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Crop improvement efforts are targeting increased above-ground biomass and

radiation-use efficiency as drivers for greater yield. Early ground cover and canopy height

contribute to biomass production, but manual measurements of these traits, and in

particular above-ground biomass, are slow and labor-intensive, more so when made at

multiple developmental stages. These constraints limit the ability to capture these data in

a temporal fashion, hampering insights that could be gained frommulti-dimensional data.

Here we demonstrate the capacity of Light Detection and Ranging (LiDAR), mounted on a

lightweight, mobile, ground-based platform, for rapid multi-temporal and non-destructive

estimation of canopy height, ground cover and above-ground biomass. Field validation of

LiDAR measurements is presented. For canopy height, strong relationships with LiDAR

(r² of 0.99 and root mean square error of 0.017m) were obtained. Ground cover was

estimated from LiDAR using two methodologies: red reflectance image and canopy

height. In contrast to NDVI, LiDAR was not affected by saturation at high ground cover,

and the comparison of both LiDAR methodologies showed strong association (r² = 0.92

and slope = 1.02) at ground cover above 0.8. For above-ground biomass, a dedicated

field experiment was performed with destructive biomass sampled eight times across

different developmental stages. Two methodologies are presented for the estimation of

biomass from LiDAR: 3D voxel index (3DVI) and 3D profile index (3DPI). The parameters

involved in the calculation of 3DVI and 3DPI were optimized for each sample event from

tillering to maturity, as well as generalized for any developmental stage. Individual sample

point predictions were strong while predictions across all eight sample events, provided

the strongest association with biomass (r² = 0.93 and r² = 0.92) for 3DPI and 3DVI,

respectively. Given these results, we believe that application of this system will provide

new opportunities to deliver improved genotypes and agronomic interventions via more

efficient and reliable phenotyping of these important traits in large experiments.
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INTRODUCTION

The rate of genetic gain per year for yield potential of wheat over
the last two decades has stabilized at <1% per annum (Reynolds
et al., 1999; Fischer et al., 2012). Various interventions have been
proposed to maintain or improve this rate. Field phenomics,
with its potential to non-destructively and remotely-sense crop
traits associated with performance in a high-throughput fashion
(White et al., 2012; Araus and Cairns, 2014; Deery et al., 2014,
2016; Rebetzke et al., 2016; Shakoor et al., 2017), has gained
more attention as a promising intervention in recent years. Key
physical parameters that are targets for field phenomics include
canopy height, early ground cover, distribution, andmaintenance
of green leaf area, and biomass production.

The importance of canopy height and its relationship to
harvest index (defined as the ratio between harvested grain
and total above-ground biomass) are well known from the
Green Revolution, where the introduction of dwarfing genes
resulted in semi-dwarf wheat varieties with increased harvest
index and yield (Reynolds and Borlaug, 2006). Canopy height
is typically measured with a graduated stick or ruler by holding
together a handful of stems from a representative part of a
given experimental plot and recording the height to the tip of
the spike for an average stem (ignoring the awns) (Rebetzke
et al., 2013b). Plant height is elsewhere defined (perhaps
more appropriately as canopy height) as the shortest distance
between the upper boundary of the main photosynthetic tissues
(excluding inflorescences) on a plant and the ground level
(Pérez-Harguindeguy et al., 2016). Despite efforts to standardize
the canopy height measurement, there is a larger component
of subjectivity with operators potentially having a different
perception of what constitutes the height of the canopy.

Canopy ground cover (GC) represents the fraction of the soil
covered by the crop. High GC is necessary for intercepting light
needed for growth, shading the soil to reduce soil evaporation
(Fischer, 1981; Botwright et al., 2002; Richards and Rebetzke,
2002; Rebetzke et al., 2004; Mullan and Reynolds, 2010), and
for weed competitiveness (Coleman et al., 2001). The GC
assessments are generally made from early emergence until
complete canopy cover. There are three standard methods
for the estimation of GC: (1) Digital photographs taken at
constant height over a representative area of the experimental
plot and then processed with image analysis software for the
classification of vegetation and non-vegetation pixels (Li et al.,
2010; Mullan and Reynolds, 2010; Pask et al., 2012; Kipp et al.,
2014); (2) Spectral indices such as the normalized difference
vegetation index (NDVI), including active spectral sensors like
the GreenSeeker R© (Trimble, USA), which have shown strong
associations with GC up to the stem elongation growth stage
(Gitelson et al., 2002); and 3) Visual scores, where expert
estimates of GC are made on ordinal scale (e.g., on a 1–9 scale,
with 1= no GC and 9= complete GC).

Opportunities to increase the yield potential of wheat are now
focusing on increasing above-ground biomass, while maintaining
high harvest index (Reynolds et al., 2009, 2011, 2012). However,
measurement of above-ground biomass requires cutting the
culms at ground level for a defined portion of the experimental
plot (normally 0.1–0.3 m²), and then weighing after drying in an

oven until constant weight (Pask et al., 2012). The reliability and
resulting confidence in these above-ground biomass measures
are limited by: (1) the sample representing a small section of
the experimental plot, which could be a misrepresentation if
the plot is not uniform; (2) samples are destructive, thereby
limiting the number of samples before destroying the entire
plot; and 3) sampling and subsequent processing requires
transport, drying, and manual handling, which contributes to
sample loss and can be restrictive in large experiments. Thence,
measurement of above-ground biomass is laborious and subject
to large experimental error. Recent developments in remote and
proximal sensing for high-throughput field phenotyping have
led to proposed alternatives to destructive sampling, including
the use of digital photography and NDVI sensors (Li et al.,
2010; Pask et al., 2012), across multiple scales (Hawkesford and
Lorence, 2017) using both aerial (see review by Yang et al., 2017)
and ground platforms (Busemeyer et al., 2013; Andrade-Sanchez
et al., 2014; Deery et al., 2014; Barker et al., 2016; Liu et al., 2016;
Virlet et al., 2016; Kirchgessner et al., 2017).

Light Detection and Ranging (LiDAR) mounted on a field
phenotyping buggy was recently proposed for quantifying a
number of traits, including canopy height, GC and above-ground
biomass (Deery et al., 2014). LiDAR, as an active sensor, confers
many advantages over passive sensing (see also Lin, 2015),
including: (1) operation regardless of ambient light conditions;
and (2) direct measurement of canopy height and architecture.
LiDAR-derived images can avoid some of the limitations of RGB
images which have been used for these purposes, namely that
changes in ambient light conditions and shadows can result in
over or under exposure, thereby reducing image quality and data
reliability (Deery et al., 2014).

While the use of LiDAR for the estimation of physical
height and above-ground biomass in forestry applications is
well established (Lefsky et al., 1999, 2002; Clark et al., 2004;
Hyyppä et al., 2008; Lucas et al., 2008; Eitel et al., 2013; Kankare
et al., 2013; Greaves et al., 2015), its application in crops is still
in its infancy. Saeys et al. (2009) estimated crop density and
spike number using statistical models for two LiDAR scanning
frequencies. Another approach that has been widely adopted is
the use of canopy height as a surrogate for crop biomass (Ehlert
et al., 2008, 2009, 2010; Gebbers et al., 2011; Tilly et al., 2014).
Most of these methodologies are based on the extraction of crop
height using a surface differencing approach (Louise Loudermilk
et al., 2009), where the digital terrain model is subtracted to
the crop surface model. More recently, some authors have
proposed the combined use of LiDAR-derived canopy height
and reflectance information (Eitel et al., 2014; Geipel et al.,
2014; Tilly et al., 2015). Also, the option of estimating canopy
height using stereo reconstruction from aerial imagery (Bendig
et al., 2014; Geipel et al., 2014; Aasen et al., 2015) and ground
platforms (Salas Fernandez et al., 2017), has been proposed as
an alternative to LiDAR. However, prediction of above-ground
biomass from height is unlikely to be of benefit in breeding trials,
where variation in plant height is commonly restricted. For this
reason, alternative approaches are required to provide robust
estimates of biomass production.

In this paper, we present the development and early
application of the Phenomobile LiteTM (http://www.
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plantphenomics.org.au/services/phenomobile/) as an evolution
of the original Phenomobile (Deery et al., 2014). The
Phenomobile Lite, conceived as a manually-operated buggy,
is designed to be lightweight, cost-effective, and transportable
across multiple field sites, thereby providing reliable field
phenotyping amenable to deployment in multi-site managed
environment facilities for targeted trait and germplasm
evaluation (Rebetzke et al., 2013a). We describe the algorithms
developed for non-destructive measurement of canopy height,
GC, and above-ground biomass using LiDAR data, and
demonstrate the utility of the Phenomobile Lite and LiDAR for
use in plot-scale phenotyping within genetics, physiology or
agronomy studies, or in a plant breeding program.

MATERIALS AND METHODS

Phenomobile Lite Description and
Components
The Phenomobile Lite is a portable buggy consisting of a
lightweight extruded aluminum frame with three wheels and an
instrument platform (Figure 1). The front-left leading wheel is
powered by an electric motor with manual speed control and
the rear wheel, trailing the front powered wheel, acts as a caster
wheel for steering. The adjustable wheelbase on the Phenomobile
Lite can accommodate different plot widths (1.75–2.20m). The
height-adjustable instrument boom (ground clearance of 1.5m),
located at the front of the frame, can be adjusted as the crop
develops to maintain a constant distance above the canopy and
restrict the plot within the field of view of the instruments. At the
rear of the unit, the operator has access to a digital display with
touchscreen for controlling the devices.

The Phenomobile Lite comprises the following
instrumentation:

1) A high-frequency laser scanner or LiDAR. The model selected
(SICK LMS 400-2000, SICK AG, Waldkirch, Germany) works
on the phase-shift principle for estimating the distance. Light
with a given wavelength that travels to an object and then
back will be shifted in phase compared to the emitted light,
being the phase-shift proportional to the distance between the
sensor and the object. The laser operates at 650 nm (visible
red light) and 4 mW of power, generating a spot diameter of
ca. 2mm at 3m distance. The scanning rate is 270Hz with an
angular resolution 0.1◦.

2) An inertial navigation unit (IMU) with GPS for registering
the position and orientation of the LiDAR. The IMU (Spatial,
Advanced Navigation, Australia) has 0.2◦ accuracy and 0.6m
horizontal accuracy when differential GPS corrections are
provided. It can operate over a broad range of temperatures
and presents a minimal form factor (37 grams).

3) Incremental wheel encoder (SICK DFV60A, SICK AG,
Waldkirch, Germany) with a maximum angular resolution of
65,536 counts per revolution which translate to sub-millimeter
linear resolution.

4) Computer with touch screen (Toughpad, Panasonic, Osaka,
Japan).

5) Additionally, the Phenomobile Lite can integrate other
instruments such an active NDVI sensor (GreenSeeker,

Trimble, USA) and digital camera (Canon 6D, Canon Inc.,
Tokio, Japan), which are triggered by the control software
based on traveled distance or time intervals.

The operating software and user-interface were developed in Java
programming language (Oracle, https://www.oracle.com/java/
index.html), designed for the non-technical user (i.e. intuitive
and user-friendly). The experiments are typically organized in
field layouts of columns and rows. Whereby, we considered
columns to be experimental plots in the direction of the sowing
and rows the position of each experimental plot within the
columns. To acquire data, the user drives the Phenomobile Lite
to the first plot of the experiment and sets the experiment name
on the control software. Then, the user presses a start button
and drives the Phenomobile Lite along the column, without any
additional input. Maintaining a constant speed is not critical
as the Phenomobile Lite registers the speed with the GPS/IMU
and wheel encoder, which is later used to post process the data.
A cruise control function is available to maintain the electric
wheel at a constant speed. At the end of the column, the user
presses “Stop” and turns the Phenomobile Lite to the start of
the next column. A map is displayed in real time with the GPS
track and an aerial display of the experiment. The direction of
the operation is automatically taken into account based on the
heading information from the IMU/GPS, which simplifies the
data processing when the operation is done in zigzag mode.
Once all the columns from the experiment are completed, the
raw data is compressed and uploaded to the web server for
processing.

Phenomobile Lite Data Capture and
Pre-processing
Data Files
The data from the LiDAR and associated instruments are
collected on the touch screen computer and stored in the
following data formats:

1) LiDAR data is stored as binary files (one file per column). The
data format was custom-made and is composed of a header
and a collection of LiDAR scans with an associated header
for each scan. The file header contains basic information
about the location of the LiDAR unit and offsets with
the GPS/IMU and other instruments. It also includes the
configuration of the LiDAR device (scan rate and angular
resolution). Then follows a sequence of scans, each one with
a header defining information associated with each scan, such
as the timestamp, encoder count, GPS/IMU position and
orientation. Finally, the scan contains the range and intensity
observations (generally 700 points per scan). With the LiDAR
operating at rate of 270 scans per second, each file will contain
a number of scans that will depend on the length of the column
and speed of operation.

2) GPS/IMU position and orientation, containing the output
from the GPS/IMU with GPS timestamps, is stored as comma
separated values (CSV).

3) GreenSeeker NDVI measurements are linked to the GPS/IMU
position and timestamps. These measures include the red
and near-infrared reflectance as well as the derived vegetation
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FIGURE 1 | Phenomobile Lite comprising LiDAR laser scanner, digital single-lens reflex (DSLR) camera, GreenSeeker and touch-screen computer mounted on an

aluminum frame with adjustable wheel spacing to accommodate different plot widths (1.75–2.20m) and ground-clearance for canopy heights up to 1.5m. The height

adjustable sensor boom (2.0–2.5m) enables data capture from crop emergence to maturity. The Phenomobile Lite is powered by an electric wheel and steered by an

operator walking behind. Data is captured on a touch screen computer and processed through a web interface whereby the user processes the plot data in a

semi-automated fashion (see Figures 2, 3).

indices calculated by the GreenSeeker unit (NDVI and RVI).
This information is stored as CSV.

4) Coordinates for the trigger events for the RGB camera are
stored as CSV. The images from the camera also contain
GPS information such as approximate position and GPS
timestamps used to link the trigger event with the actual image
and therefore plot.

The files are identified by the name of the experiment,
date, column/row coordinates and column number for unique
identification. It is possible to add suffixes to denote multiple
passes for a given column on a single day (e.g., column pass before
and after biomass sample).

Processing Workflow
The processing workflow is designed as a pipeline with multiple
steps (Figure 2) and was developed with Python 2.7 (Python
Software Foundation, https://www.python.org/) and Go (Google,
https://golang.org/) programming languages. The processing
architecture is designed to be amenable to parallel computing
and deployment into cloud infrastructures. The workflow is
presented to the user as a web interface that provides access
control, data upload, interactive visualization, plot selection
and export of the results to standard formats. A web-based
architecture allows the user to process the data without installing
any specific software other than a web browser.

The raw data, collected in the field and comprising the
LiDAR scans, their location, and orientation from the GPS/IMU
and wheel encoder, are compressed and uploaded to the web
server. Once the data is uploaded, it is transformed from raw
LiDAR returns (containing the range to the object and angle)
into Cartesian coordinates, which creates the point cloud for
the entire column with each point comprising an x, y, and z
coordinate. Where: the x coordinate is the position across the
column (along the width of the column); the y coordinate is
the position down the column (along the length of the column);
the z coordinate is the vertical position. The point cloud can
contain a number of outliers and spurious points that usually
appear when the laser hits the edge of leaves or in very bright
light conditions. In the next step, the point cloud is filtered using
Point Cloud Library (Rusu and Cousins, 2011) and the statistical
outlier removal filter (Rusu et al., 2008). Once the point-cloud
is clean, a rasterised version of the point-cloud is displayed
on the web interface, thereby enabling the user to visualize all
the experimental plots for a particular column (Figure 3). The
user then draws a rectangle around every experimental plot,
which defines the areas of interest for each plot on which the
feature extraction algorithms will be applied. The user-supervised
selection of the experimental plots enables the user to avoid
areas of the plot that would normally be discarded in the field
experiment (e.g., plot borders) and prevents measurements on
areas where biomass has been removed for sampling or where
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FIGURE 2 | Schematic of the Phenomobile Lite LiDAR data processing workflow, whereby each box represents the following steps (from left to right). Data collection:

Raw data collection with the Phenomobile Lite touch screen computer. Point Cloud Creation: the collected LiDAR data is converted into X,Y,Z coordinates. Point

Cloud Cleaning: LiDAR data is cleaned and outlier points, resulting from partial returns. Plot Extraction: LiDAR data is segmented into experimental plots by the user,

through a web interface (Figure 3). Feature Extraction: Trait data are extracted from the LiDAR data for each experimental plot. The outgoing data file format for each

step is indicated in the respective red rectangle.

FIGURE 3 | Web interface of the LiDAR data processing pipeline showing a rasterised point-cloud for a column of experimental plots. The user-selected sections of

the experimental plots are denoted with numbered orange rectangles. Note how the user has avoided existing biomass samples (blue boxes to the right of the

numbered orange rectangles).

Frontiers in Plant Science | www.frontiersin.org 5 February 2018 | Volume 9 | Article 237

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Jimenez-Berni et al. Phenomobile-Lite Methods

a plot has been damaged (e.g., wheel tracks). The plot-selection
could be automated in the future with image analysis techniques.

Once the areas delimiting the plots have been defined, the
point-cloud representing each experimental plot is extracted.
Finally, the point clouds associated with each plot are processed
using different algorithms for the extraction of biologically
meaningful measures representing traits of interest. Once the
processes are completed, the pipeline generates a table with the
associated measurements for each plot. The user can download
these measures, linked to the traits of interest, as a CSV file or
upload them to an existing online database or virtual laboratory
such as SensorDB (Salehi et al., 2015).

The workflow, described in Figure 3, is controlled by a
coordinator server that monitors the queue of the different
tasks associated with the pipeline and delegates the tasks to
different processing instances that can be distributed across
several servers. This coordination allows a potential elastic load
balancing by launching multiple instances of the data processing
software during peak sampling periods of the field season or
where there may be many concurrent users.

Trait Extraction from LiDAR
The LiDAR data provides a 3D representation of the canopy
which can be processed in multiple ways, enabling the extraction
of multiple measurements from the same original raw data. In
this manuscript, we focus on three key traits that are relevant
in breeding, agronomy and crop physiology field experiments:
canopy height, ground cover and above-ground biomass.

Canopy Height
Determining the canopy height with LiDAR requires estimation
of the ground elevation and subtracting this from the absolute
height of the points. Most of the published methodologies are
based on the determination of a crop surface model and a digital
terrain model, where the difference provides the crop height
(Louise Loudermilk et al., 2009). The digital terrain model can
be obtained from a scan with bare soil, while the crop surface
model is calculated from the topmost points of the point cloud,
using a selection based on a top percentile (Hämmerle and Höfle,
2014; Friedli et al., 2016). For the Phenomobile Lite, the nominal
distance from the LiDAR sensor to the ground is fixed; therefore,
it could be measured manually or automatically determined from
the LiDAR. This provides a relative coordinate system where
the ground elevation is always known. To avoid the manual
measurement of the LiDAR position, the ground elevation for a
given column of plots was assumed as the peak of the histogram
(i.e., mode) of heights in the point cloud (Figure 4A). The
prominence of this peak is evident in Figure 4A and arises
because a column regularly includes sections of space between
plots with bare soil. For a given experimental plot (Figures 4B,C),
canopy height is estimated as the difference between the ground
elevation and a quantile value in the z coordinate. To determine
the optimum quantile defining the top of the canopy, quantile
values ranging from 0.8 to 1.0 at increments of 0.005 were tested
against manual height measures with a ruler. The root mean
square error (RMSE) was calculated between LiDAR canopy
height and canopy height measured manually.

Canopy Ground Cover
We evaluated two LiDAR algorithms for the classification of
vegetation and soil to derive GC. In both cases, the LiDAR point
cloud is transformed into a raster image that then is evaluated for
the estimation of GC.

Images generated from the red reflectance of the LiDAR
The LiDAR’s red laser enables discrimination of plants from soil
based on the assumption that green tissue from plants will absorb
most of the red light, while the soil will have a higher reflectance
in the red region of the spectrum. Therefore, the histogram
analysis of the red reflectance from the LiDAR typically shows
two distinct peaks for the vegetation and soil (Figure 5). This was
used to estimate GC whereby LiDAR intensity less than five was
classified as vegetation and LiDAR intensity of five and above was
classified as soil (Figures 6a,b).

Height analysis
Since the LiDAR provides a 3D representation of the canopy, any
organ or tissue above the ground can be considered vegetation
and therefore, the calculation of GC can be derived from that
classification (Figures 6c,d). This method may be suitable when
the canopy is senesced, with little green tissue, or if the soil is
dark. However, it may be unreliable during early crop stages
where the height of the canopy is too close to the ground or when
plants are grown in deep furrows.

For the validation of the LiDAR-derived GC, RGB digital
color images were acquired with the Canon 6D DSLR camera
mounted on the Phenomobile Lite. The camera was triggered
automatically based on distance, and one image was taken every
1m. The focus was fixed, and camera settings were set to
manual with fast exposure and high ISO for minimizing any
motion blurring. The camera integrates an internal GPS that
is configured to set the internal clock in sync with the GPS
time. Since the internal GPS update rate is 1 s and does not
have DGPS capabilities, there was not enough accuracy for geo-
locating the RGB images to the plots. Instead, we used the GPS
timestamp for each image and theGPS-IMU track. Once the plots
have been extracted in the data processing pipeline it is possible
to attribute each RGB image to a different plot. The result is
multiple RGB images per plot, depending on the length of the
plots. The RGB images were analyzed using the methodology
and software developed in Li et al. (2010). The software imports
the RGB images and estimates the portion of green pixels
based on the SAVIgreen vegetation index (Huete, 1988) for each
image. The mean GC of each plot was calculated averaging the
images belonging to the plot. We also used NDVI measurements
acquired simultaneously with a GreenSeeker sensor mounted
on the Phenomobile Lite. The raw NDVI measurements from
the GreenSeeker were registered using a serial port (RS232) and
integrated with the GPS-IMU track. The NDVI measurements
were averaged at the plot level using the position and plot
location.

Above-Ground Biomass
Two LiDAR methods for the estimation of above-ground
biomass were evaluated:
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FIGURE 4 | Determination of canopy height from LiDAR. (A) Histogram of distance relative to the LiDAR for a typical column of plots on the 23/10/2014. The peak of

the histogram is selected as the height of the ground. (B) Side view of point cloud for a single plot from the same column as (A), where the x-axis is the distance

traveled by the Phenomobile Lite along the column. The blue line represents the ground obtained as the peak of the histogram, and the red line represents the height

for the 0.955 quantile. (C) Histogram for the same single plot as (B) where the user has selected the region of interest.

FIGURE 5 | Frequency distribution of LiDAR red reflectance for a typical experimental plot. Green tissue from plants will tend to absorb the red light, while soil will tend

to reflect the red light. GC was estimated using a binary rule, where LiDAR intensity less than five was classified vegetation and LiDAR intensity five and above was

classified as soil.

(a) Voxel-based method
The 3D box containing all the points for a given experimental
plot were subdivided into voxels of regular dimensions
(height = width = length), creating a 3D grid with the number
of elements being a function of the total size of the 3D box for
the experimental plot and the voxel size. Only the points above
a 10 cm ground offset were included in the analysis. The ground

elevation was calculated using the same methodology that was
used for the canopy height. The coordinates of each point in the
point-cloud were checked to allocate each point to its respective
voxel. The resulting 3D grid, containing the number of points
within each voxel, was filtered to eliminate voxels with less than
10 points as a way to remove spurious points and outliers that
may not have been eliminated by the cleaning algorithm. The
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FIGURE 6 | Canopy ground cover determination. Top views of the same experimental plot. False color scale for (a) red reflectance and (c) height. Binary images

showing estimation of canopy ground cover after canopy segmentation using threshold values for (b) reflectance (<5) and (d) height (10 cm).

ratio of the number of voxels containing points to the number
of subdivisions in the horizontal plane (width × length) was
calculated and herein referred to as the 3D Voxel Index (3DVI).
The 3DVI was calculated for voxel sizes ranging from 10mm
to 200mm, at 10mm increments. To determine the optimal
voxel size, the RMSE and coefficient of determination (r²) were
determined for the linear regression between 3DVI, at the given
voxel size, and above-ground biomass measured manually.

(b) Profile-based method
The point-cloud for a given experimental plot was divided into
vertical layers of 10mm and, for each layer, the fraction of points
divided by the total number of points for the point-cloud was
calculated. Then, starting from the top, each layer was corrected
by a factor, analogous to the extinction coefficient in Beer’s law
(Richardson et al., 2009), calculated as the exponential of the
correction factor (k), multiplied by the total fraction of points
intercepted above that layer. The sum of the corrected fraction
of points for each layer was calculated and herein referred to as
the 3D Profile Index:

3DPI =
∑

i=n
i=0

(

pi

pt
e
k
pcs
pt

)

(1)

Where: i is a given 10mm vertical layer with 0 and n the lower
and uppermost layers respectively; pi is the LiDAR points for
a given layer; pt is the total LiDAR points for all layers; pcs is
the cumulative sum of LiDAR points intercepted above a given
layer. Figure 7 shows an illustrative example of the profile-based
method. The optimal value of k was determined by calculating
3DPI, for k values ranging from −3.5 to 2.25 at increments of
0.05, and determining the RMSE and coefficient of determination
between 3DPI, at the given k value, and above-ground biomass
measuredmanually. A 10 cm ground offset was used to determine
the lowest layer and the ground elevation was calculated
using the same methodology that was used for the canopy
height.

Field Experiments
We conducted three separate experiments for the validation of
canopy height, canopy ground cover, and above-ground biomass
using the Phenomobile Lite. Canopy height was validated in

Experiment 1 (EXP1), canopy ground cover was validated in
Experiment 2 (EXP2) and above-ground biomass was validated
in Experiment 3 (EXP3).

(a) Experiment 1: Validation of Canopy Height
EXP1 comprised a selection of 18 near-isogenic wheat lines,
arising from mutagenesis of the Brazilian bread wheat cultivar
Maringá, with allelic variants of the Rht-B1 allele and therefore
known phenotypic variation for height (Chandler and Harding,
2013). The experiment was sown on 12th June 2014, at Yanco
NSW (34.62S, 146.43E, elevation 164m) in SE Australia, and
comprised three replicate experimental plots per genotype (54
experimental plots in total) sown in a randomized complete block
design (orientated North-South). Experimental plots were 12m
long and 10 rows across with a row spacing of 0.18m and sowing
density of 250 seeds/m2.

Phenomobile Lite measurements with LiDAR were made
on the 23rd Oct. 2014. On the same day, canopy height was
measured manually following Rebetzke et al. (2013b), with three
replicate measures of canopy height per experimental plot.

(b) Experiment 2: Validation of Canopy Ground Cover
EXP2 comprised 90 entries of commercial and advanced breeder
lines and was sown on the same date and location as EXP1
into a randomized complete block design with three replicate
experimental plots per genotype (270 experimental plots in total
and orientated North-South). Experimental plots were 6m long
and 10 rows across with a row spacing of 0.18m and sowing
density of 250 seeds/m2.

Phenomobile Lite measurements, including LiDAR,
GreenSeeker and Canon 6D DSLR camera for validation of
GC, were made across a range of phenological growth stages,
ranging from early tillering to grain-filling, on the following five
dates: 13 Aug. 2014; 21 Aug. 2014; 8 Sept. 2014; 16 Sept. 2014; 23
Sept. 2014.

(c) Experiment 3: Validation of Above-Ground

Biomass
Thirteen contemporary bread wheat (Triticum aestivium L.) and
two triticale (x Tricosecale) genotypes were sown on the 12th
June 2015 at the CSIRO Agriculture and Food Ginninderra
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FIGURE 7 | LiDAR point clouds, representing the cross sections for two different experimental plots, (A,C), from the same experiment with contrasting genotypes and

different above-ground biomass at maturity (8th December 2015) of 12.0 and 7.2 t/ha for (A,C) respectively. The corresponding fraction of intercepted points (pi ) and

corrected intercepted points (pi_corr ) with k = −1, for (A,C), are shown in (B,D) respectively.

Experiment Station (GES), Canberra, ACT, Australia (35.20S,
149.09E, elevation 577m). The genotypes were selected to
represent a broad range of canopy architecture, including very
erect to prostrate, and thereby enable robust evaluation of the
LiDAR for phenotyping. The experimental plots were 15m long
and 10 rows across with a row spacing of 0.18m, allowing
for multiple destructive assessments of above-ground biomass.
Sowing density was 250 seeds/m2 and in five genotypes, an
additional low-density treatment (125 seeds/m2) was added to
increase the range of above-ground biomass. The experiment
comprised 60 experimental plots in total (three replicates of 15
genotypes sown at 250 seeds/m2 and five genotypes sown at 125
seeds/m2), orientated North-South and sown in a randomized
complete block design.

Eight destructive above-ground biomass sampling events
were undertaken at different phenological stages from tillering
to maturity. Plant development stage was recorded at each
above-ground sampling event, using the Zadoks development
scale (Zadoks et al., 1974; Table 1). Above-ground biomass was
determined from shoots cut at ground level from the central six
rows of each plot along 1.0m in length (sample area of 1.08
× 1.0m = 1.08 m2). The dry weight was determined from the
samples after drying at 65◦C until reaching a constant dry weight.
LiDAR measurements with the Phenomobile Lite were obtained
on the same day or immediately prior to an above-ground
biomass sampling event. For the LiDAR analysis, we selected the

TABLE 1 | Date and Zadoks growth stage (average for all the plots) for the eight

above-ground biomass sampling events for EXP3 at Ginninderra Experiment

Station, Canberra ACT in 2015.

Date Zadoks Stage

2015/09/11 Z21 Tillering

2015/09/24 Z31 Stem elongation

2015/10/07 Z32 Stem elongation

2015/10/14 Z42 Flag leaf visible

2015/10/23 Z55 Head emergence

2015/10/30 Z65 Anthesis

2015/11/23 Z85 Grain-filling

2015/12/08 Z95 Maturity

Above-ground biomass samples were of 1.08 × 1.0m dimension and Phenomobile Lite

measurements were made on the same day and immediately prior to an above-ground

biomass sampling event.

section of the plot where the above-ground biomass sampling was
going to be performed (ca. 1.0 m2).

RESULTS

Canopy Height
The results from the canopy height validation (EXP1) are shown
in Figure 8. The optimum quantile was 0.955, as determined
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FIGURE 8 | Canopy height validation from EXP1 on the 23rd Oct. 2014. (A) RMSE between canopy height measured manually with three replicate measures of

canopy height per experimental plot and LiDAR canopy height derived from different quantile values, ranging from 0.8 to 1.0 at increments of 0.005, in the z

coordinate. (B) Scatter plot of canopy height measured manually and LiDAR canopy height for the optimum quantile of 0.955. Error bars are plus-minus the standard

deviation of the measurements for each genotype (three replicate experimental plots per genotype and 18 genotypes).

by the smallest RMSE between measurements made on 23rd
Oct. 2014 of canopy height measured manually and LiDAR
canopy height, derived from quantile values ranging from 0.8
to 1.0 at increments of 0.005 in the z coordinate (Figure 8A).
The coefficient of determination (r²) and RMSE between canopy
height measured manually and LiDAR canopy height, with data
aggregated by genotype (Figure 8B) was 0.993 and 0.017m
respectively (data from 23rd Oct. 2014), with a slope of 0.943.

Canopy Ground Cover
Canopy ground cover (GC) estimates derived from the LiDAR
using red reflectance and height were compared with GC derived
from the RGB images using the protocol described in Li et al.
(2010), for each experimental plot in EXP2 on 13th August 2014.
LiDAR red reflectance GC was strongly associated with RGB
GC (Figure 9A, r² = 0.82), and NDVI (Figure 9C, r² = 0.88),
but the LiDAR red reflectance tended to underestimate GC
compared with the RGB camera (slope = 0.80) and NDVI
(slope= 0.70). The association between NDVI and RGB GC was
also strong (Figure 9E, r²= 0.78). The LiDAR height GC resulted
in the smallest coefficient of determination values between RGB
GC (Figure 9B, r² = 0.46) and NDVI (Figure 9D, r² = 0.60).
The LiDAR height method clearly underestimated GC when
compared to the values obtained from the RGB images and
NDVI.

To evaluate the robustness of the GC methodologies as
the crop develops, GC derived from the LiDAR using both
red reflectance and height-based methods were compared to
GreenSeeker NDVI measurements for each experimental plot
in EXP2 on five different occasions from tillering to head
emergence (Figure 10). The results show a strong association
between LiDAR GC and NDVI in the early developmental stages
with coefficients of determination ranging from 0.77 to 0.90 for
the reflectance method and 0.60 to 0.82 for height, for the first
three dates. However, for the final two dates, the range of NDVI

and GC decrease and the association with NDVI weakens for
both methodologies, with r² ranging from 0.25 to 0.34. This
suggests that NDVI saturates at GC values above 0.8 as previously
reported (Prabhakara et al., 2015). The association between the
two LiDAR GC methodologies was highly linear (Figure 10C)
and the r² progressively increased from 0.61, for the first run on
the 13th August 2014, to 0.92 by canopy closure. However, the
height method tended to underestimate GCwhen compared with
the reflectance method, especially at the earlier dates.

Above-Ground Biomass
Data from EXP3 was used to evaluate and compare the two
LiDAR methodologies presented here for estimating above-
ground biomass. We evaluated the effects of the key parameters,
namely the voxel size for the 3DVI and the correction factor,
k, for the 3DPI, to determine the optimum values across the
different sample events (Figure 11). In both cases, the indices
were calculated for a range of parameter values (voxel sizes
from 10 to 200mm, at 10mm increments, and k from −3.5 to
2.25 at increments of 0.05). For each parameter value, at each
sampling event, the RMSE and r² were calculated for the linear
regression between 3DVI, 3DPI, and the field measurements of
above-ground biomass. For the 3DVI, the voxel size had a strong
effect on the r² and RMSE for all sample dates, with r² values
ranging from 0.0 to 0.64 depending on the sample date and voxel
size. 3DPI was less sensitive to changes in the k parameter for
each date and changes only marginally affected the coefficient
of determination, thereby providing more stable above-ground
biomass estimates across the evaluated range of k.

A summary of the optimal parameters that maximized r²
and minimized RMSE for each date, overall, pre-anthesis and
post-anthesis are presented in Table 2. Both 3DVI and 3DPI
performed poorly at earlier sample dates but improved as the
crop evolved. From 23 Oct 2015 (∼Z55), r² was greater and
RMSE lower for 3DPI, compared with 3DVI on all the single
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FIGURE 9 | Ground cover (GC) validation from EXP2 on 13th August 2014. Relationships between LiDAR-derived GC using (A) red reflectance and (B) height with

RGB-derived GC. Relationships between LiDAR-derived GC using (C) red reflectance and (D) height, with NDVI from the GreenSeeker. Relationship between

(E) RGB-derived GC and NDVI from the GreenSeeker. Solid lines represent the linear regression and broken line represents 1:1.

dates, except at Z91 when 3DVI was slightly superior to 3DPI

(r² = 0.67 vs. r². =.0.65). For both methods, the highest r² and
lowest RMSE were obtained on 23 Nov. (∼Z85), with r² = 0.67,
RMSE = 12.89% and r² = 0.76, RMSE = 11.04% for 3DVI
(voxel size = 50mm) and 3DPI (k = 0.50) respectively. When
combining all the sample events [Equations (2, 3)], r² increased to
0.81 for 3DVI and 0.73 for 3DPI, but the RMSE also increased to
31.65 and 38.25% respectively. Two relationships were calculated
for before and including anthesis [Z ≤ 65, Equations (4, 5)] and
post-anthesis [Z > 65, Equations (6, 7)]. For Z ≤ 65 both indices
performed similarly (r² = 0.86 and r² = 0.85, RMSE = 24.10%
and RMSE = 25.43% for 3DVI and 3DPI respectively), whereas
for Z> 65 3DPI outperformed 3DVI (r²= 0.68, RMSE= 13.33%
vs. r²= 0.54, RMSE= 16.06%).

Above-ground biomass was estimated using a combination
of Equations (4, 6) (Figure 12A) for 3DVI and Equations
(5, 7) for 3DPI (Figure 12B). In each case, the equations and
the optimal voxel size or k, for 3DVI and 3DPI respectively,
shown in Table 2, were used according to the approximate
phenological stage (i.e., Z ≤ 65 or Z > 65). The results suggest
a strong relationship across the sample dates between estimated
biomass and manual measurements, with better results for 3DPI
[r² = 0.927, RMSE = 19.82% (1.30 t/ha)] compared with 3DVI
[r²= 0.916, RMSE= 21.28% (1.39 t/ha)].

Biomassall = 2.18949 · 3DVI − 1.26579 (2)

Biomassall = 6.97721 · 3DPI + 0.69980 (3)

Biomasspre = 1.05604 · 3DVI + 0.34608 (4)

Biomasspre = 7.66505 · 3DPI + 0.65564 (5)

Biomasspost = 1.33361 · 3DVI + 2.96524 (6)

Biomasspost = 26.4468 · 3DPI − 1.42782 (7)

DISCUSSION

Field phenotyping still remains a bottleneck in the pipeline
of high throughput phenotyping (Araus and Cairns, 2014),
where limited options are readily available for performing
measurements of physiological traits at a large scale (Furbank
and Tester, 2011). The Phenomobile Lite was designed for
routine operation in large field experiments and breeding trials
and deployment in such applications has clear advantages
over current practice. For example, the Phenomobile Lite is
easily transported to the field, thereby overcoming a major
limitation of fixed phenotyping platforms where experiments
are constrained to their occupied space (Virlet et al., 2016;
Kirchgessner et al., 2017). When operated at walking speed, the
Phenomobile Lite can measure multiple traits simultaneously
on ∼800 10 m² plots/h and measurements can be repeated
at different developmental stages. The simple operation of
the platform ensures that non-technical users can operate
the instrument, and its design is amenable to automation
and autonomous navigation in future versions. Further, the
Phenomobile Lite is modular, enabling the integration ofmultiple
sensors. Herein we demonstrate the integration of a digital
RGB camera and an active NDVI sensor that operate in
coordination with the LiDAR using a standard spatial reference
provided by a GPS/IMU and present and validate LiDAR-
based algorithms for providing high-throughput non-destructive
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FIGURE 10 | GC validation from EXP2. Relationships between NDVI from

GreenSeeker and (A) LiDAR red reflectance GC and (B) LiDAR height GC.

(C) Relationship between the two LiDAR GC methodologies. Data points are

for each experimental plot (n = 270 in EXP2) on five different dates (13 Aug.

2014, 21 Aug. 2014, 8 Sept. 2014, 16 Sept. 2014, 23 Sept. 2014). For each

date, r² and slope (s) of the linear regression are shown.

estimates of canopy height, ground cover and aboveground
biomass.

High Accuracy of LiDAR Canopy Height
The low RMSE of 0.017m (r²: 0.993, slope: 0.943), between
LiDAR canopy height and canopy height measured manually
was consistent with other reported accuracies such as 0.018m
in wheat (Virlet et al., 2016), 0.024m in triticale (Busemeyer
et al., 2013), ∼0.03–0.06 in barley (Tilly et al., 2015), ∼0.05m
in rice (Tilly et al., 2014). Although estimating height from
the LiDAR is an obvious use of this instrument, this still
required determination of the top of the canopy and the ground
elevation. The top of the canopy was determined by analyzing
the frequency distribution of height from the LiDAR and using
the optimum quantile of 0.955, as defined in the EXP1 validation.
This optimum value is smaller than the value (0.99) obtained
in Friedli et al. (2016), using a terrestrial LiDAR scanner (TLS),
but it is close to the 0.95 quantile used originally in Deery et al.
(2014) and greater than the 0.9 used in (Hämmerle and Höfle,
2014). The TLS used in Friedli et al. (2016) and (Hämmerle
and Höfle, 2014) perform the scans from a single point, creating
spheres of point clouds where the laser beam penetrates into the
canopy from a tilt angle that is steeper as one gets away from the
scanning point. As the laser beam will not penetrate much into
the canopy after closure, most of the points will come from the
top of the canopy, which could explain the higher quantile when
compared with a line scanner system that scans from a nadir
perspective. In this study, the ground elevation was determined
for a given experimental column from the bare soil between
experimental plots. For closely-spaced experimental plots with
little to no bare soil in-between, the estimation of ground
elevation may fail and would require manual specification of the
distance from the LiDAR to the ground. Most published methods
for the estimation of canopy height from LiDAR or aerial
photography, are based on the determination of crop surface
models (Hoffmeister et al., 2013), which require determining the
ground elevation from a scan with bare soil. In this case, the
fixed geometry of the LiDAR with respects to the ground makes
this step unnecessary. Determination of the top of the canopy
assumes a uniform canopy, which may not be the case for plots
with poor establishment or lodging. In these cases, given the large
number of sampling points for canopy height, the plot could be
subdivided into smaller areas where the presented algorithm is
applied. This could provide ameasurement of the plot uniformity
with the statistical distribution of the plot height, which could
lead to an indicator of the plot health or lodging score.

Relationships between LiDAR-Based
Ground Cover, NDVI and RGB-Based
Ground Cover
Canopy GC is an important trait in wheat, relevant in early
developmental stages for both enhancing water-use efficiency
through minimizing water loss through soil evaporation and for
maximizing canopy light interception (Fischer, 1981; Richards
and Rebetzke, 2002; Rebetzke et al., 2004; Mullan and Reynolds,
2010). Digital RGB images and NDVI are commonly used
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FIGURE 11 | Determination of the optimum parameters for 3DVI (voxel size) and 3DPI (k) for the estimation of above-ground biomass from EXP3 at eight sample

events. For each parameter value, the r² (A,B) and relative RMSE (%) (C,D) of the linear regression with above-ground biomass were calculated. For 3DVI, voxel sizes

ranged from 10 to 200mm, at 10mm increments (A,C). For 3DPI, k ranged from −3.5 to 2.25 at increments of 0.05 (B,D).

TABLE 2 | Summary of maximum r² and minimum RMSE (%) and corresponding optimum voxel size, for 3DVI, and k, for 3DPI, for the linear regression between the

corresponding index and above-ground biomass measured in EXP3 for each sample event shown in Figure 11.

3DVI 3DPI

Sample date Zadoks development

stage

Optimum voxel size

(mm)

RMSE (%) r² Optimum k RMSE (%) r²

2015-09-11 Z23 50 37.48 0.19 2.25 34.99 0.02

2015-09-24 Z31 110 24.07 0.50 −1.50 23.46 0.48

2015-10-07 Z32 165 31.26 0.50 −0.75 32.73 0.45

2015-10-14 Z42 160 18.30 0.44 2.0 20.21 0.32

2015-10-23 Z55 75 13.61 0.53 1.50 12.52 0.60

2015-10-30 Z65 55 13.90 0.59 0.50 10.94 0.74

2015-11-23 Z85 50 12.89 0.67 0.50 11.04 0.76

2015-12-08 Z91 95 14.04 0.67 1.50 14.29 0.65

Overall All 130 31.65 0.81 −1.50 38.25 0.73

Overall pre-anthesis ≤Z65 80 24.10 0.86 −0.50 25.43 0.85

Overall post-anthesis >Z65 75 16.06 0.54 0.75 13.33 0.68

Optimum parameters are also calculated for all the sampling dates (overall), pre-and including anthesis and post-anthesis.

for quantifying GC and can provide relatively high-throughput
(Rebetzke et al., 2013a). However, there are potential issues
with both approaches. As a passive sensor, RGB imaging
could be adversely impacted by the light conditions (over
and underexposure) and, as the crop develops, classifying the

green vs. non-green pixels could also be problematic because
of shadowing from the canopy or senescence (Yu et al.,
2017). The GC measurements made using active NDVI sensors,
such as the GreenSeeker R© (Trimble, USA), are not impacted
by light conditions but they can be negatively impacted by
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FIGURE 12 | Relationships between above-ground biomass and LiDAR estimations of biomass from (A) 3DVI and (B) 3DPI, using Equations (4, 6) for 3DVI and [5]

and [7] for 3DPI. Each equation was applied across multiple sample dates according to the nominal phenological stage of each sampling date (i.e., Z ≤ 65 or Z > 65).

Refer to Table 2 for the optimal voxel size or k, for 3DVI and 3DPI respectively (i.e., Z ≤ 65 or Z > 65). Sampling dates are represented with different colored symbols.

the soil reflectance (Huete, 1988). Further, when used for
the determination of GC, variation in canopy greenness can
influence the measurement of NDVI, resulting in potentially
reduced accuracy in the presence of different nitrogen status
or during the onset of senescence (Hansen and Schjoerring,
2003).

In this paper, we have shown that LiDAR can be used in two
different ways to determine GC: (1) using red reflectance from
the LiDAR’s red laser to separate vegetation from soil; and (2)
using height as a threshold to determine the vegetation above that
height. These two approaches were tested and compared with
GC estimated from RGB images and NDVI. The limitations for
NDVI as mentioned earlier apply to the LiDAR red reflectance,
namely varying soil reflectance and varying canopy greenness.
For instance, a wet, dark soil could lead to low reflectance values
that could be close to the threshold used for vegetation. In
the case of vegetation, the onset of senescence or presence of
chlorosis could lead to elevated red reflectance with values similar
to the soil. The use of LiDAR height for GC avoids these two
issues, but the approach is problematic when plants are small
and their height is proximal to soil undulations such as furrows.
A combination of both approaches depending on crop height
could be employed to accurately measure ground cover from
emergence through to maturity.

At the initial crop stages, GC estimated from LiDAR red
reflectance presents a comparable alternative to RGB images or
NDVI (Figures 9A,C). The use of RGB images for GC, whilst
potentially simple and cost effective to acquire, still require image
capture for each plot and data processing using existing image
processing algorithms (e.g., Casadesús et al., 2007; Li et al.,
2010). Both tasks require human intervention and are potentially

prone to errors and subjectivity, which makes necessary the
development of robust automatic segmentation algorithms and
processing pipelines (Yu et al., 2017). The use of active sensors,
such as LiDAR or GreenSeeker, have the potential advantage of
reliability under a range of light conditions. For measurements
collected from stem elongation to post-canopy closure, LiDAR
height GC offers advantages over NDVI due to the absence of
signal saturation. This saturation was evident in the plateau in
NDVI that occurred around anthesis in EXP2 (23 Sept. 2014; see
Figure 10), similar to the evolution of NDVI reported elsewhere.
For example, Rebetzke et al. (2016) reported the evolution of
NDVI and LiDAR, in relation to canopy stay green, from pre-
anthesis to maturity, where NDVI reached a plateau pre-anthesis
and decreased during grain-filling. In this case, the alternative of
using LiDAR height GC avoids this issue and can still provide an
estimate of ground cover with non-green vegetation.

LiDAR Predictions of Biomass Were
Strongly Associated with Above-Ground
Biomass
The capacity to non-destructively estimate above-ground
biomass using LiDAR is a critical outcome of this work, given
the lack of rapid and non-destructive alternatives, especially after
canopy closure in wheat. An additional motivating factor for this
work was to overcome the limitations of NDVI for estimating
aboveground biomass, namely, its saturation after canopy
closure and the confounding influences of canopy greenness
and soil reflectance. We tested two different algorithms for
the determination of aboveground biomass from LiDAR. The
first approach tested (3DVI), was based on the estimation of
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volumetric quantification of the above-ground biomass. This
was performed through voxelization of the LiDAR point cloud
and counting the number of voxels occupied by the canopy.
For the second approach (3DPI), the vertical distribution
of the LiDAR returns through the canopy were analyzed to
develop a canopy density profile. That profile was integrated,
resulting in the fraction of LiDAR points intercepted by the
canopy.

Both 3DVI and 3DPI were strongly correlated with above-
ground biomass after and including spike emergence (Figure 12),
thereby overcoming limitations of using NDVI post canopy
closure (Huete, 1988; Hansen and Schjoerring, 2003). The 3DPI
outperformed the 3DVI after spike emergence (Z55, 23 Oct
2014), reaching a maximum coefficient of determination of 0.76
and minimum RMSE of 11.04% during grain-filling. Optimum
parameters were also determined for all the data points across
all the sample events resulting in a strong association (r² = 0.81
for 3DVI and r² = 0.73 for 3DPI) but also increased RMSE
(>30%). The determination of combined optimum parameters
for the samplings before and after anthesis revealed that prior
to anthesis both indices performed similarly (r² > 0.85 and
RMSE<26%), but after anthesis 3DPI provided superior results
(r² = 0.68 vs. r² = 0.54). Aggregating the data from all sample
events pre and including anthesis and post-anthesis and applying
the corresponding relationships [Equations (4–7)] to each of the
sampling dates provided improved results, with slightly better
results for 3DPI (r² = 0.93, RMSE = 19.82%) when compared
with 3DVI (r²= 0.92, RMSE= 21.28%; Figure 12). These results
are in line with previous studies which use relationships between
height and biomass on wheat with r² = 0.88 (Eitel et al., 2014)
and rice with r² = 0.9 (Tilly et al., 2014) or that combine height
and vegetation indices with r² = 0.84 (Bendig et al., 2015) and
r² = 0.85 (Tilly et al., 2015). The results provide evidence that
the proposed method can operate over a broader range of dry
biomass (up to 20 t/ha in this study vs. ∼5t/ha Eitel et al.,
2014; Tilly et al., 2015). Despite the considerable capacity of both
3DVI and, in particular, 3DPI, to quantify relative differences
in above-ground biomass at full canopy closure, information
about the phenological stage (pre and including anthesis or
post anthesis) was still required to select the equations with the
greatest prediction power.

Themain limitation of both indices was their weak correlation
with biomass at early growth stages. This problem is similar to
the determination of GC using height. In both cases, a fraction of
the canopy closest to the ground is ignored to avoid including
rough terrain or furrows, created at sowing, thus contributing
to an underestimation of above-ground biomass and GC at early
growth stages.We feel that this limitation is minor, particularly as
more meaningful physiological information from biomass comes
from measurements taken from stem elongation to anthesis
(e.g., Shearman et al., 2005). Destructive measurements taken at
these stages are subject to many sources of error (e.g., the small
subsection of the plot and the repeated handling of the samples
during drying and weighing contribute to error) and cannot be
taken at regular intervals; the LIDAR approaches overcome these
issues, thereby providing greater confidence in the estimates
obtained. It is possible however that an algorithm that separated

plants from soil, by 3D reconstruction of the terrain for example,
would potentially provide better estimations of above-ground
biomass and GC at early growth stages to complement the
promising results obtained here.

It is important to highlight that the LiDAR estimates of
biomass are mainly driven by changes in the bio-volume
of the canopy, as measured by the LiDAR sensor and then
represented in the 3D point cloud. Despite the strong association
of the proposed LiDAR indices with above-ground biomass,
this method cannot explicitly account for changes in biomass
resulting from remobilisation from the vegetative to the
reproductive organs during grain-filling or even changes in tissue
density. For example, a low final biomass resulting from biotic
or abiotic stress during grain-filling may not be picked up by
these indices, unless changes in the volume of the heads (i.e., an
indirect measurement of grain size and grain number) become
evident and detectable in the biovolume estimates or the 3D
profile. Besides, the application of these methodologies in very
dense canopies, where the upper layers intercept most of the
points, preventing the laser beam to penetrate into the lower
parts of the canopy, will present an underestimation of biomass
and a poorer description of the canopy architecture from the
LiDAR point cloud. These limitations may be overcome by
using alternative sensor technologies that measure the water
content or the canopy bulk density, which would help monitor
the status of grain-filling or provide estimates of the density
or plant organs. The potential synergies between LiDAR and
hyperspectral imaging (Geipel et al., 2014; Bendig et al., 2015;
Tilly et al., 2015) or microwave sensing could enable the
development of new multi-sensor indices which would measure
changes in the canopy density as it develops or provide an insight
of the occluded layers in the canopy, providing more robust
estimates of above-ground biomass.

CONCLUSIONS

We have demonstrated the capacity for non-destructive and
accurate high-throughput measurement of canopy height,
ground cover and above-ground biomass in the field using
LiDAR. The Phenomobile Lite, presented herein, was designed
for simple operation and cost-effective use on large field
experiments. Themain sensor is the LiDAR, but the Phenomobile
Lite can accommodate additional instruments including a
GreenSeeker, for NDVI, and a RGB digital camera; other sensing
platforms can be added in future. A custom-developed web
interface was developed for data processing by the non-technical
user, enabling rapid and simple data extraction.

The deployment of the Phenomobile Lite within genetics,
physiology, and agronomy studies, or plant breeding programs
will enable the non-destructive measurement of canopy height,
GC, and above-ground biomass on a larger scale than
typically undertaken, by overcoming the resource-intensive
nature of manually measuring these traits. Further, sampling
will encompass the entire area of the plot to reduce sampling
and increase precision than previously with portions of the
canopy. The non-destructive nature of the measurements
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will allow monitoring crop growth through time and the
development of new dynamic traits from time series analysis
that may provide a deeper understanding of phenotypic and
genotypic variation for complex traits associated with growth and
development.
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