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RNA-Seq is a widely used technology that allows an ef cient gnome-wide quanti cation
of gene expressions for, for example, differential expregsn (DE) analysis. After a brief
review of the main issues, methods and tools related to the DEnalysis of RNA-Seq data,
this article focuses on the impact of both the replicate numbr and library size in such
analyses. While the main drawback of previous relevant stue is the lack of generality,
we conducted both an analysis of a two-condition experiment(with eight biological
replicates per condition) to compare the results with preaus benchmark studies, and
a meta-analysis of 17 experiments with up to 18 biological coditions, eight biological
replicates and 100 million (M) reads per sample. As a globaltend, we concluded that
the replicate number has a larger impact than the library sizon the power of the DE
analysis, except for low-expressed genes, for which both peameters seem to have the
same impact. Our study also provides new insights for pradibners aiming to enhance
their experimental designs. For instance, by analyzing bbtthe sensitivity and speci city
of the DE analysis, we showed that the optimal threshold to catrol the false discovery
rate (FDR) is approximately 2", where r is the replicate number. Furthermore, we showed
that the false positive rate (FPR) is rather well controllday all three studied R packages:
DESeq DESeq2, and edgeR. We also analyzed the impact of both the replicate number
and library size on gene ontology (GO) enrichment analysisterestingly, we concluded
that increases in the replicate number and library size tentb enhance the sensitivity
and speci city, respectively, of the GO analysis. Finallyve recommend to RNA-Seq
practitioners the production of a pilot data set to strictlyanalyze the power of their
experimental design, or the use of a public data set, which stuld be similar to the
data set they will obtain. For individuals working on tomatoesearch, on the basis of the
meta-analysis, we recommend at least four biological reates per condition and 20 M
reads per sample to be almost sure of obtaining about 1000 DE gnes if they exist.

Keywords: transcriptomics, RNA-Seq, biological replicate s, library size, differential gene expression analysis,
power, false discovery rate, gene ontology enrichment analys is
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INTRODUCTION RLE methods give similar results and outperform other existing
normalization methods in DE analysi®{lies et al., 2013; Maza
Since its rst results were published, RNA-Seq technology has: al., 2013 NeverthelessChen et al. (2016have shown that
been widely perceived as a revolutionary tool for transcnitts  spike-in controls are compulsory for the normalization of sem
(Wang Z. et al., 20091t has become a prevalent technology,particular RNA-Seq experiments, but these situations are not

allowing an e cient genome-wide relative quanti cation gfene  predominant in practice, and fall outside the scope of our aaticl
expression and, in particular, it is the method of choice to nd

di erentially expressed genes between two or more biologicaéenchmark Articles on Replicates and
conditions of interest. From the beginning, the main issue?epth

related to such DE analysis have been pointed out, and mal . .
methods and tools have been proposed in the relevant litegatur 10 OUr knowledge, only a few recent articles have aimed to
As for any other statistical analysis, one main issue has be&Xclusively and deeply analyze the impact of the replicate number
nding the probabilistic model that best ts the data, aswadithe and library size (or depth) on a DE analysis. Three studies
optimal parameter estimates of this model. Another importantconclude that increasing the number of biological replisaite

issue was the need for normalization of the data to correctiglobally amore e cient strategy than increasing the libyasizes,
compare two di erent biological conditions by assessing and" order to enhance the power and the false discovery rate (FDR)

erasing all eventual technical and/or biological biasest but ©f @ DE analysisGhing et al., 2014; Liu et al., 2014; Schurch
not least, the practical need to nd the optimal number of et al., 201p Neyerthelgss, these three studies also give speci c
biological replicates per condition and the optimal librargesi "€Sults concerning their analyzed data sets.et al. (2014pnd
have also been highlighted in many studies. Here, we intredu CNing et al. (2014gonclude that, with their analyzed data sets,
these issues and review some widely used methods and tools foliPrary size of respectively 10 and 20 M reads per sample is the

DE analysis. This review will help us to choose the most egfey Minimum threshold for an e ective DE analysisichurch et al.
methods and tools to perform DE analyses in the present work. (2016)give more general recommendations based on their single
data set study; they recommend at least six biological raelc

The Probabilistic Model per condition in general, and at least 12 replicates to ideriiéy

The problem of nding the best model to t RNA-Seq data has majority of DE genes. In additiorj, some authprs provide FGO!S
been tackled recently b@ierlinski et al. (2015)The authors estimate an optimal number of biological replicates per candit

recommend the use of tools based on the negative binomiglased on a_pilo_t data set_ of the giyen experin_1e_nta| design or
distribution. These tools includedgeRDESegDESeq2Cu di on the Speci cation of desired coe cients of variation (CV)o
Cudi 2 , andbaySeqAnders and Huber, 2010; Hardcastle anold|sper5|_ons of the futur_e result8(sby et al., 2013; Hart et al.,
Kelly, 2010: Robinson etal., 2010: Trapnell etal., 2012; poga  2013; Lietal., 2013; Ching etal., 2014; Wu et al., 2015

et al., 2011 There are also some non-parametric methods that .

can be used as alternatives when the data do not seem to t the0me Methods and Tools Performing DE

negative binomial law, but these methods are less oftenaised Analysis

usually require a higher replicate number to perform equakylw With the rise of the RNA-Seq technology, many methods and

(Spies and Ciaudo, 20L5 tools have appeared for DE analysikalfle 1 gives an almost
o comprehensive list of 29 R packages or tools dedicated to DE
The Normalization Method analysis, and summarizes information above concerning seelu

When the RNA-Seq technology was rst introduceédiang H.  probabilistic model and normalization method). Consequgnt

et al. (2009)and other pioneers thought that it could be usedmany comparison studies have been carried out, but there is
without sophisticated normalization methods. On the comra not yet a gold standard method. Moreover, many comparison
Bullard et al. (2010have demonstrated the high impact of studies highlight that no single method outperforms others
the normalization procedure on the DE analysis. Many of thén all circumstances Kapaport et al., 2013; Soneson and
normalization methods proposed in the literature are based omelorenzi, 2013; Zhang et al., 2014; Seyednasrollah et al.,
the correction of biases or artifacts directly related te RNA-  2015. Nevertheless, it seems that some tools are particularly
Seqtechnology, such as transcript lengths and sequengiggje appropriate.Soneson and Delorenzi (2018pncluded that, for
non-uniformity of read distributions along transcripts and large sample sizes, thenma methods perform well, as does
strong sample-speci ¢ GC-content e eciortazavi et al., 2008; the non-parametricSAMseqtool. Seyednasrollah et al. (2015)
Oshlack and Wake eld, 2009; Zenoni et al., 2010; Risso et atoncluded thatimma and DESegnethods are the safest choices
2011; Roberts et al., 2011; Tarazona et al., 2011; Hansen etwith a small number of replicates, thatigeRyives very variable
2012. The relative size of transcriptomes in the studied biolabic results, and thaiSAMseqgsu ers from a lack of power. Also,
conditions is another crucial, not technical, bias a ectibge  with many replicates, the choice of the method and/or tool is
analysis. Such a bias has been addressedrdiyinson and less critical (unless foNOISegand Cu di 2 ). Rapaport et al.
Oshlack (2010and Anders and Huber (2010who proposed, (2013)concluded thaDESegedgeRand baySedave superior
respectively, the trimmed mean &f-values (TMM) and the speci city and sensitivity, and seem to outperform thema
relative log expression (RLE) normalization methodsiders andPoissonSegethods. The worst method seems to®edi .
etal., 2018 Moreover, it has been shown that both the TMM and Burden et al. (2014¢oncluded that th&uasiSedpol achieves a
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Wan and Sun, 2012

CEDER
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van de Wiel et al., 2014

ShrinkBayes

negative binomial

ahttp://apps.webofknowledge.com

low FDR providing the number of replicates in each condition
is at least 4. The next best performing packagesedgeRand
DESeqg2In other studies, botledgeRand DESegseem to give
similar and correct or better results(¢am et al., 2012; Robles
etal., 2012; Zhang etal., 2014; Conesa et al., 2016; Lin2aHj.

Table 1 also provides the number of citations of articles
introducing above cited tools. We notice thedgeRippears rst
with 22% of citations, followed b@u inks (21%, but we do not
know the number of citations that are exclusively du€todi ),
DESed20%),DESeq29%), and then, all other tools below 6%.

Finally, the choice of the methods we used in this article
for DE analyses was done by looking at considerations above
and comparison studies, but also considering that oar
silico approaches were extremely time consuming and that no
comprehensive study was able. We then decided to compare the
following four widely used method®ESegDESeqg2edgeRuvith
the exact tesand edgeRwith the GLM. Moreover, considering
again comparison studies above, these four methods seewgo gi
similar results, and we then arbitrarily chose only one foe t
most time consuming analyses.

In the present article, we aim to study the impact of the
replicate number and library size on the DE analysis of an
RNA-Seq experiment involving the tomato fruit mod&dlanum
lycopersicuin Our study rely on two data sources. On the one
hand, we analyzed a two-condition data set with eight biaabi
replications per condition and 20M reads per sample from
the Tomato Ovary Gene Expression (TOGE) project. On the
other hand, in order to give more general recommendations,
we performed a meta-analysis with all the RNA-Seq experiments
available on theTomExpresolatform, i.e., 16 projects, 124
biological conditions, and 348 biological samplgs\{ine et al.,
2017.

MATERIALS AND METHODS

Plant Materials and Experimental Design of

the TOGE Project

Tomato plants $olanum lycopersicum L. cv. Micro-Tjowere
grown in a culture chamber set as follows: a 14 h/10 h daytigh
cycle, a 25C/20 C day/night temperature dynamic, 80% relative
humidity, and 250mmol m 2 s light intensity.

The ovaries (including style and stigma) and the developing
young fruits were collected as samples. Ovaries were picked on
the rst day of ower opening (anthesis stage) and set as 0 days
post-anthesis (DPA). Developing young fruits were picked 4day
after this natural pollination stage and set as 4 DPA. Sampling
procedures were mainly as describedVitang H. et al. (2009)
Eight biological replicates were performed for each studied
condition (0 DPA and 4 DPA). For each biological replicate reno
than 50 ovaries were pooled from 25 plants.

Total RNA was isolated from 200 and 500 mg, respectively,
of ovary and young fruit powders TRIzol ReagentLife
Technologig¢s After DNase treatment ONA-free Kit Life
Technologi@sthe total RNA quantity and quality were assayed
using anAgilent 2100 Bioanalyz€Agilent TechnologigsOnly
RNA with an RNA integrity number (RIN) above 8.0 was used
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for sequencing. The RNA libraries were constructed as desdri power. Obviously, for eight replicates and each library size, w
in the lllumina TruSeq Stranded MRNA GuidelRNA was only had one data set and then one indicator. For the caloutat
sequenced in &liSeq 2500 sequencing systeith 2 125 bp  of the power, we needed a reference list of DE genes. For this

paired-end sequenceligmina HiSeq SBS Kit y4 purpose, we chose the DE genes that were found with all availabl
information (i.e., with eight replicates and 20 M reads) anithw

RNA-Seq Data Mapping and Quanti cation a very stringent adjustepvalueD 0.0001. Then, for a given DE

of the TOGE Data gene list, the power was calculated by the ratio of the number o

A quality check of the raw sequences was made withtQG.  true DE genes (i.e., genes that are considered to be DE and that
Trimming was performed with PRINSEQ (version 0.20.3)belong to the reference list above) to the total number ofegen
with the option —trim right. Reads were aligned with a inthe previous reference list (see also the section “Seityiind
spliced alignment tool to the genome Bblanum lycopersicum SPeci city” below).
(SL2.40.22 and ITAG.2.3 GFF3 annotation le) wiflopHat 2 Moreover, to calculate the stability of each indicator, we
(version 2.0.14)Kim et al., 201} On average, between 80 and retained, for each combination of replicate number and Iigra
90% of the reads were aligned to the reference genome. SiZe, the DE genes that were common to all 45 data sets. We then
We randomly down-sampled the reads to generate data seg@lculated both indicators for this new list of DE genes.
of 2.5, 5, 7.5, 10, 15, and 20 M reads using the python script Finally, to analyze the impact of the gene expression level on
get_subset.pyefore alignment on the reference gendmeve the studied indicators, the gene set was divided into threespa
usedSAMtoolsview option—sfor down-sampling the reads after genes with low counts, genes with medium counts and genes
the alignment on the reference genomet al., 2009 with high counts, i.e., those with a logCPM (counts per miilio
Raw counts were generated on each gene by udii§eq- reads) less than the rst quartile, between the rst and thed
count (version 0.6.1pl) with the option-strande®reverse quartile, and higher than the third quartile, respectiveBoth
(Anders et al., 200)5Moreover, since reads can overlap one orindicators were then calculated and presented for both lod an
more features, we used the mode intersection-non-emptychhi high expression levels.

guarantees the highest number of assignments. Gene Ontology (GO) Analysis of the TOGE

DE Analysis of the TOGE Data Data
All DE analyses of the Number of DE genes (section Number dfVe performed an enrichment analysis with tgesedR package
DE Genes of the TOGE Data) and Power (section Power Analys{gersion 1.20.0)Young et al., 20)0As tomato is not referenced
of the TOGE Data) were performed with R software (versiorin gosegqwe manually built the list of GO biological process
3.2.0) and the dedicatestigePackage (version 3.6.8x¢binson  (BP) identi ers and lengths of genes. The tomato GO terms
et al., 2010;: R Core Team, 201No ltering was applied. The were downloaded from theJniProtkKB databasé The goseq
TMM normalization method was performed to normalize the tool is suitable for RNA-Seq enrichment analysis, sincelowa
counts among the dierent sampleRbinson and Oshlack, an adjustment for gene selection thanks to di erences in gene
2010: Maza et al., 2013; Maza, 20The dispersion parameter lengths, which are known to a ect the variance of gene expoessi
was estimated in two di erent ways, depending on the number ofstimates. BP categories withvalues less than 0.05 were
replicates, to enable a more robust estimation: if the nundfer considered to be signi cantly enriched. For each combioatbf
replicates was less than or equal to 4, we estimated the dispersdepth and replicate number, lists of the common BP categories
by the CommonDispfunction; otherwise, the dispersion was obtained for the 45 essays were extracted and analyzedin th
estimated using th&agwiseDisfunction (Robinson etal., 20)0 same way as described above for the stability of the number of
In order to detect signi cantly DE genes, we used theactTest DE genes and the power).
function. A gene was declared as signi cantly DE if its atids o -
p-value (cor?trolling the FDR) was Iesgs than O)./B@mamini ?nd Sensitivity and Speci city of the TOGE
Hochberg, 1995 Data

To analyze the impact of the number of replicates and thé-or a given DE analysis method, the sensitivity (or true positive
library size on the DE analysis, we built 45 data sets for eadite, TPR) and the speci city (or true negative rate, TNR) are
number of replicates among two, three, four, ve, six, andesev de ned as follows. The TPR is the number of signi cantly DE
replicates, and each library size among 2.5, 5, 7.5,10,d20aM  genes that are true DE genes, divided by the total numberuef tr
reads. Each replicate was randomly chosen without replacemeE genes. The TNR is the number of non-signi cant DE genes
among the eight samples for each condition. We then analyzeithat are true non-DE genes, divided by the total number oktru
36 combinations of replicate number and library size, frone th non-DE genes. Moreover, we have that speci @yTNRD 1 —
smallest with two replicates and 2.5 M reads to the largest witFPR (false positive rate). The FPR is then equal to the numiber o
seven replicates and 20 M reads. Then, for each combinatien, wigni cantly DE genes that are true non-DE genes, dividethay
had 45 DE gene lists, and we computed the median of the twi®tal number of true non-DE genes.
studied indicators: the number of DE genes and the estimated The four DE analysis methods studied here were carried out

using the R software environment (version 3.1RB){ore Team,

Lhttps://www.bioinformatics.babraham.ac.uk/projects/fastqc
2https://github.com/happykhan/nfutil/blob/master/get_subpgt. Shttp://www.uniprot.org
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2015 and the corresponding packagB&ESeqversion 1.18.0), and high expressions, it seems that the former are more imgacte
DESegZ2version 1.6.3), anddgeRversion 3.8.6) with botlGLM  than the latter by the increase in depth, as curves represgntin
method and theexact testnethod. All four methods have been low-expressed genes increase faster than curves reprasentin
applied with the corresponding default normalization methodshigh-expressed geneBigure 1A). The increase of the replicate
and parameterizations. All these packages can be uploaded fraramber seems to have the same impact on both expression
the Bioconductor websitegentleman et al., 2004 levels Figure 1B). Moreover, for all genes, the rate of increase
As described above, the calculation of TPR, TNR, and FP&ems to diminish after 10 M readsigure 1A) or ve replicates
values requires the knowledge of the list of all true DE geng$igure 1B). Nevertheless, this phenomenon seems to be less
between our two biological conditions, which is obviouslyt no intense for low-expressed gen&gure 1B).
the case in practice. In order to estimate these true DE gevees,  To determine whether the library size or the replicate number
performed a prior DE analysis for each method with the wholeéhas a relatively higher impact on the number of DE genes, we
data set, i.e., eight replicates per condition and all aviglsads. needed to compare combinations of these two parameters that
Moreover, for this prior analysis, we chose a stringent thoéh shared the same total amount of reads. This comparison is shown
equal to 0.001 to control the FDRBénjamini and Hochberg, in Figure 1A, where symbols with a black border represent a
1995. We then obtained four lists of genes that estimated theombination with a total amount of about 40 M reads. Moreover,
unknown list of truly DE genes for the four DE analysis methodsthe three curves irfrigure 1A, depicted by black border circles,
Using a speci ¢ estimated list of truly DE genes for each mdthotriangles and squares, can be interpreted as follows: a ctnsta
enables a relatively objective measure of the performaneadalf curve implies an equal e ect of the depth and replicate number

method Schurch et al., 20)6 parameters, a decreasing curve implies a higher impact of the
) replicate number, and an increasing curve implies a higher

DE Meta-Analysis of TomExpress and impact of the library size. We can then clearly se€igure 1A

TOGE Data that, for all genes, the number of replicates has a higher impac

A DE meta-analysis was performed for all the biologicapnthe number of DE genes than the library size. By lookinglyol
conditions of theTomExpresand TOGEdata sets. For each pair at high-expressed genes, we can see that the replicate nusnber i
of biological conditions, a DE analysis was done withif&Seq2 again more important than the library size. On the contraouyt

R package with default settings and a threshold of 0.05 tarobnt expressed genes seem to be equally impacted by the library size
the FDR. and the replicate number.

For a given condition, simulated replicates were carried The stability of the number of DE genes represented in
out by a convex linear combination of existing replicatesFigures 1C,D is an indicator quantifying the dispersion of
with uniform random coe cients. For this purpose, we used the number of DE genes: a higher stability re ects a lower
conditions that had two or more replicates. Then, for eachvariability of the declared DE genes (see Materials and Meshod
simulated replicate, raw counts were randomly carried odhwi Biologically speaking, the stability is perhaps a more impdrtan
a multinomial distribution with probabilities given by theue indicator than the number of DE genes, in that it re ects the
observed probabilities of genes, and with library sizes 0515, Vvariability of the DE analysis method. Globally, we can see
20, and 25 M reads. These calculations aim at simulating gseudfrom Figures 1CD that the stability has lower values than the
replicates that have almost the same characteristics (marahs number of DE genes described above. For instance, for three

variances) as the true ones. replicates and 15M reads, we have about 14,000 DE genes
and a stability of 10,000 DE genes, which means that about

RESULTS 30% of the declared DE genes are specic to the biological
replicates. Moreover, for all genes, it appears that the increase

Number of DE Genes of the TOGE Data rate of the stability curves depending on the replicate number

The number of signicantly DE genes obtained between(Figure 1D) is higher than that of the curves of the number
conditions 0 DPA (ower before pollination) and 4 DPA of DE genes Kigure 1B), while it remains almost equal for
(ower after pollination) is shown inFigure 1L More precisely, the curves depending on the library sizésgures 1A,Q. This
Figures 1A,Bshow the evolution of the number of DE genesindicates that the gain of robust DE genes, i.e., DE genes that
depending on the library size and the replicate numberdo not depend on the biological variability, is higher when
respectively. In the same wadyigures 1C,Dfocus on the stability adding replicates than when increasing the library size. kgi-h
of the number of DE genes, depending also on the library sizexpressed genes, this dynamic is more intense than for low-
and the replicate number. Note that tireimberof DE genes is expressed genes, which can still gain robustness by incrahsing
hereafter de ned as the median number of DE genes obtained fdibrary size.
45 DE analyses, and, in the same way stiability of the number Comparing the e ects of library size and replicate number on
of DE genes is de ned as the number of common DE genestability (by looking as above at symbols with a black boider
obtained for the 45 DE analyses (see Materials and Methods). Figure 1Crepresenting a constant total number of reads), we can
All the observed curves iRigures 1A,Bshow a more or less see that the e ect of the replicate number on stability is geeat
increasing dynamic, which clearly re ects that both the dept than that on the number of DE genes (curves decrease faster th
and the replicate number are important in the detection of DEin Figure 1A). Moreover, even low-expressed genes seem to have
genes. Nevertheless, by comparing dynamics of genes with laslightly decreasing curve.
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FIGURE 1 | Number of DE genes depending on the depth(A) and on the replicate number(B). Stability of the number of DE genes depending on the deptlfC) and
on the replicate number(D). Symbol colors correspond to the replicate numbers fol(A,C) and to the library sizes for(B,D). Colored circles, triangles, and squares

represent, respectively the values obtained with all gene$igh expressed genes, and low expressed genes. Colored dites, triangles, and squares that are
surrounded with a black line correspond to combinations ofibrary sizes and replicate numbers with a total amount of 40 Meads approximately.

Power Analysis of the TOGE Data respectively. Note that theoweris hereafter de ned as the
Figure 2 shows the power of the DE analyses performednedian percentage of true DE genes obtained for the 45 DE
between conditions 0 DPA and 4 DPA. More precisely, in theanalyses, and, in the same way,stabilityof the power is de ned
same way as irFigure 1, Figures 2A,B show the evolution as the power corresponding to the common true DE genes
of the power depending on the library size and the replicat®btained for the 45 DE analyses (see Materials and Methods).
number, respectivelyFigures 2C,D show the stability of the Clearly, in the same way as for the number of DE genes
power depending on the library size and the replicate numbexiscussed in the previous section, both the power and itslgtabi
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FIGURE 2 | Power of the DE analyses depending on the deptifA) and on the replicate number(B). Stability of the power depending on the depth(C) and on the
replicate number(D). Symbol colors correspond to the replicate numbers fol(A,C) and to the library sizes for(B,D). Colored circles, triangles, and squares represent
respectively the values obtained with all genes, high expssed genes, and low expressed genes. Colored circles, triagles, and squares that are surrounded with a
black line correspond to combinations of library sizes andeplicate numbers with a total amount of 40 M reads approximatly.

increased with both the library size and the replicate numberthan for all genes, but their rate of increase decreases more
Moreover, for all genes, the increase rate diminishes afldl 1 slowly.

reads for all curves ofigure 2A, and after ve replicates The large impact of both library size and replicate number on
for all curves ofFigure 2B, except for the curve with 5M the power for low-expressed genes can be con rmed by looking
reads. For high-expressed genes, the power curves are globall black border symbols ifrigure 2A, which correspond to a
higher than for all genes but have the same trend. On theonstant number of reads. Indeed, for all genes and for high-
contrary, for low-expressed genes, the power curves are lowexpressed genes, the replicate number has a higher impact on
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power than the library size, whereas low-expressed genes seeaniability: 90% of all DE genes are found with four replisate
to be equally impacted by both parameters. increasing to almost 100% with seven replicates, although th
In Figures 2C,DQ it can be clearly seen that the power stabilitygain is minimal with ve and more replicategdgeR GLMand
is much lower than the power. For instance, for three replicatesdgeR exact tektawve slightly higher TPR values for a reduced
and 15M reads, the power is around 88%gure 2A) and the replicate number (two or three replicates), but these values ar
power stability is around 68%F{gure 20, underlining that more dispersed. A less obvious result is that FPR values also
approximately 20% of the founded true DE genes depend oimcrease with the number of replicates, from about 1% with
the biological variability. This e ect is much more intenserf two replicates to about 6% with seven replicates. We then have
low-expressed genes. a negative impact of the increasing number of replicates on
Finally, even more than for the number of DE genes discussdePR. This trend was also seen for both low- and high-expressed
above in Figure 1, the impact of the replicate number on genes, depending on both replicate number and library size (se
the power stability is higher than the impact of the library Figure S3.
size. Indeed, by looking at black border symbolgFigure 2C An alternative way to estimate the FPR for a given DE analysis
corresponding to a constant number of reads, it is clear that t method consists of performing the DE analysis between reglca
decrease rates of all gene curves, and of both low- and highbf the same biological conditiors¢hurch et al., 20)6Clearly, in
expressed gene curves, are much more intense than those of that case, all DE genes are false discovetigare 3Brepresents,
corresponding curves iRigure 2A for each of the four studied methods, the estimation of the
FPR depending on the number of replicates with, as before, a
L Lo xed threshold of 0.01 to control the FDR. We again randomly
Sensitivity and Speci city of the TOGE repeated the measure 30 times for each method and each replicat
Data number. We can easily see that, in this case, all methodsaont
Here, we analyze the sensitivity and the speci city of foassical the FDR very well. Indeed, all methods have only three values
and widely used DE analysis methods: the rst one developed ithat are higher than 1% (for two and three replicates). Moreove
theDESedR package, the second from tbESeqR package, and with ve or more replicates, all FPR estimations are equal to 0
two others from theedgeRR package, namely theLM and the  (seeFigure S3for a zoomed version dfigure 3B). This result is
exact testnethods (see Materials and Methods). contradictory withSchurch et al. (2016for whichDESeqgjives
Calculations of sensitivity (TPR) and pecicity (FPR) higher FPR values thadbESegedgeR GLMndedgeR exact test
depend on the knowledge of the true list of DE genes for the

biological conditions in question. This listis obviouslytkmown  Estimation of the Optimal Threshold

in practice, and we therefore need to estimate it. In a studhef . .
optimal replicate number, this kind of estimation is clasica Controlllng the FDR from Receiver

done by considering that true DE genes can be found wittoPerating Characteristic (ROC) Curves
all data information, i.e., all replicates, and a very steing Depending on Replicate Number
threshold to control the FDR (see Materials and Methods). Wén the above section, TPR and FPR were calculated for a xed
then obtain the following estimated numbers of so-callegetr value of the threshold controlling the FDR (0.01). We now
DE genes: 15110 witbESeq 17010 withDESegR17115 with investigate the impact of this threshold on both TPR and FPR
edgeR GLMand 16943 withedgeR exact testhe number of values by calculating them with di erent threshold valuegtie
commonly declared true DE genes in the four methods is equahterval [0,1].Figure 4 shows the ROC curves obtained for each
to 15046, which corresponds to approximately 86% of genes thegplicate number from 2 to 7 with th®ESeganethod. Recall
have been declared true DE with at least one method. Only thigere that a ROC curve is preferred to another one when its
DESedgnethod seems to be more stringent, since the other threealues are higher; we can then see clearly that increasing the
methods all declare 94% of these same genes as true DE. Thplicate number gives better ROC curves, with an optimal curve
Venn diagram of these results is showrHigure S1 Globally, the corresponding to the curve with seven replicates (blue curve)
estimated true DE genes are almost the same in all four masthod More interestingly, we can also see that the optimal threshold
We used these estimated true DE genes to estimate TPR and FRRues of these ROC curves, i.e., the black-boxed values of
values (see Materials and Methods). the zoomed graph ofrigure 4, decrease when the replicate
Figure 3A represents, for each of the four studied methodsnumber increases: 0.3 for two replicates, 0.11 for threecaigls,
the percentage of signi cant DE genes (%DE) and the estimate@l04 for four replicates, and so on, and eventually 0.0025
TPR and FPR values depending on the number of replicatder seven replicates. Hence, for instance, an arbitrary ehoic
(from 2 to 7) with a xed threshold of 0.01 to control the FDR. of 5% for a DE analysis with three replicates per condition
Moreover, each value estimation randomly repeated 30 times favould not be optimal, in the sense that with a threshold of
each method and each number of replicates, a boxplot of thesdout 10% we would have many more true positive genes
values is shown in the gure. We can clearly see in this gureand only slightly more false positive ones (see red values
that the %DE globally increases for all methddESeq8eemsto on the zoomed graph ofFigure 4. We here recall that
catch more DE genes for any number of replicatsigeR GLM the multiple testing correction procedure is based, among
and edgeR exact teseem to have the same behavior. It is als@thers, on the number of performed tests, and that our
clear that the TPR increases for all four methods, with desireg  analysis does not modify this approach, but only highlights

Frontiers in Plant Science | www.frontiersin.org 9 February 2018 | Volume 9 | Article 108


https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

Lamarre et al. Optimizing RNA-Seq DE Analysis

FIGURE 3 | (A) Represents the percentage of DE genes (%DE), the estimatedue Positive Rate (TPR) and the estimated False Positive RgFPR) for each of the
four studied methods, depending on the replicate number. Eeh estimation has been randomly carried out 30 times and the dxplot of these repetitions has been
drawn. (B) Represents, in the same way, FPR values calculated betweemplicates of the same biological condition.

the relationship between the replicate number and the optimaGO Enrichment Analysis of the TOGE Data
threshold controlling FDR (which can be chosen by theTo assess the impact of both the library size and the replicate
user). number on the detection of GO BP categories, we conducted
Furthermore, almost identical results can be obtained et a GO enrichment analysis at each di erent combination of
other three methodsDESegedgeR GLMand edgeR exact test depth and replicate number using tlgosedR packagefigure 6
(seeFigures S4S6. Moreover, for all four methods, the optimal shows the evolution of the number of both true and false
value of the threshold to control the FDR is approximatelypositive categories depending on library size and replicate
equal to 2", where r is the number of replicates: 0.25 for twonumber. The green bar for eight replicates corresponds to
replicates, 0.12 for three replicates, 0.06 for four replicated the reference gene list obtained with all possible infororati
so on, and nally 0.007 for seven replicates (Begpire S7forthe  (i.e., all replicates and all reads). As shown Higure 6,
estimation). for a given replicate number, the increase of the library
Figure 5 shows ROC curves for all four methods for 2—size from 2.5 to 20M reads does not signi cantly impact
7 replicates. It can be seen that, for each replicate numbehe number of enriched BP categories, but seems to slightly
the DESegmethod seems to give optimal results; indeed, thelecrease the number of false positive ones. However, when
corresponding continuous black line is almost always abdive ancreasing the replicate number from 2 to 7, the number of
other lines. MoreoveDESeqand edgeR exact tegive similar  enriched BP categories was almost tripled. These resulgestig
results, ancedgeR GLMyives the worst ones. Nevertheless, fothat the enrichment stability of the BP categories depends
a higher number of replicates (more than ve), these di eresce more on the biological replicate number than on the library
tend to be less intense. size.
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FIGURE 4 | ROC curves for 2, 3, 4, 5, 6, and 7 replicates. Each curve is callated by varying thepadj parameter of the DESeqfunction DESeq2 package) between
0 and 1. A zoom of the top left corner of the ROC curves is also mvided with the detailedpadj values.

DE Meta-Analysis of TomExpress and comparisons. For each DE analysis, we extracted the foltpwin
TOGE Data characteristics: the number of DE genes, the rounded mean

A DE meta-analysis has been performed with allfleenExpreds number of biological replicates per biological condition, the
data plus the TOGE data described aboVemExpresss an mean library size per biological replicate, the mean absolute
RNA-Seq platform that was developed to provide the tomatdlistance between two biological condition means, and the mean
community with a dedicated browser and tools for public RNA-of all gene variances in both biological conditiorf&gure 7
Seq data handling. Our analysis was performed on 17 projecisymmarizes the obtained values for each distance and varianc
each containing from two to 18 biological conditions with tgp  level using boxplots of the number of DE genes depending on
eight biological replicates and 100 M reads. Two kinds of aealy the replicate numberfrigure 7 also shows, for each distance and
were performed: a description of all DE analyses performed imariance level, the median number of DE genes for low, medium
each project, and a simulation of all possible DE analyses of ahd high sequencing depth (corresponding, respectively, ¢o th
pairwise biological conditions of all projects for di erentgkicate  blue, orange, and red dots and lines). We can clearly obskate t
numbers and library sizes. The results of these two analyses & higher distance or a lower variance tend to globally inaeas
described hereafter. the number of DE genes. Moreover, as expected, for given
For the rst descriptive analysis and for each project.gistance and variance levels, an increasing number of epkic
we performed all possible DE analyses of all pairwisgy increasing sequencing depth also tend to increase the numbe
biological conditions. We then obtained a total of 604 pagsvi o pg genes. Nevertheless, the number of DE genes does not
only depend on these four parameters, even if it is deeply linked
4http://gbf.toulouse.inra.fritomexpress to them. Obviously, the number of DE genes also depends on the
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FIGURE 5 | ROC curves for all four studied methodsDESeq DESeq2, edgeR (GLM) andedgeR (exact), for 2, 3, 4, 5, 6, and 7 replicates. Each curve is caldated by
varying the parameter controlling the FDR with the correspaling method, between 0 and 1. A zoomed graph of the upper lefcorner of the ROC curves is also
shown.

biological conditions themselves, which contribute to thege  studied, we would need about ve or six replicates with 10 and

variability of the number of DE genes Figure 7. 15 Mreads, respectively, and about seven replicates with dvly 5
In a second analysis, we performed DE analyses of all pairs ifads. We can also see frdfigure 8that, globally, the number

biological conditions, no matter which project they camenfro of new DE genes tends to be minimal after 10 replicates.

Moreover, for each biological condition, we simulated betwe

two and 21 replicates with library sizes of 5, 10, 15, 20, and

25M reads (we repeated each simulation three times). The DB|SCUSSION

analysis was then performed to extract the number of DE genes

with a threshold of 0.05 to control the FDR (see Materials andn the present work, we have conducted a thorough analysis

Methods). We nally obtained 5565 pairs of biological condit®o  of the impact of both replicate number and library size on
20 di erent numbers of replicates 5 di erent sizes of libraries an RNA-Seq DE analysis. In this discussion, we will compare
3 repetitionsD 1,752,975 pairwise DE analyses. Boxplots adur results to those obtained b@hing et al. (2014)Liu et al.

the number of DE genes are shown fingure 8 depending on (2014)and Schurch et al. (2016Who are, to our knowledge, the

the sequencing depth and on the replicate number. By looking ainly authors that exclusively and deeply address these qussti

the minimal number of DE genes of each boxplothigure 8  After reviewing these three benchmark articles, we can lcoiec

it can be seen that we need at least four replicates and 20¥at their main drawback is the lack of generality. Indeed,

reads to be almost sure of obtaining a signi cant number of DEheir analyses were performed on, respectively, one data set

genes, i.e., about 1000 DE genes (minimum of the red boxplotyith two conditions, six data sets (from mouse and human

Obviously, these 1000 DE genes roughly correspond to thiéssues) with between six and 129 conditions, and one data

minimum of what could be foundn silicq and, moreover, only set with 48 conditions. Clearly, their conclusions canne&t b

other experimental approaches (as gPCR analyses) will be ablegtasily generalized. In regards to our study, on the one hand,

validate the di erential expressed genes. Then, to obtairoalm we performed a study on a single data set (the TOGE data

the same number of DE genes, no matter which conditions arset), the results of which will be compared with those of the
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FIGURE 6 | Number of true and false positive BP categories from GO anadgs (y-axis) depending on the replicate number (x-axis). €reighth bar corresponding to 8
replicates has been chosen as a reference.

three benchmark articles described above. On the other hanger condition in general, and at least 12 replicates per contlitio
we performed a meta-analysis on 17 projects, 126 biologicélidentifying the majority of all DE genes is important. In pu
conditions, and 364 biological samples of the tomato fruitd®lp  opinion, these recommendations should be nuanced.
leading then to more general results. As a novelty, we have introduced the notion of stability of
As did the three benchmark articles, our study concludes thahe number of DE genes and power. These two indicators are
an increase in the replicate number or the library size insesa de ned, respectively, as the number of DE genes and power
the number of signi cantly DE genes and the power. Howevercalculated with the common list of DE genes obtained with all
Liu et al. (2014found that the increase in the replicate number simulated samples with given parameters. The stability is then
had a higher impact than the increase of the library size ombotbetter biological indicator for the number of DE genes or power
the number of DE genes and the power for all gene expressidirom our results, we can observe very little stability ofpogver
levels. On the contrary, and consistent wittning et al. (2014) for low-expressed genes, which shows that the list of DE genes
we showed that this impact is slightly less important for low-is highly related to the used samples. For example, with three
expressed genes; more precisely, these genes are equalligtnpaeplicates and 15M reads, we have a power of about 85% and
by the increase in the replicate number and the increase in tha stability of the power of about 25%. For stability indicatofs
library size in terms of gain of number of DE genes and power. both the number of DE genes and the power, we showed that
All three reference studies and ours show that the curvethe increase of the replicate number has a higher impact than
of number of DE genes and power depending on the libranthe increase of the library size for all gene expressiondeveis
size or on the replicate number reach a plateau after a givampact is much higher than for the number of DE genes and the
value. Nevertheless, it appears that this value is di ereninfro power.
one study to another, from one data set to another, between We also estimated the FPR, i.e., the probability of falsely
5 and 20M reads, and between three and 25 replicates. Thieclaring a gene as DE, depending on the replicate number,
result shows, as is emphasized by et al. (2014)in their  with replicates of both conditions of the TOGE data (as for the
conclusion, the inability of a single study to give genedddle  power estimation) and with only biological replicates of aegiv
results, and the need for cross-validation analyses comgdhnien  condition (i.e., with, theoretically, no DE genes). Alligsdtions
results of several studies. Surprisinglghurch et al. (201@ive  were carried out with a threshold equal to 0.01 to control the
general recommendations based on their single data set studyDR. For the former estimation, we pointed out the increase
For instance, they recommend at least six biological repkcaten the FPR with the replicate number, from about 1% with two
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FIGURE 7 | Number of DE genes for each pair of conditions (y-axis) depeiing on replicate number per condition (x-axis) are represged (by mean of boxplots) for
given levels of distances between conditions and of variares of these conditions (low, medium, and high levels). Blugiangles, orange squares, and red circles
represent the median numbers of DE genes for respectively g medium and high library sizes.

replicates to 6% with seven replicates. To our knowledge, thighis result was shown for all four DE analysis methods stdie
drawback linked to the increase in the replicate number has nd¥loreover, we showed that for more than ve replicates, the four
been underlined before in the literature. On the other hatits  methods give almost the same results, but, for fewer than ve
results of the latter estimation show that the FPR is rathel w replicatesDESeds slightly better tharDESeqznd edgeRwith
controlled by the four studied method®ESegDESeq2and the the exact testwhich are slightly better thaedgeRvith the GLM
two methods fromedgelR These results are in contradiction with test.
those ofSchurch et al. (2016Wwho found thatDESeq@ave worse We also performed a GO enrichment analysis depending on
results than the other methods. both the replicate number and library size. Such an analysis
Another striking result that has not been shown yet in thegives meaningful biological results in the sense that the oreas
literature, to our knowledge, is the impact of the thresholdis directly linked with the underlying biological processes
controlling the FDR on both the TPR and FPR. Indeed, byThis analysis showed that the number of enriched categories
means of ROC curves depending on the threshold, we haeoth true and false positive categories) increases signilg
shown that the optimal value for this threshold is almost dquadepending on the replicate number. On the contrary, the inoeeas
to 2 ', where ris the replicate number. For instance, the optimabf depth does not signi cantly increase the number of enrithe
threshold is almost equal to 0.25 for two replicates, 0.12 focategories, but tends to decrease the rate of false positikiss. T
three replicates, 0.06 for four replicates, and so on. Obl§pas new result is in adequacy with the trade-o between replicate
discussed before, this result has only been shown for our EOGnumber and library size discussed above for the number of DE
data, but the trend should still remain for other similar dagets. genes and power.
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FIGURE 8 | Number of DE genes for each pair of conditions (y-axis) depeiing on the replicate number per condition (x-axis) for velirary sizes (5, 10, 15, 20, and
25 million reads for, respectively, blue, cyan, green, oraye, and red boxplots).

As described above, a meaningful result of the preserihdeed, the statistical test used to perform a DE analysis, and
article comes from the meta-analysis that we made with all 1#en to declare a gene as signi cantly DE or not, depends not
projects on the tomato fruit extracted from th€omExpress only on the replicate number and library size, but also on the
platform and the TOGE data set. A descriptive analysis oflistance between the biological conditions and on the vaean
the DE analyses performed within these projects clearly shoves the given replicates. For example, it would not be surprising
the impact of the replicate number and the library size, buto nd fewer DE genes between two close conditions of the
also the distance between conditions and the variance di botomato ripening process, such as Bre&kéand BreakeZ 3 days,
conditions. Ching et al. (2014underline the need for a high than between two distant conditions, such as Bre@Kkeand
replicate number to accurately estimate the variance, aed th Breake€10 days. In a survey of best practices for RNA-Seq
obtain higher TPR and lower FPR. In the same wayer and  data analysisConesa et al. (201@inderline that, for a proper
Doerge (2010also underline the need to properly estimate thestatistical power analysis, estimates of expression levels an
variability. Nevertheless, our descriptive analysis shdwas & dispersions of genes are required. That is why, in our opirtio@,
huge variability still remains beyond the control of thesewn recommendations for RNA-Seq experimental designs should be
parameters. Moreover, we performed a more global analysimoderated unless we take into account the percentage of wante
involving DE analyses between conditions of all 17 projegts bDE genes, the distance between conditions, the variandesét
simulating di erent samples with various library sizes (leagl biological conditions, and so on.
to 1,752,975 pairwise DE analyses). This meta-analysis dhowe Beyond the cost-e ectiveness metric to guide the design of
that at least four replicates and 20 M reads are needed to baerge scale RNA-Seq DE studies proposed._byet al. (2014)
almost sure of obtaining about 1000 DE genes, no matter whicWwhich also requiresa priori, all power values depending on
biological conditions are studied. This meta-analysis slsmwed replicate numbers and library sizes, we would advise RNA-Seq
that, globally, a plateau is reached after about 10 replicates|f practitioners to use a pilot data set and dedicated tools tigdes

library sizes. their RNA-Seq experiments. If obtaining a pilot data set is not
feasible, one can also use data sets that can be supposed to
CONCLUSION give almost similar parameters because, for instance, tiukest

biological conditions are similar. Nonetheless, some imgatrt
As illustrated by the results above, we canagiriori determine  further work would be the comparison of such existing tools.
an optimal number of replicates for a given RNA-Seq experimeniVhile we were writing our article?oplawski and Binder (2017)
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proposed such a review of six tools for which they obtainedhe paper. We would like to thank also Anne Alibert, English
widely di erent conclusions that seemed to be strongly a &cte teacher at INP-ENSAT, for carefully reading the manuscripd a
by fold changes. performing necessary spelling and grammar corrections.

The results and discussion above will help RNA-Se o )
practitioners to better understand the impact of both replicate%\Va”ab'“ty of Supporting Data
number and library size on a DE analysis, and also the impadthe raw sequences of the TOGE project supporting the
of between-condition dispersion, which will help them to lsstt conclusions of this article are available from the European
design their experiments. For instance, we learned thatsingo Nucleotide Archivé. The Study number is PRIEB19602 and
a threshold for FDR around 2 (with r the replicate number) the 16 biological samples (8 biological replicates for each of
should be optimal to enhance the sensitivity and speci city ofthe two studied conditions 0 DPA and 4 DPA) are given by the
the DE analysis. Moreover, for the RNA-Seq practitioners of théollowing accession numbers: ERS1572540, ERS1572541,
tomato community, the meta-analysis carried out in thisdstu ERS1572542,  ERS1572543, ERS1572544, ERS1572545,
shows that at least four replicates and 20M reads would bBRS1572546,  ERS1572547, ERS1572548, ERS1572549,
required to be almost sure of obtaining about 1000 DE genes, rERS1572550,  ERS1572551, ERS1572552, ERS1572553,
matter which biological conditions they are interested in. ERS1572554, ERS1572555. Each accession number above

Ching et al. (2014)highlighted that no single software contains 3 technical replicates that have been gatheredheget
consistently showed the highest power across all the datétsst ~ All other raw sequences are available through TeenExpress
studied. We here recall that we have only performed our analys@latform.
with DESegDESeq2andedgeRwhich share common concepts,
and that these R packages give, roughly speaking, simildtseslSUPPLEMENTARY MATERIAL
in the literature and in our study.

The Supplementary Material for this article can be found

online at: https://www.frontiersin.org/articles/10.38tls.2018.
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