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Plants need to respond to various environmental stresses such as abiotic stress for
proper development and growth. The responses to abiotic stress can be biochemically
demanding, resulting in a trade-off that negatively affects plant growth and development.
Thus, plant stress responses must be fine-tuned depending on the stress severity
and duration. Abscisic acid, a phytohormone, plays a key role in responses to abiotic
stress. Here, we investigated time-dependent physiological and molecular responses to
long-term ABA treatment in Arabidopsis as an approach to gain insight into the plant
responses to long-term abiotic stress. Upon ABA treatment, the amount of cellular
ABA increased to higher levels, reaching to a peak at 24 h after treatment (HAT),
and then gradually decreased with time whereas ABA-GE was maintained at lower
levels until 24 HAT and then abruptly increased to higher levels at 48 HAT followed
by a gradual decline at later time points. Many genes involved in dehydration stress
responses, ABA metabolism, chloroplast biogenesis, and chlorophyll degradation were
strongly expressed at early time points with a peak at 24 or 48 HAT followed by gradual
decreases in induction fold or even suppression at later time points. At the physiological
level, long-term ABA treatment caused leaf yellowing, reduced chlorophyll levels, and
inhibited chloroplast division in addition to the growth suppression whereas short-term
ABA treatment did not affect chlorophyll levels. Our results indicate that the duration of
ABA treatment is a crucial factor in determining the mode of ABA-mediated signaling
and plant responses: active mobilization of cellular resources at early time points and
suppressive responses at later time points.

Keywords: ABA response, chlorophyll, chloroplast, long term ABA effect, photosynthesis, short term ABA effect,
transitional response

INTRODUCTION

Plants have evolved complex signaling pathways to respond and adapt to changes in
environmental conditions. Water is one of the most crucial natural resources for plant
growth and reproduction (Morison et al., 2008). Thus, plants must have a large number of
mechanisms to respond to water-related environmental conditions such as dehydration and
osmotic stress (Boudsocq and Lauriere, 2005; Hanin et al., 2011). Understanding dehydration
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or osmotic stress responses becomes particularly challenging
because stress severity and duration continuously change
(Ambrosone et al., 2017). In addition, the amount of water
required by plants also varies depending on plant growth
and development. For example, the cellular water content is
substantially lower during the late stages of seed production
in seed plants than during normal vegetative growth (Baud
et al., 2002). This suggests that plants must have highly complex
mechanisms to control water usage according to the demands of
developmental programs and also to coordinate the development
and growth with environmental conditions in water availability.

A great deal of studies have been performed to investigate
how plants respond to dehydration or osmotic stress, and
these studies have yielded significant advances in basic research
and agricultural applications (Vinocur and Altman, 2005).
Now it is clear that plants contain a large number of
mechanisms to cope with continuous changes in water
availability (Ingram and Bartels, 1996; Osakabe et al., 2013). In
these mechanisms, the signaling mediated by abscisic acid (ABA),
a phytohormone, constitutes a core component (Zhu, 2002;
Lim et al, 2015). Cellular ABA levels fluctuate depending on
intrinsic developmental programs and abiotic stress conditions.
High ABA levels lead to the induction of genes with crucial
roles in embryogenesis and responses to abiotic stress such
as dehydration. ABA must be maintained at lower levels in
germinating seeds for efficient germination.

Abscisic acid levels in plant cells can be increased by de
novo biosynthesis or via hydrolysis of the inactive glucose-
conjugated form (ABA-GE) to ABA by P-glucosidases (Lee
et al, 2006; Xu et al, 2012). The de novo ABA biosynthetic
pathway has been clarified using mutants with specific defects
at each step along the pathway (Milborrow, 2001; Finkelstein,
2013). The de novo ABA biosynthesis pathway involves two
different cellular compartments and many intermediates. The
last two steps of the pathway occur in the cytosol, whereas all
other steps occur in the plastid. Previous work identified two
pathways catalyzed by the AtBG1 and AtBG2 B-glucosidases,
which produce ABA via hydrolysis of glucose from ABA-GE
(Lee et al., 2006; Xu et al., 2012). These reactions take place
in the endoplasmic reticulum (ER) or vacuole. Thus, ABA
biosynthetic pathways involve multiple organelles (Finkelstein,
2013). By contrast, ABA levels can be reduced by catabolic
pathways (Kushiro et al., 2004; Dong et al., 2014; Liu et al,
2015). One major catabolic pathway involves ABA hydroxylation
at the 7' or 8 position by the cytosolic cytochrome P450-type
hydroxylases CYP707A1, CYP707A2, CYP707A3, or CYP707A4.
The hydroxylated ABA is further processed through spontaneous
conversion to phaseic acid (Kushiro et al., 2004; Finkelstein,
2013). Eventually, this pathway leads to ABA degradation (Endo
et al, 2011). In another catabolic pathway, the UDP ABA-
glucosyltransferases conjugate glucose to ABA to generate the
inactive ABA-GE form (Priest et al., 2006; Dong et al., 2014; Liu
et al., 2015). In addition, cellular ABA levels also are regulated
by transporters at the plasma membrane (Kuromori et al., 2010;
Kang et al., 2010, 2015). Several transporters have been identified
that function in ABA export and import out of and into cells,
respectively, depending on environmental and intrinsic cellular

conditions (Park et al., 2016). Dehydration or osmotic stress
conditions activate biosynthetic genes to increase cellular ABA
levels. Intriguingly, dehydration or osmotic stress conditions also
activate catabolic pathways, although the reason for this apparent
paradox is not clearly understood (Xiong and Zhu, 2003).

Extensive studies have been carried out to understand the
mechanisms by which ABA-mediated signaling contributes
to plant responses to abiotic stresses such as dehydration
and osmotic stresses at the molecular and physiological
levels (Tuteja, 2007). ABA initiates the signaling by binding
to ABA receptors (Ma et al, 2009; Park et al, 2009).
Plants contain multiple types of ABA receptors. Of these
ABA receptors, the cytosolic receptors, Pyrabactin Resistant
(PYR)/PYR-Like (PYL)/Regulatory Component of ABA Receptor
(RCAR) proteins, have been studied in detail for the action
mechanism. Binding of ABA to the cytosolic receptors leads to
inhibition of PP2Cs, the negative regulator of ABA signaling, via
a direct interaction between ABA-bound PYR/PYL/RCARs and
PP2Cs. Inhibition of PP2Cs results in the activation of Sucrose
Non-fermentation Kinase Subfamily 2 (SnRK2s) protein kinases
(Hubbard et al., 2010). The activation of SnRK2s induces a
large number of cellular responses including stomatal closure
to prevent water loss and the expression of many genes whose
products are important for stress responses and tolerance such
as enzymes for osmoprotectant synthesis (Fujita et al., 2009).
Eventually these responses contribute to the enhanced resistance
to abiotic stress.

The duration of abiotic stress such as dehydration stress
can vary from hours to months or longer under the natural
field conditions. The plant responses to abiotic stress likely
vary depending on the duration of stress. Consistent with this
notion, a recent study showed that distinct gene networks drive
differential response to abrupt or gradual long-term water deficit
in potato (Ambrosone et al., 2017). In addition, the degree of
stress varies continuously in the field. In this study, to gain
insight into the mechanism of how plants differentially respond
to abiotic stress depending on the duration of the stress, we
used the long-term ABA treatment as a means to induce abiotic
stress responses in Arabidopsis. ABA was applied to Arabidopsis
exogenously, and then the plant responses to ABA were recorded
at different time points during 11 days of ABA treatment. Here,
we present evidence that plants display a transitional response to
exogenously applied ABA over time. Chlorophyll levels were not
affected during the first 24 h after ABA treatment, but gradually
declined thereafter. At the molecular level, the expression of
genes involved in dehydration stress responses, chloroplast
biogenesis, ABA biosynthesis, and chlorophyll degradation was
strongly induced during the first 24 ~ 48 h after ABA treatment,
but gradually declined or became suppressed thereafter.

MATERIALS AND METHODS

Plant Growth, ABA and NaCl Treatment

Conditions
Arabidopsis (Arabidopsis thaliana) seeds (ecotype Col-0) were
sown on 0.8% w/v agar plates containing half-strength Murashige
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and Skoog ('~ MS) and 2 mM MES (pH 5.7) (not containing
sucrose), and kept at 4°C in the dark for 3 days. The plates were
transferred to a growth chamber with 70-80 umol m~2 s~ ! light,
a 16 h light/8 h dark cycle, and 22 £ 1°C/16 £ 4°C day/night
cycles. For growth measurements, seedlings grown on !/2 MS agar
plates were transferred onto !/2 MS agar plates supplemented
with various concentrations of ABA or DMSO as a control.
Biomass, root growth, and chlorophyll contents were measured
at different time points after transplantation. To determine the
expression patterns of chloroplast development-related genes and
ABA metabolism-related genes, 12-day-old seedlings grown on
1/2 MS agar plates were treated with DMSO or 5 M ABA for the
indicated times. To test the expression level of chloroplast- and
osmotic stress-related genes under the NaCl-treated condition,
8-day-old seedlings grown on !/2 MS (not containing sucrose)
agar plates were transferred to '/~ MS (not containing sucrose)
agar plates or !/2 MS agar plates supplemented with 160 mM
NaCl for indicated periods of time. To examine the expression
of chloroplast development-related genes in response to different
concentrations of ABA, 8-day-old seedlings were transferred onto
B5 medium (containing 2% sucrose) supplemented with DMSO,
or 10 or 100 pM ABA, and treated for 1, 3, 5, and 11 days, and
the expression levels of PORA, HEMA1, GLKI, and GUN4 were
determined at different time points.

Quantitative Real-Time PCR (qRT-PCR)

Analysis

Total RNA was extracted from 30 seedlings using an RNA
queous phenol-free total RNA isolation kit (Ambion) and treated
with TURBO DNase (Invitrogen). 2 g of RNA were reverse-
transcribed into cDNA using a high-capacity cDNA reverse
transcription kit (Applied Biosystems). The cDNAs were used
as template for quantitative real-time PCR (qRT-PCR) with
Power SYBR Green PCR Master Mix (Applied Biosystems).
ACT2 was used as an internal control. Gene-specific primer
sequences are listed in Supplementary Table 1. All reactions
were run in triplicate. P-values were calculated using Student’s
t-test. Single and double asterisks indicate significant differences
as determined by Student’s t-test at P < 0.05 and P < 0.01,
respectively.

ABA and ABA-GE Quantification by
Liquid Chromatography (LC)/Mass

Spectrometry (MS)

A modification of the method of Park et al. (2016) was used
to determine ABA and ABA-GE contents. Briefly, 8-day-old
seedlings grown on !> MS media (not containing sucrose)
were transferred to 5 WM ABA-containing media and treated
for 12, 24, 48, 72, or 120 h, or transferred onto DMSO, or
transferred onto 10, 50, or 100 @M ABA-containing medium
and grown for an additional 5 or 11 days. A total of 0.1-0.2 g
of frozen fresh sample was ground in liquid nitrogen with a
small steel ball in a 2 mL vial. Following the addition of 1.0 mL
of ethyl acetate, homogenates were mixed in a Geno/Grinder
homogenizer. After centrifugation at 15,200 x g for 10 min at
4°C, the supernatant was transferred to a 2 mL Eppendorf tube.

After the second extraction by adding 0.5 mL of ethyl acetate
without internal standards, the combined extracts were vacuum-
dried in a concentrator at 30°C. The dried extracts were dissolved
in 100 pL of 70% methanol, vortexed for 20 min, and then
centrifuged at 15,200 x g for 10 min at 4°C. The supernatant was
transferred to 1.5 mL LC vials, and then injected into the liquid
chromatography (LC)/mass spectrometry (MS) system.

UPLC/MS Conditions for Quantification

of Phytohormones

Ultra-performance liquid chromatography (UPLC) analysis was
performed using an ACQUITYVRUPLC system (Waters Corp.,
Milford, MA, United States) coupled to a Q-TOF instrument
(XEVO G2XS; Waters Corp.). The chromatographic separation
was carried out on an ACQUITY UPLC BEH Cl18 column
(100 mm x 2.1 mm, i.d., 1.7 pum) connected to an ACQUITY
UPLC BEH C18 VanGuard pre-column (5 mm x 2.1 mm, id,
1.7 pm). The mobile phases consisted of solvent A (0.1% formic
acid) and solvent B (acetonitrile). The gradient elution mode was
programmed as follow: 5-60% B for 0.0-7.5 min and 60-95% B
for 7.5-10.0 min. The column was then washed with 95% B for
3 min and equilibrated with 5% B for 2 min. All samples were
kept at 10°C during the analysis. The flow rate and injection
volume were 0.4 mL/min and 2 pL, respectively. MS analysis
was conducted in the negative ion mode with electrospray
ionization (ESI). The MS conditions were optimized as follows;
capillary voltage, 3 kV; cone voltage, 40 V; source temperature,
130°C; desolvation temperature, 400°C; cone gas flow, 50 L/h;
desolvation gas flow, 900 L/h.

Measurement of Chlorophyll Contents
Chlorophylls were extracted from seedling leaf tissues using 50
volumes of 95% (v/v) ethanol at 4°C overnight in the dark.
Chlorophyll a/b contents were measured using optical density
(OD) at 664 and 648 nm (Vernon, 1960). Chlorophyll a contents
were calculated as 5.24 x ODgg4/20. Chlorophyll b contents were
calculated as 22.24 x ODgy4s/20. Total chlorophyll contents are
the sum of chlorophyll a and b contents.

Transmission Electron Microscopy (TEM)

Leaf tissues of plants treated with ABA or DMSO were harvested
and fixed using 2% paraformaldehyde and 2% glutaraldehyde in
0.05 M sodium cacodylate buffer (pH 7.2) at 4°C for 2—4 h,
followed by washing with 0.05 M sodium cacodylate buffer
(pH 7.2) at 4°C three times. Samples were post-fixed using 1%
osmium tetroxide in 0.05 M sodium cacodylate buffer (pH 7.2) at
4°C for 2 h, followed by washing with distilled water three times
at room temperature. Sample blocks were stained using 0.5%
uranyl acetate at 4°C for 30 min or overnight, dehydrated serially
using 30, 50, 70, 80, 90, and 100% ethanol at room temperature
for 10 min, and finally substituted twice with 100% propylene
oxide at room temperature for 15 min. Finally, samples were
embedded with a mixture of propylene oxide:Spurr’s resin at a 2:1
ratio for 1 h, 1:1 ratio for 1 h, 1:2 ratio for 2 h, 0:1 ratio for 4 h or
overnight, and 0:1 ratio for 2 h. The samples were polymerized
at 70°C for 24 h, sectioned using an ultramicrotome (MT-X,
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RMC, Tucson, AZ, United States), stained with 2% uranyl acetate
for 7 min and Reynolds’ lead citrate for 2 min, and observed
by transmission electron microscopy (TEM; JEM-1011, JEOL,
Tokyo, Japan).

Chloroplast Counting

Chloroplast numbers per cell were determined as described by
Pyke and Leech (1991). Ten-day-old seedlings grown on !/2
MS plates (without sucrose) were transferred to !/2 MS plates
supplemented with DMSO or 10 pM ABA, and grown for an
additional 15 days. The first or second true leaves were fixed
with 3.5% glutaraldehyde for 1 h in the dark. The leaf tissue was
washed once, and then incubated with 0.1 M Na,-EDTA (pH 9.0)
for 3.5 h at 60°C to soften the tissue. The samples were macerated
on a microscope slide and analyzed using light microscopy.

Photosynthetic Efficiency Measurement
Maximal photosystem II quantum yield was used as a
proxy indicator of photosynthetic efficiency (Maxwell and
Johnson, 2000). Chlorophyll fluorescence was measured using an
IMAGING-PAM M-series Chlorophyll Fluorometer (Heinz Walz
GmbH, Germany) at 30 min after dark adaptation.

Statistical Analysis

The data are reported in figures as means with standard deviation
(SD)or standard error (SE) from three independent experiments.
Statistical analysis was performed using SAS 9.2 (SAS Institute).
Means were compared using Student’s t-test. Asterisks in the
figures denote significant differences as follows: *P < 0.05,
**P <0.01.

RESULT

Long-term ABA Treatment Attenuates

Plant Growth and Development

To gain insight into plant responses to prolonged abiotic stress,
we subjected plants to long-term ABA treatment and monitored
their responses at several time points. ABA is a phytohormone
that plays a key role in abiotic stress-resistant responses (Hubbard
etal., 2010; Kim et al., 2010). Moreover, exogenously applied ABA
alone can induce many aspects of molecular and physiological
responses to abiotic stresses (Tuteja, 2007). Previous studies have
tended to treat plants with ABA for short periods of time (e.g.,
30 min to several hours) and then examined the expression
patterns of ABA-inducible genes. To examine the effects of long-
term ABA treatment during vegetative growth, 7- to 8-day-old
plants were transferred onto !/2 MS plates supplemented with
10 pM ABA or DMSO as a control, and plant responses to
ABA were monitored at different time points during 11 days
after transfer (DAT). The most prominent visible changes were
yellowing and reduced growth of true leaves. Previous studies
show that ABA induces leaf senescence, which can lead to
leaf yellowing (Zhao et al., 2016). The Arabidopsis seedlings
had two true leaves at the time of transfer; these leaves did
grow larger after ABA treatment, but started to turn yellow

at 3 DAT. Subsequently emerged true leaves also showed leaf
yellowing (Figure 1A). To quantify the degree of leaf yellowing,
we measured the chlorophyll content at various time points.
The chlorophyll content was unchanged by ABA treatment
during the Ist day after transfer; however, the chlorophyll
content significantly declined after ABA treatment starting at
3 DAT, and was reduced to 17% of the control at 11 DAT
(Figure 1B). Cotyledons displayed different responses to ABA
depending on the plant age; the cotyledons of 7- to 8-day-
old seedlings treated with ABA stayed green until 11 DAT,
whereas 15-day-old plants displayed senesced cotyledons at 11
DAT (Supplementary Figure 1). Next, we assessed the effect
of ABA on plant growth by quantifying plant fresh weight
(FW) and root length over time. In the presence of ABA,
the above-ground biomass and root length were reduced to
36 and 42% (Figures 1C,D), respectively, of that of DMSO
controls, indicating that ABA treatment severely attenuates plant
growth.

ABA Treatment Reduces the Leaf
Chlorophyll Content

Previous studies used widely varying ABA concentrations, from 1
to 100 wM, and the duration of ABA treatment varied from a few
minutes to several days (Fujita et al., 2009; Park et al., 2009; Zhao
et al., 2016). We subjected Arabidopsis plants to three different
ABA concentrations (10, 50, and 100 wM), and monitored the
effects over time. Treatment with 10 and 50 wM ABA induced
leaf yellowing by 3 DAT, whereas 100 uM ABA induced much less
pronounced leaf yellowing at 11 DAT (Figures 2A-D), indicating
that ABA-induced leaf yellowing is not linearly dependent on
ABA concentration.

Chlorophyll degradation is one of main causes of leaf
yellowing (Lim et al., 2007). Therefore, we quantified the effect
of ABA on leaf chlorophyll content. For this experiment, we
tested the following ABA concentrations: 1 nM, 10 nM, 100 nM,
1 M, 10 uM, 50 pM, and 100 wM. Plants were grown on !/2
MS plates, transferred to ABA-supplemented plates, and then
incubated for an additional 11 days. Plants treated with 1 or
10 nM ABA did not display any leaf yellowing (Supplementary
Figure 2A). Consistent with the leaf color, chlorophyll contents
were slightly higher in plants treated with 1, 10, or 100 nM ABA
than in control plants. By contrast, chlorophyll contents were
substantially lower in plants treated with 10, 50, and 100 uM
ABA than in control plants (Supplementary Figure 2B). The
chlorophyll contents were most severely reduced in plants treated
with 10 wM ABA, which also induced the earliest onset of leaf
yellowing.

Next, we assessed whether leaf yellowing was dependent on
plant age. Plants grown for 7, 11, or 15 days were transferred
to plates supplemented with 5 wM ABA, and examined for leaf
yellowing at 10 DAT. Here we used 5 wM ABA instead of 10 pM
to get an idea of the range of ABA concentration that effectively
induces leaf yellowing. 5 uM ABA was as effective as 10 pM in
inducing the yellow-leaf phenotype (Supplementary Figure 1).
Moreover, these results indicate that ABA-induced leaf yellowing
is not dependent on plant age up to 15 days.
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FIGURE 1 | Effects of exogenously applied ABA on temporal patterns of plant growth and development. Plants grown on /2 MS plates for 7-8 days were transferred
onto /> MS plates supplemented with DMSO or 10 wuM ABA, and further grown for the indicated periods of time. The effect of ABA on plant growth was monitored
using the following growth parameters: (A) Overall plant morphology, (B) Chlorophyll contents. Shoot tissues (20 ~ 30 mg) were used in each measurement. Data
were obtained using three biological replicates. Error bar indicates standard error (SE), (C) Biomass of whole plants and (D) Primary root length. 20 seedlings were
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11d

ABA Treatment Affects ABA Levels in

Leaves

Previous work suggested that exogenous ABA should be
imported from the medium into root cells, and then transported
to the leaves (Sauter et al., 2001). However, it is not known
how much ABA is taken up by the roots, or which form of
ABA is transported from roots to leaves. For long-distance ABA
transportation, UDP ABA-glucosyltransferases may generate
ABA-GE, which is an inactive and membrane-impermeable form
that can be transported from the root to leaves through the xylem
(Jiang and Hartung, 2008). Therefore, we subjected plants to 10,
50, and 100 uM ABA and then measured cellular ABA levels at 5
and 11 DAT. The cellular ABA levels increased to higher levels
proportionally to the plate ABA concentrations, but were only

minor fractions of those in plates; 10, 50, and 100 wM ABA in
plates resulted in cellular ABA concentrations of 0.058, 0.409,
and 1.17 ng/g FW, respectively (Figure 2E). Given the same
ABA concentrations in plates, the ABA levels in leaf tissues were
slightly lower at 11 DAT than at 5 DAT (Figure 2G), indicating
that cellular ABA levels did not increase with time. We also
measured ABA-GE levels at 5 and 11 DAT. The cellular ABA-
GE levels increased to proportionally higher levels depending on
the plate ABA concentrations; 10, 50, and 100 M ABA in plates
resulted in cellular ABA-GE concentrations of 2.22, 13.90, and
33.98 ng/g FW, respectively (Figure 2F). Given the same ABA
concentrations in plates, the cellular ABA-GE levels were higher
at 11 DAT than at 5 DAT (Figure 2H). These combined results
suggest that ABA imported into plants is actively converted
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FIGURE 2 | Effect of exogenously applied ABA on endogenous ABA levels and expression of chloroplast development-related genes. (A-D) Phenotype of 8-day-old
seedlings grown on /2 MS medium supplemented with DMSO or different concentrations of ABA for 1 day (A), 3 days (B), 5 days (C), and 11 days (D). (E-H)
Endogenous ABA and ABA-GE levels of 8-day-old seedlings grown on /2 MS media supplemented with different concentrations of ABA for 5 days (E,F; n = 40) and
11 days (G,H; n = 13). All data are given as mean =+ standard deviation (SD) of six biological replicates. Double asterisks represent significant differences as
determined by Student’s t-test at P < 0.01. (I-L) Transcript levels of chloroplast development-related genes grown on B5 media supplemented with DMSO or
different concentrations of ABA for 1 day (l), 3 days (J), 5 days (K), and 11 days (L). Total RNAs were prepared from plants and used for gRT-PCR analysis. The
expression levels with DMSO were set at 1.0. All data are given as mean + SD (n = 3). Single and double asterisks represent significant differences as determined by
Student’s t-test at P < 0.05 and P < 0.01, respectively.
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to ABA-GE over time, and accumulates to higher levels with
continuous exposure to exogenous ABA.

Long-term ABA Treatment Disrupts the
Expression of Genes Involved in

Chloroplast Development

Next, we examined the effects of ABA on gene expression
profiles over time. To correlate the gene expression patterns
with the yellow-leaf phenotype, we focused on the following
four genes involved in chloroplast development: HEMAI, GLK1,
PORA, and GUN4. HEMAI is a glutamyl-tRNA reductase
involved in 5-aminolaevulinic acid (ALA) synthesis, which is the
first rate-limiting step in chlorophyll biosynthesis (McCormac
et al., 2001). GLKI is a crucial transcription factor regulating
the expression of genes involved in chloroplast biogenesis
(Fitter et al., 2002; Waters et al., 2009). PORA is a light-
dependent NADPH:Protochlorophyllide oxidoreductase, which
generates chlorophyllide from protochlorophyllide (Tanaka
et al, 2011). GUN4 is a porphyrin-binding protein that
regulates magnesium chelatase activity and is involved in
plastid retrograde signaling (Larkin et al., 2003; Tanaka et al.,
2011).

We transferred 8-day-old seedlings to plates supplemented
with 10 or 100 pM ABA, and then examined gene expression
at 1, 3, 5, and 11 DAT by preparing total RNA and performing
qRT-PCR analysis. The expression levels of all four genes
were strongly induced at 1 DAT by both 10 and 100 uM
ABA (Figure 2I). For all four genes, the expression levels
were much higher in seedlings treated with 10 wM than
with 100 pM ABA (Figure 2I). The gene expression patterns
changed dramatically at 3 DAT. At this time point, 10 M
ABA only slightly induced GLK1 and GUN4 expression levels
but slightly suppressed PORA and HEMAI expression levels
(Figure 2J). At 5 and 11 DAT, 10 wM ABA strongly suppressed
the expression of all four genes, although PORA expression
was slightly higher than that of the other three genes at
both time points (Figures 2K,L). Treatment with 100 uM
ABA induced more complex gene expression patterns. At 3
DAT, 100 uM ABA only slightly induced PORA and HEMAI
expression but strongly induced GLKI and GUN4 expression
(Figure 2J). At 5 DAT, the expression levels of PORA, GLKI,
and GUN4 were induced by approximately twofold, whereas
HEMATI expression was significantly suppressed (Figure 2K). At
11 DAT, PORA expression was slightly induced, whereas that
of the other three genes was strongly suppressed (Figure 2L).
These combined results suggest that ABA exerts complex effects
on the expression of genes involved in chloroplast development.
First, the exogenous ABA concentration and duration of
treatment differentially affect the expression of genes involved
in chloroplast development. Second, the observed ABA-induced
gene expression patterns may depend on their exact functions
in chloroplast development. Taken together, these results suggest
that moderate ABA concentrations (in the range of 5-10 wM) of
long-term duration more effectively inhibit the transcription of
genes involved in chloroplast development, thereby contributing
to leaf yellowing.

ABA Treatment Differentially Affects the
Expression of Genes Involved in
Chloroplast Development Depending on
the Duration of ABA Treatment

The expression pattern of genes involved in chloroplast
development dramatically changes from activation to
suppression depending on the duration of the ABA treatment
(Figure 2). To obtain greater insight into the ABA-induced
changes in gene expression patterns, we examined plants at
early time points. Plants grown on !/2 MS plates for 8 days were
transferred onto !/2 MS plates supplemented with 5 wM ABA,
and then incubated for various periods of time (Figure 3A).
First, we measured cellular ABA levels at 12, 24, 48, 72, and 120 h
after transfer (HAT). Cellular ABA levels were gradually reduced
from 0.46 wg/g FW at 12 HAT to 0.06 pug/g FW at 120 HAT
(Figure 3B). We also measured cellular ABA-GE levels, which
were approximately 0.3 png/g FW at 12 and 24 HAT, drastically
increased to 3.1 pg/g FW at 48 HAT, and then were maintained at
1.5-1.7 pg/g FW at later time points (Figure 3C). This indicates
that the conversion of ABA to ABA-GE is highly activated at 48
HAT, but declines at the later time points.

The effect of ABA on plants was examined at the molecular
level. Plants grown for 12 days on /2 MS plates were transferred
to !2 MS plates supplemented with 5 WM ABA or DMSO
as a control, and further incubated for additional periods of
time. Total RNA was prepared and analyzed by qRT-PCR.
First, we examined the expression patterns of the dehydration-
related genes, Responsive to ABA18 (RAB18) and Responsive to
Dessication29B (RD29B), which are strongly induced in response
to ABA treatment (Seki et al., 2002a,b). Both genes were strongly
induced at early time points (6, 12, and 24 HAT) of ABA
treatment, with maximal induction at 24 HAT, but the fold
increase gradually declined with time, reaching two-threefold
of that in control plants at 120 HAT (Figures 3D,E). Next, we
examined the expression patterns of genes encoding the core
components such as PP2Cs and cytosolic receptors of the ABA
signaling pathway. Of the PP2C members, we selected three
genes, ABA Insensitive 1 (ABII), ABA Insensitive 2 (ABI2) and
Protein Phosphatase 2CA (PP2CA) because they are known to be
highly responsive to the ABA treatment (Santiago et al., 2009).
Of 13 members of cytosolic receptors, PYR/PYL/RCARs, we
selected three genes, PYR-Like 4 (PYL4), PYRI-Like 5 (PYL5)
and PYRI-Like 6 (PYL6), which are also responsive to ABA
treatment (Santiago et al, 2009). Similar to the expression
patterns of dehydration-related genes, ABI1, ABI2, and PP2CA
were strongly induced at 24 HAT. However, the fold increase
gradually declined with time. In contrast, the expression of PYL4,
PYL5, and PYL6 was suppressed from early time points of ABA
treatment and further suppressed, although slightly, at later time
points (Supplementary Figure 3). To gain insight into the leaf
yellowing phenotype, we examined the expression pattern of
the chloroplast development-related genes, PORA, HEMA1I, and
GLK1, at early time points after transfer to ABA plates. At 6
HAT, the expression of these genes was not significantly affected
by ABA treatment (Figure 3F). At 12 HAT, the expression of
PORA and GLK1 was slightly induced, whereas the expression of
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HEMAT1 was not affected significantly (Figure 3G). At 24 HAT,
the expression of PORA and GLKI was significantly induced,
whereas the expression of HEMAI was significantly suppressed
(Figure 3H). At 48 HAT, only PORA showed a threefold increase
in transcript levels, whereas GLKI levels returned to those of the

control and HEMAI levels declined (Figure 3I). At 72 and 120
HAT, the expression of all three genes was strongly suppressed
(Figures 3J-L). These combined results indicate that short-
term ABA treatment induces chloroplast-related gene expression,
whereas long-term ABA treatment suppresses these genes.
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The expression patterns of these genes, in particular PORA and
GLKI, were similar to those of osmotic stress-related genes,
although the exact time point of the phase change from induction
to suppression differed. Although the fold increases of these
genes in Figure 3 differed from those in Figure 2, which may be
caused by differences in sucrose concentration, the trend of the
expression pattern changes was similar to each other. Previous
studies showed that sucrose affects ABA-mediated signaling
(Finkelstein and Gibson, 2002).

To access the physiological relevance of results obtained
from long-term ABA treatment, we compared the effect of
long-term NaCl treatment on the expression of chloroplast-
and osmotic stress-related genes. ABA plays a crucial role in
NaCl stress responses (Tuteja, 2007). Plants were treated with
160 mM NacCl for 12, 24, 48, or 120 h, and the expression levels
of three chloroplast-related genes PORA, HEMAI, and GLKI,
and one osmotic stress-related gene RD29B were examined by
qRT-PCR. PORA and RD29B showed transitional responses; an
initial strong induction at 12 h HAT followed by reduction
in the induction levels at 24, 48, and 120 h HAT (Figure 4).
Similarly the expression level of HEMAI displayed a transitional
reponse from 12 to 120 h HAT. However, the expression level
of GLKI was maintained at higher levels from 12 to 120 h HAT
(Figure 4), which was different from the expression pattern of
GLKI under the condition of long-term ABA treatment. One
possible explanation is that high salinity has more profound
effect than ABA treatment. Indeed, salt stress responses also

include ABA-independent responses (Tuteja, 2007). These results
support the idea that the effect of long-term ABA treatment
may represnt a subset of physiological responses under the high
osmotic stress.

ABA Treatment Differentially Affects ABA
Biosynthesis and Catabolism Depending

on the Duration of ABA Treatment

To gain insight into the effect of exogenous ABA on cellular
ABA homeostasis, we examined the expression patterns of ABA
biosynthetic and catabolic genes at different time points after
ABA treatment for a period of 120 h. Exogenous ABA application
affects the expression of genes involved in ABA production
and degradation (Finkelstein, 2013). First, we examined the
expression of two genes involved in de novo ABA biosynthesis,
9-CIS-EPOXYCAROTENOIDDIOXYGENASE 3 (NCED3) and
ABA DEFICIENT 2 (ABA2), which convert violaxanthin to
neoxanthin and xanthoxin to abscisic acid aldehyde, respectively.
In the ABA biosynthetic pathway, NCED is the rate-limiting
enzyme (Nambara and Marion-Poll, 2005). Exogenously applied
ABA increased the NCED3 transcript level maximally to 9-fold at
12 HAT, but these levels gradually declined to a 2.5-fold increase
at 120 HAT, indicating that the ABA biosynthetic pathway is
highly activated at early time points of exogenous ABA treatment,
but rapidly declines with time. The expression of ABA2 was not
affected by exogenous ABA (Figure 5A).
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Next, we examined genes encoding ABA catabolic enzymes.
ABA levels can be reduced by two different pathways,
ABA hydroxylation by cytochrome P450-type hydroxylases,
or conversion to the inactive ABA-GE by UDP ABA-
glucosyltransferases (Kushiro et al, 2004; Priest et al,
2006; Finkelstein, 2013; Dong et al, 2014; Liu et al,, 2015).
First, we examined the expression of CYP707AI, CYP707A2,
CYP707A3, and CYP707A4, which encode cytochrome P450-
type hydroxylases. All four showed strong induction upon ABA
treatment, with different temporal patterns. These genes were
induced to 2.5- to 9-fold at 120 HAT depending on isoforms
(Figure 5B), indicating that ABA hydroxylation is strongly
activated by exogenous ABA. Next, we examined the induction
pattern of two UDP ABA-glucosyltransferase genes, UGT71B6
and UGT71C5. Overexpression of UGT71B6 leads to high levels
of ABA-GE (Priest et al., 2006), and a recent study showed that
UGT71C5 has an important role in ABA inactivation of ABA
(Liu et al., 2015). Exogenously applied ABA had only mild effects
on the induction of these genes (Figure 5C). UGT71B6 showed
approximately 1.5-fold induction at 120 HAT. By contrast,
UGT71C5 expression was suppressed with time. These results
are not consistent with the results showing that the amount of

ABA-GE was greatly increased upon exogenous ABA treatment.
One possible explanation is that the glucose conjugation pathway
of ABA does not respond significantly to exogenous ABA
application at the transcription level but is modulated at the
post-transcriptional level. We also cannot exclude the possibility
that other isoforms of UDP ABA-glucosyltransferase genes may
be activated at the transcription level.

The Duration of ABA Treatment Is a Key
Factor in Determining the Expression
Pattern of Chlorophyill

Degradation-Related Genes

Chlorophyll degradation is a key step in the leaf-yellowing
process, and several of the genes involved are under
transcriptional control (Hortensteiner, 2009; Yang et al,
2014). To further elucidate the effect of short- and long-term
ABA treatment on plant physiology, we examined the expression
of some key genes involved in chlorophyll degradation, such
as STAY GREEN 1 (SGRI), NONYELLOW COLORINGI
(NYCI1), PHEOPHYTINASE (PPH), PHEOPHORBIDE a
OXYGENASE (PAO), CHLOROPHYLLASE 1 (CLHI), and CLH2
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(Sakuraba et al., 2012). The NAC-LIKE ACTIVATED BY AP3/PI
(NAP) transcription factor regulates chlorophyll degradation
by promoting the transcription of SGRI, NYCI, PPH, and PAO
(Yang et al., 2014). We prepared total RNA from plants grown
on ABA-containing medium at 1 and 11 DAT. At 1 DAT, four
genes (SGRI, PPH, PAO, and CLH2) were expressed at higher
levels, and at 11 DAT, their expression was largely suppressed
to varying degrees (Figure 6). By contrast, the dramatically
induced expression of NAP at 1 DAT completely disappeared
at 11 DAT. NYCI and CHLI were strongly suppressed at both
1 and 11 DAT. These results indicate that many chlorophyll
degradation-related genes also exhibit a temporal transition
in the expression pattern depending on the duration of ABA
treatment.

Long-term ABA Treatment Inhibits

Chloroplast Division

To gain insight into the yellow-leaf phenotype resulting
from long-term ABA treatment, we examined chloroplast
ultrastructure using electron microscopy (EM). Plants (8-day-
old) were transferred to plates supplemented with 5 wM ABA
or DMSO control, and grown for an additional 5, 7, or 11 days.
Ultrathin leaf sections were prepared and analyzed by EM. In the
control plants, thylakoids in chloroplasts were not fully developed
into highly staked grana structures at 5 DAT, but were fully
developed at 7 and 11 DAT. In ABA-treated plants, thylakoid
membranes did not show the staked grana structure, but instead
were dilated with a large luminal space, particularly at 11 DAT
(Figure 7A), indicating that prolonged ABA treatment inhibits
thylakoid development, which in turn results in the yellow-leaf
phenotype.

The fact that ABA inhibits thylakoid membrane biogenesis
prompted us to examine the number of chloroplasts after
prolonged ABA treatment. Plants grown for 10 days were
transferred onto !> MS plates supplemented with 10 uM ABA,
and grown for additional 15 days (Figure 7B). The number of
chloroplasts was determined in the first and second true leaves.
The chloroplast numbers were significantly reduced in both
leaves upon long-term ABA treatment (Figure 7C), indicating
that ABA inhibits the division of chloroplasts in leaf tissues.
Cytokinin is a phytohormone that plays a key role in chloroplast
division (Cortleven and Schmiilling, 2015). Core components
involved in the cytokinin signaling pathway include the cytokinin
receptor CRE1/AHK4 and type-B responsive regulators (ARR10
and ARR12). The downstream transcription factors GNC and
CGAL regulate several aspects of chloroplast development and
plastid division (Chiang et al., 2012). The transcription factor
CRF2 increases the level of PDV2 protein, which is required
for plastid division (Okazaki et al., 2009). To obtain supporting
evidence for the inhibitory effect of ABA on chloroplast division,
we examined the expression of these seven genes by qRT-PCR.
Upon prolonged ABA treatment, these seven genes were divided
into three groups depending on their expression patterns: CREI,
ARRI10, ARRI2, and CRF2 were strongly suppressed; GCN and
CGAI were marginally suppressed; and PDV2 expression was
not affected (Figure 7D). These results corroborate the finding
that ABA treatment inhibits chloroplast division. One possibility

is that ABA inhibits cytokinin signaling, which in turn leads
to inhibition of chloroplast division. In fact, previous studies
showed that ABA and cytokinin act antagonistically to each other
in cellular processes (Lu et al., 2014).

Finally, we measured the photosynthetic efficiency at various
time points after ABA treatment. Photosystem II quantum
yield (Fy/Fy ratio) can be used as a simple indicator of
photosynthetic efficiency, and this can be measured from
chlorophyll fluorescence (Maxwell and Johnson, 2000).
Stronger purple fluorescence indicates higher F,/Fy ratio.
We observed that the F,/F ratio declined with time (Figure 8A).
To quantify the photosynthetic efficiency, the F,/Fy ratio
was measured using the first true leaves. The photosynthetic
efficiency of control plants slightly increased with time during
plant growth. By contrast, ABA treatment significantly reduced
the photosynthetic efficiency to 68% of control levels at 11 DAT
(Figure 8B). The reduction in photosynthetic efficiency was not
as dramatic as the reduction in chlorophyll content (Figure 1B).
These results confirm that ABA treatment affects photosynthetic
efficiency by suppressing chloroplast biogenesis.

DISCUSSION

In this study, we investigated the temporal molecular and
physiological responses to long-term ABA treatment. Exogenous
ABA alone is known to induce many aspects of molecular
and physiological responses that are induced by abiotic stresses
(Tuteja, 2007). Thus, we reasoned that long-term ABA treatment
may provide an insight into plant responses to the long-term
abiotic stress.

We systematically investigated the temporal aspects of plant
responses to exogenous ABA at both molecular and physiological
levels. Upon treatment with exogenous ABA, the levels of cellular
ABA increased rapidly. However, the ABA level peaked at 24 HAT
followed by a gradual decline with time but was still higher than
that in plants under the normal growth condition. It is not clear
why the cellular ABA level decreased at later time points. One
possibility is that the catabolic process is activated at the later time
points. Indeed, four CYP707As involved in the hydroxylation of
ABA were activated at the later time points. Another important
ABA catabolic pathway is conversion of ABA to ABA-GE. It is
possible that during long-term ABA treatment, ABA imported
from the medium is actively converted to ABA-GE. Indeed,
ABA-GE levels were higher upon ABA treatment. However,
the contents of ABA-GE displayed a temporal transition in
response to ABA treatment (Figure 3C). The contents of ABA-
GE were maintained at low levels until 24 HAT but abruptly
increased to higher levels at 48 HAT followed by a gradual
decrease with time. However, the transcriptional regulation of
the two genes we examined may not explain the delay in
ABA-GE accumulation or abrupt accumulation of ABA-GE; the
expression of UGT71B6 was maintained at a slightly higher levels
throughout the time course and the expression of UGT7I1C5 was
suppressed with time (Figure 5C). It is possible that the activities
of ABA-GE biosynthetic enzymes may be modulated by post-
transcriptionally. Another possibility is that other isoforms of
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ABA-GE producing genes may be regulated at the transcription
level.

The effect of long-term ABA treatment was examined at
the molecular level. The expression patterns of genes involved
in dehydration stress responses, ABA biosynthesis, chloroplast
development and chlorophyll degradation displayed a temporal
transition in response to exogenous ABA; the expression of these
genes was strongly induced at early time points such as 24 or
48 HAT, but induced at lower levels or suppressed at later time
points. Thus, the mode of plant responses at the molecular level
to exogenous ABA changes 24 or 48 HAT. The strong induction
in the expression of many genes involved in dehydration stress
or ABA metabolism at earlier time points is consistent with
earlier reports (Seki et al., 2002a; Finkelstein, 2013). Indeed,
exogenously applied ABA led to the increase in cellular ABA
levels with a peak at 24 HAT. However, it is not clearly understood
how the decline in induction fold or the suppression in the
expression of these genes occurred at later time points even
with the cellular ABA levels higher than that in plants under
the normal growth condition. It is possible that the mode of
ABA signaling is changed from a positive fashion to a negative
fashion depending on the duration of higher cellular ABA levels.
The negative mode of ABA signaling may function in turning
oft many cellular processes, thereby leading to the dormancy in
plants. Another possibility is that the temporal difference in the
levels of cellular ABA may be more important than the actual
cellular ABA levels for initiating ABA-mediated signaling; upon
ABA application, the ABA level peaked at 24 HAT and then
declined with time, which renders inactivation of ABA signaling
after 24 HAT, thereby resulting in the decline in induction levels
of the gene expression. A previous study also showed that plant
productivity displayed a transitional response to dehydration
stress (Su et al,, 2013). This transitional response consists of
an acute phase at early time points and a prolonged phase at
later time points (Su et al., 2013). The authors suggested that
the earlier acute phase is needed for the drought-treated plants

to reprogram reproductive development to enter the prolonged
phase.

The most prominent phenotype caused by the long-term ABA
treatment was the defect in chloroplast development, resulting
in leaf yellowing. Among the concentrations of ABA we used,
10 wM ABA was most effective in inducing yellow leaf phenotype.
In fact, when plants were grown on plates supplemented with
10 M ABA, the amount of cellular ABA was 0.058 pg/g fresh
weight (Figure 2E). Thus, this is comparable to the amount
of cellular ABA that is 5 wg/g dry weight under the water-
stressed (—0.3 MPa) conditions (Creelman et al., 1990). Upon
exogenous ABA treatment, the expression of genes involved
in chloroplast biogenesis was induced at early time points
(Figures 2, 3). A previous study showed that ABA plays a positive
role in chloroplast biogenesis during early embryogenesis (Kim
et al, 2009). However, long-term ABA treatment caused leaf
yellowing due to defective chlorophyll biogenesis. These results
raise the possibility that the duration of ABA treatment is critical
in determining the physiological role of ABA in chloroplast
biogenesis. Long-term dehydration stress also results in chlorotic
leaves (Landi et al., 2016). As ABA levels are increased under
dehydration stress conditions, it is possible that ABA plays a
role in dehydration stress-induced leaf chlorosis. Leaf senescence
may underlie the leaf chlorosis phenotype. Indeed, ABA is
known to induce leaf senescence by inducing the expression
of many senescence-related or chlorophyll degradation-related
genes (Gao et al, 2016). Indeed, the expression of chlorophyll
degradation-related genes was induced at early time points
(Figure 6A), consistent with earlier studies showing that ABA
activates chlorophyll degradation-related or senescence-related
genes (Yang et al., 2014). However, chlorophyll degradation or
senescence-related genes were suppressed at late time points of
ABA treatment (Figure 6B), thus raising the possibility that leaf
yellowing induced by long-term ABA treatment is caused by
some other mechanisms. A recent study showed that ABA also
plays a role in inhibition of dark-induced leaf senescence via
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ultrastructure. Plants grown for 7 days on /2 MS plates were transferred onto /2 MS plates supplemented with DMSO or 5 uM ABA and further grown for the
indicated periods of time. Ultrathin sections were prepared and used for transmission EM analysis. Lower images are enlarged images of the boxed areas. (B,C)
Phenotype (B) and number of chloroplasts per mesophyll cell (C) of 10-day-old seedlings grown on */> MS plates supplemented with DMSO or 10 uM ABA for an
additional 15 days. All data in (C) are given as mean =+ SD (n = 30). Asterisks and double asterisks in (C) represent significant differences as determined by Student’s
t-test at P < 0.05 and P < 0.01, respectively. (D) Transcript levels of cytokinin-related genes involved in chloroplast division. Seven-day-old seedlings were
transferred onto /2 MS plates supplemented with DMSO or 5 pM ABA and further grown for an additional 9 days. Transcript levels of ACT2 were used as internal
control for gRT-PCR. All data in (D) are given as mean + SD (n = 3). Asterisks and double asterisks in (C,D) represent significant differences as determined by
Student’s t-test at P < 0.05 and P < 0.01, respectively.

a pathway involving ABI5-ABR (Su et al,, 2016). In fact, the was more clearly visible. Thus, leaf yellowing at the later time
present study also showed that long-term ABA treatment did points may not be directly related to ABA-mediated activation
not induce senescence-related or chlorophyll degradation-related  of chlorophyll degradation or leaf senescence. Rather, prolonged
genes at late time points when the leaf yellowing phenotype ABA treatment may inhibit chloroplast development. Consistent
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FIGURE 8 | Prolonged exposure to ABA reduces the photosynthetic efficiency in plants. Plants grown on /2 MS plates for 8 days were transferred onto 12 MS plates
supplemented with DMSO or 5 uM ABA and further grown for the indicated periods of time. (A) Chlorophyll fluorescence images were taken after dark adaptation
for 30 min. The colored bar represents the values of F,/Fg ratio. The stronger purple indicates higher values of F,/F ratio. (B) To quantify photosynthetic efficiency,
Fy/Fq ratios were measured from the first true leaves. 12 first and second true leaves of 6 seedlings were analyzed and all data in (B) are given as mean + SE.
Double asterisks represent significant differences as determined by Student’s t-test at P < 0.01.
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with this idea, the expression of genes involved in chlorophyll
biogenesis was strongly suppressed at later time points of ABA
treatment (Figures 2, 3). The expression of genes involved in
cytokinin signaling also was strongly suppressed by long-term
ABA treatment (Figure 7D). Cytokinin plays a critical role
in chloroplast biogenesis and delays senescence (Zwack and
Rashotte, 2013; Cortleven and Schmiilling, 2015). Thus, one
possible explanation is that prolonged ABA treatment actively
blocks chloroplast biogenesis by inhibiting cytokinin signaling.
Indeed, cytokinin and ABA act to each other antagonistically
in certain cellular processes (Lu et al., 2014). Consistent with
this idea, chloroplast division was suppressed by exogenous
ABA (Figure 7C). Under the abiotic stress conditions such
as dehydration or osmotic stress conditions, high chlorophyll
content may be not favorable because light energy captured by
the chlorophyll cannot be used to fix CO;,, and instead results in
high levels of ROS (Tripathy and Oelmiille, 2012). Thus, lowering
the amount of chlorophyll is favorable under dehydration stress.
Of course, we cannot rule out other possibilities because plants
develop yellow leaves under many different conditions. One
possibility is that the severe reduction in the genes involved
in chloroplast biogenesis, thereby resulting in the yellow leaf
phenotype, could be due to cell death caused by ABA toxicity
when plants were treated with ABA too long (Figures 2I-L,
3J-L). However, we are not in favor of this possibility; plants
still grew, generated new leaves, and showed primary root growth

during long-term ABA treatment, even though the growth rate
was much slower in the presence of ABA than DMSO control.
This suggests that even if the long-term ABA treatment may
exert a certain degree of ABA toxicity to plants it may not be the
main reason for the yellow leaf phenotype. Another possibility is
that high levels of ABA inhibits import of resources such as iron
needed for biogenesis of chlorophyll and chloroplasts (Ramirez
et al., 2013; Li et al., 2014). However, the exact mechanism by
which long-term ABA treatment induces leaf yellowing should
be further studied in the future. By contrast to true leaves,
young cotyledons remained largely green during long-term ABA
treatment, raising the possibility that the effect of ABA on
chloroplast biogenesis in cotyledons is different from that in true
leaves.

What underlies the transitional responses to exogenously
applied ABA? Because ABA is a key mediator of abiotic stress
responses (Xiong and Zhu, 2003; Tuteja, 2007), the transitional
response to exogenous ABA we observed in this study may
represent a temporal pattern of plant responses to abiotic stress.
Plants cannot predict how long abiotic stress conditions will last.
Thus, one possible scenario is that plants continuously reprogram
the responses to the abiotic stress according to the duration of
the stress. Supporting this idea is that plants show acclimation
or adaptation to stress conditions (Kinoshita and Seki, 2014).
The transitional responses to the long-term ABA treatment
imply that, at the early time points of abiotic stress such as

Frontiers in Plant Science | www.frontiersin.org

February 2018 | Volume 9 | Article 176


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Wang et al.

Transitional Temporal Response to ABA

dehydration or osmotic stresses, plants activate different cellular
processes, some of which may even require more water supply to
cope with the abiotic stress conditions. Indeed, the dehydration-
induced genes are also induced by the long-term ABA treatment
(Ingram and Bartels, 1996; Bray, 2004). The present study also
provides evidence that plants enhance the expression of various
genes, including those involved in chloroplast biogenesis, within
24 h of ABA treatment. This would support photosynthesis,
a water-requiring process, and thereby produce more carbon
sources, one of most valuable cellular resources necessary to cope
with dehydration stress. However, if the abiotic stress such as
dehydration stress continues then plants would need to change
the mode of responses toward a survival strategy, in which the
cellular activity needs to be minimized so that the use of water can
be minimized. This could enable plants to survive until abiotic
stress is relieved.

In summary, we provide evidence that plants show a temporal
transition in responses to exogenously applied ABA. We propose
that plants reprogram their responses to dehydration stress
depending on the duration of the stress as shown by a temporal
transition in responses to exogenously applied ABA. At the
early phase, signaling involved in the abiotic stress responses is
activated to turn on various cellular processes by increasing the
expression of many genes, such as those involved in chlorophyll
biogenesis, to maintain cellular activities. At the late phase, gene
expression patterns are reprogramed to minimize the cellular
activities and promote survival under prolonged dehydration
stress conditions.
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