

Q-YZ, L-XN, and Y-LZ designed the research. Q-YZ, RY, and
L-HX harvested the samples, and conducted the lipid and gene
expression analyses. Q-YZ, MR, AK, and Y-LZ conducted the
data analyses and wrote the manuscript. All authors read and
approved the final manuscript.

FUNDING

This work was financially supported by the National
Forestry Public Welfare Industry Research Project of China
(201404701).

ACKNOWLEDGMENTS

AK was supported in part by major and minor grants from
Research and Development Committee, East Tennessee State
University. MR received Sigma Xi GIAR Award (2017) and
graduate assistantship from the Department of Biological
Sciences, ETSU.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found online
at: https://www.frontiersin.org/articles/10.3389/fpls.2018.00106/
full#supplementary-material

FIGURE S1 | Gene expression profiles for developing seeds, relative to their S1
for the three tree peony species.

TABLE S1 | Content of the five major FAs in matured seeds (stage S5) of nine tree
peony species (mg g−1 DW, mean ± SD, n = 3).

TABLE S2 | Fatty acid composition in three wild relatives of tree peony during
seed development (mg g−1 DW, mean ± SD, n = 3).

TABLE S3 | Gene-specific primer sequences for detection by qRT-PCR.

TABLE S4 | Transcript levels of 10 genes in developing seeds of three tree
peonies, relative to their S1 (A) and S1 of P. rockii (B). Data with conditional
formatting reveal the highest expression for each gene in red and lowest in green.
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