
fpls-09-00247 March 1, 2018 Time: 15:52 # 1

PERSPECTIVE
published: 05 March 2018

doi: 10.3389/fpls.2018.00247

Edited by:
Lam-Son Tran,
RIKEN, Japan

Reviewed by:
Mostafa Abdelwahed Abdelrahman,

Tohoku University, Japan
Jin A. Kim,

Rural Development Administration,
South Korea

*Correspondence:
Carmela R. Guadagno
cguadagn@uwyo.edu

Specialty section:
This article was submitted to

Plant Abiotic Stress,
a section of the journal

Frontiers in Plant Science

Received: 05 December 2017
Accepted: 12 February 2018

Published: 05 March 2018

Citation:
Guadagno CR, Ewers BE and

Weinig C (2018) Circadian Rhythms
and Redox State in Plants: Till Stress

Do Us Part. Front. Plant Sci. 9:247.
doi: 10.3389/fpls.2018.00247

Circadian Rhythms and Redox State
in Plants: Till Stress Do Us Part
Carmela R. Guadagno1* , Brent E. Ewers1,2 and Cynthia Weinig1,2,3

1 Department of Botany, University of Wyoming, Laramie, WY, United States, 2 Program in Ecology, University of Wyoming,
Laramie, WY, United States, 3 Department of Molecular and Cellular Life Sciences, University of Wyoming, Laramie, WY,
United States

A growing body of evidence demonstrates a significant relationship between cellular
redox state and circadian rhythms. Each day these two vital components of plant
biology influence one another, dictating the pace for metabolism and physiology.
Diverse environmental stressors can disrupt this condition and, although plant scientists
have made significant progress in re-constructing functional networks of plant stress
responses, stress impacts on the clock-redox crosstalk is poorly understood. Inter-
connected phenomena such as redox state and metabolism, internal and external
environments, cellular homeostasis and rhythms can impede predictive understanding
of coordinated regulation of plant stress response. The integration of circadian clock
effects into predictive network models is likely to increase final yield and better predict
plant responses to stress. To achieve such integrated understanding, it is necessary to
consider the internal clock not only as a gatekeeper of environmental responses but
also as a target of stress syndromes. Using chlorophyll fluorescence as a reliable and
high-throughput probe of stress coupled to functional genomics and metabolomics will
provide insights on the crosstalk across a wide range of stress severity and duration,
including potential insights into oxidative stress response and signaling. We suggest the
efficiency of photosystem II in light conditions (Fv

′/Fm
′) to be the most dynamic of the

fluorescence variables and therefore the most reliable parameter to follow the stress
response from early sensing to mortality.

Keywords: circadian rhythms, ROS, redox state, plant stress response, chlorophyll a fluorescence

INTRODUCTION

The link between the circadian clock and oxygenic metabolism is likely to have originated with the
rise in oxygen concentration 3 billion years ago, when early photosynthetic bacteria started to use
water as an electron donor. Given the lack of redox systems and the loss of an endogenous clock
in archaeal taxa living in the absence of oxygen, the co-evolution of cellular clockwork and aerobic
metabolism seems extremely probable (Schippers et al., 2013). It is thus reasonable to expect the
Great Oxidation Event would cause selection for organisms capable of respiring and/or evolving
molecular oxygen, with the most successful organisms acquiring Reactive Oxygen Species (ROS)
removal systems to avoid relegation to anaerobic niches (Edgar et al., 2012).

Although the clock/redox state relationship lasts for the entire life of a plant, our current
understanding of it is very limited. We present current advances in the study of the clock/redox
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state association in plants with particular attention to the
influence of environmental stressors on this dynamic duo. We
advocate for the use of chlorophyll a fluorescence, not only to
monitor the plant physiological status during and after stress, but
also to gain relevant information on possible clock alterations
caused by this disturbance.

PLANT CIRCADIAN RHYTHMS

All living things on Earth encounter daily oscillations in
environmental factors. A diverse range of organisms has evolved
an endogenous clock, which permits anticipation of predictable
fluctuations in environmental conditions arising from the daily
rotation of our planet (McClung, 2006), enabling organisms
to coordinate the timing of biological processes with the
environmental conditions (Pittendrigh, 1960). The clock may
be entrained by diverse external inputs, providing circadian
(circa, about, and dian, a day) rhythms with a periodicity
of approximately 24-h (DeCoursey et al., 2000; Green et al.,
2002), which persist under constant conditions (de Mairan, 1729;
Salome and McClung, 2004; Harmer, 2009; McClung, 2011;
Guerriero et al., 2012). The resonance between endogenous clock
and exogenous cycles affects performance (Todd et al., 2003;
Dodd et al., 2005; de Montaigu et al., 2015; de Montaigu and
Coupland, 2017), as does quantitative (naturally occurring) clock
variation (Salmela et al., 2016; Rubin et al., 2017). The clock can
be differentially affected by external cues over 24-h. Based on
the time of day, the gating property of the clock causes different
amplitude in the transcriptional responses of clock-regulated
genes to the same environmental stimulus (Wilkins et al., 2009,
2010; Grundy et al., 2015).

The clock drives temporal gene expression with physiological
consequences, such as gas exchange, from individual to
ecosystem scales (Resco de Dios and Gessler, 2017) and many
aspects of plant development and its interactions with the
environment (Dodd et al., 2005; Gibon et al., 2006; Khan
et al., 2010; Edwards et al., 2011, 2012; Kerwin et al., 2011;
Wulund and Reddy, 2015; Resco de Dios, 2017; Hubbard
et al., 2018). At dawn, the clock enhances the resistance to
oxidative species produced during the light-harvesting processes
(Doherty and Kay, 2010), it is responsible for part of the
signaling that governs stomata opening (Hotta et al., 2007),
and it controls the mobilization of carbohydrates at dusk
(Graf and Smith, 2011). The clock also causes hormonal waves
influencing life-history traits, such as plant size at reproduction
(Hanano et al., 2006) and floral development (Somers et al.,
1998; Doyle et al., 2002; Song et al., 2012). Clock modulation
for several hormones is characterized in the model organism
Arabidopsis thaliana, and some of these hormones have been
recently shown to mediate a response to changes in light/dark
cycles for controlled environments (Nitschke et al., 2016).
In Arabidopsis, about 30% of the transcriptome is clock-
regulated in day/night growing conditions (Covington et al.,
2008). This percentage rises to 80% in free running settings
(Barak et al., 2000; Haydon et al., 2013; Nagel et al., 2015).
This crucial role for the clock has been confirmed for other

dicots (Ramos et al., 2005; Wilkins et al., 2009; Yon et al., 2012;
Marcolino-Gomes et al., 2014); while metabolic rhythmicity has
been shown in monocot crops (Filichkin et al., 2011; Calixto et al.,
2015).

While they were originally viewed as mere clock outputs,
metabolic oscillations have now been shown to feed back to
the clock (Harmer, 2009; Schippers et al., 2013), resulting
in a complex and fine-tuned cellular network (Gallego and
Virshup, 2007; Pruneda-Paz and Kay, 2010; Sanchez et al.,
2011). For instance, the circadian clock tunes both timing
and capacity of sugar production via photosynthesis but, at
the same time, sugar signals entrain the clock (Haydon et al.,
2013). Importantly, plants’ nutritional status seems to feed back
to the circadian clock, with the most relevant impacts for
nitrogen and iron assimilation (Gutiérrez et al., 2008; Chen et al.,
2013). Indeed nitrogen transporters are up regulated at night in
drought stressed plants to counter-act lower water uptake rates
(Greenham et al., 2017). Currently, redox mechanisms seem to
be the best candidate to set the rhythms for this biochemical
oscillator.

ROS HOMEOSTASIS

Redox state indicates the balance of oxidized versus reduced
forms of electron donors and acceptors in a cell. When plants
interact with the surrounding environment, the redox state is
determined mainly by sudden production of highly reactive
molecules, trigging signaling at a systemic level (Woodson, 2016).
Reactive Oxygen Species (ROS) are inevitable by-products of
aerobic metabolism and electron transport processes. Plants
produce ROS because of the electron-transfer to and from
molecular oxygen taking place in chloroplasts, mitochondria,
and plasma membranes (Baxter et al., 2014). Peroxisomes
are also involved in oxygen metabolism as signal mediators,
regulating an array of oxidases-catalases to maintain H2O2
balance (Bonekamp et al., 2009). These reactive molecules are
harmful when their generation exceeds their elimination. ROS
can extensively damage all biomolecules – from lipids to proteins
to nucleic acids – possibly leading to cell death (Ahmad et al.,
2008). However, the perpetuation of a ROS signal, from the site
of stress origin to the target of response, is crucial for coping
with environmental stimuli (Bailey-Serres and Mittler, 2006).
Therefore, a complex network of enzymatic and non-enzymatic
antioxidants continuously scavenges excess ROS: the activity
of these scavengers de facto translates into ROS homeostasis
at the cellular level under favorable conditions (Doherty and
Kay, 2010; Gilroy et al., 2014; Kangasjärvi and Kangasjärvi,
2014).

A number of studies have shown that the redox state is both
regulated by and acts as a feedback on the endogenous clock
under several environmental conditions (Krishnan and Pereira,
2008; Stangherlin and Reddy, 2013; Milev et al., 2015). The
presence of ubiquitous sinks for H2O2 (peroxiredoxin protein
family) supports the hypothesis of prevailing interlinks among
ROS, metabolic pathways and the clock (Edgar et al., 2012; Yon
et al., 2012; Hoyle and O’Neill, 2015). Rhythmic oscillations in
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ROS production seem to be altered under stress, as a consequence
of redox feedbacks; yet, several components of redox-signaling
pathways in plant cells remain undescribed (Suzuki et al., 2012;
Kangasjärvi and Kangasjärvi, 2014).

CLOCK AND REDOX STATE: IN GOOD
TIMES AND IN BAD TIMES

The use of clock mutants has been critical in identifying circadian
regulation of ROS homeostasis under several environmental
conditions (Baxter et al., 2014; Greenham and McClung, 2015).
ROS production and the activity of enzymatic scavengers have
been shown to synchronously peak at specific times of the
day (Lai et al., 2012). At the cellular level, a functioning clock
directly regulates the redox state, coordinating the temporal
activity of several scavengers. Fluctuations in one or multiple
environmental factors affect the link between the clock and
plant redox state eventually influencing growth, development
and metabolism at the whole-plant level (Ahmad et al.,
2008; Das and Roychoudhury, 2014; Gyöngyösi and Káldi,
2014).

Cellular redox state and circadian rhythms influence one
another continuously and diverse environmental stressors will
most likely impact both traits. When plant cells are healthy
and completely functional, cellular homeostasis is actively
maintained, and plants are in a dynamic equilibrium with
the environment (Strasser, 1988). Under this equilibrium,
the relation between redox state and circadian rhythms
is effective, with a functional clock resonating with the
environmental cycles (Figure 1A – working clock). Any
significant change in the environmental conditions triggers
what is commonly known as ‘oxidative stress,’ a sudden
change in the redox state compromising cellular homeostasis
(Cramer et al., 2011). This state of disequilibrium seems to
affect antioxidant enzymes gated by the clock (Lai et al.,
2012), slowing scavenging activity and leading to elevated
ROS levels (Figure 1B – unknown clock activity, question
mark). Through a phase of recovery (Figure 1C – unknown
clock activity, question mark), plants frequently reach a
new dynamic equilibrium after stress exposure (Figure 1D).
During recovery, RNA metabolism and post-transcriptional
gene silencing appear to play key roles in resetting both the
epigenome and transcriptome, but it remains unclear how the
circadian clock responds at this stage (Crisp et al., 2016).
ROS dynamics in the recovery phase are likewise ambiguous
in plants (Einset et al., 2007; Ahuja et al., 2010; Zhang
and Kay, 2010; Obata and Fernie, 2012), primarily because
these molecules are highly reactive and have a short half-
life (Ahmad et al., 2008; Suzuki et al., 2012). Quantifying
ROS and antioxidant pools is challenging due to measurement
artifacts and to the occurrence of small to moderate changes in
some component pools with stress (Queval et al., 2008; Noctor
et al., 2016). Protein- and metabolomics allow for consistent
quantification of lipid and protein peroxidation or glutathione
accumulation to estimate ROS-dependent changes (Kranner
et al., 2006; Noctor and Foyer, 2016; Abdelrahman et al., 2017).

However, fine-resolved transcriptomic data may be the best
means to characterize the mechanistic response to ROS
production and scrubbing under abiotic stress (Noctor et al.,
2012).

There are potentially beneficial aspects to stress, for instance
stimulating improved resistance to future stress (Larcher, 1980).
A stress can be harmless if a plant manages to rapidly alter
its homeostasis, adjusting metabolism, structure, and function
to acclimate to altered conditions (Figure 1D – working clock)
(Tsimilli-Michael et al., 1996). In both humans and rodents,
stressors have been shown to lead to hormesis, appropriately
priming organisms for future stress response (Foster and
Kreitzman, 2014; Fleta-Soriano and Munné-Bosch, 2016). In
the same manner, plants seem to retain a memory of the
stress, improving their ability to respond to future variations
in environmental conditions (Fleta-Soriano and Munné-Bosch,
2016) (Figure 1E – working clock). Possibly, RNA turnover
contributes to acclimation and stress memory, but there is no
clear understanding of how this mechanism competes with
the epigenetics in memory development (Crisp et al., 2016).
While clock function is retained, phase shifts are commonly
associated with proximal stress response (Figures 1D,E).
However, changes in clock gene frequencies can be also
part of an adaptive evolutionary response, as in crop plants
undergoing selection for agronomically desirable traits (Kevers
et al., 2004; Yarkhunova et al., 2016). In short, after an
initial destabilization, plants acclimate to the stress or improve
their resistance to it, to the extent that physiological systems
can buffer the changes in its redox state (Figures 1A–E).
However, if the limits of plant tolerance are exceeded, then
the stress becomes destructive, leading to permanent damage,
loss of productivity or death (Figure 1F – absence of the
clock).

While in rodents the connection between the circadian
clock and stress response is well characterized (Koch et al.,
2016), plant clock responses from early stress sensing to death,
and its potential for re-setting after stress occurrence is still
unclear (Figures 1B,C) (Grundy et al., 2015; Wulund and
Reddy, 2015). Several stochastic models have successfully
predicted clock activity at the molecular level in response to
predictable variation in environmental cues (Ruoff et al., 2007;
Resco et al., 2009; Domjian and Rand, 2011; Kosová et al.,
2011). However, circadian clocks also experience extrinsic
noise, namely irregular fluctuations in the environment,
which are mostly omitted from current process models
(Pokhilko et al., 2013; Guerriero et al., 2014; De Caluwé
et al., 2016). Yet, synchronized metabolic responses driven
by the core oscillator seem to be fundamental in plant
response to environmental stress (Sanchez et al., 2011).
Based on studies in mammals and algae, it seems probable
that acute oxidative stress can reset the clock, resulting in
the concurrent activation of a network of circadian genes
that will propagate an antioxidant, cell survival response
(Tamaru et al., 2013). This hypothesis considers H2O2 as a
signal transducer, relaying information about the external
environment to the circadian pacemaker. Susceptibility
to oxidative stress through disruption of the circadian
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FIGURE 1 | Anticipated redox state and circadian rhythms response to abiotic stress in plants. When cells are healthy, plants are in a dynamic equilibrium with the
environment and the clock promptly resonates with environmental cycles (A). At stress occurrence, changes in the redox state compromise cellular homeostasis,
leading to a state of disequilibrium, with almost unknown consequences on the clock (B). During a phase of recovery or strain, plants try to cope with the stress but
how the clock behaves during this time is still uncertain (C). A successful recovery will lead to a new dynamic equilibrium (acclimation) after stress exposure (D).
When acclimated, plants maintain a state of memory for which they will possibly experience fewer disturbances from the next stress event (E). In both acclimation
and memory state the clock will maintain its functions but very little is known on its possible phase shifts (D,E). On the contrary, if the stress becomes exceptionally
destructive, the clock will succumb, plants will not recover and die (F). Solid arrows point to the most certain consequences of stress occurrence; dotted lines point
to the possible consequences of recovery after stress; and dash/dotted lines point to the underlying mechanism of memory. Working clocks are coupled with
identified physiological states of equilibrium while clock with the question marks represent the states where clock behavior is completely unknown. The red cross
signifies the complete disruption of the clock when plants die. The yellow lightening bolt represents stress occurrence.

oscillator is another proposed mechanism linking ROS
and the expression of the circadian clock (Qian et al.,
2010).

We suggest more detailed studies during the recovery phase
from the stress (Figure 1C). Recovery is not merely a return
to the pre-stress state, but is instead a regulated mechanism,
and its resolution would help in predicting plant adjustments
to changing environmental conditions. Future research should
focus on determining if ROS levels after a stress event may
reset the periodicity of scavenger activity and affect clock gene
expression (Figure 1 – question marks). Moreover, it remains
unclear how the clock behaves in extremely stressed plants
close to mortality (Sanchez et al., 2011; Zhang et al., 2013;
Resco de Dios and Gessler, 2017). In this scenario, a functional
characterization of the effects of environmental noise on the core
oscillator is key to integrating metabolic information, such as
ROS dynamics, into current clock models (Einset et al., 2007;
Miller et al., 2010; Zhang and Kay, 2010; Obata and Fernie, 2012;
Haydon et al., 2013).

TESTING CLOCK/REDOX STATE
INTERACTION UNDER STRESS VIA
CHLOROPHYLL a FLUORESCENCE

Chlorophyll a fluorescence is a fast, non-invasive method
commonly used to assess plant performance (Baker, 2008;

Croce and van Amerongen, 2014). The fluorescence signal
(and its derived parameters) reliably mirror plant stress
response under biotic and abiotic stress, for stress of different
duration/intensity and across a variety of species, with higher
responsiveness in light than dark conditions (Lichtenthaler
et al., 1986; Baker and Rosenqvist, 2004; Woo et al., 2008;
Papageorgiou and Govindjee, 2011). Although excessive ROS
accumulation has been shown to occur together with changes
in fluorescence parameters (Aldea et al., 2006; Moradi and
Ismail, 2007) the direct mechanistic relation is still unclear (Gill
and Tuteja, 2010). So far, no predictive understanding of the
correlation between ROS and the fluorescence signal is possible
and the association will depend on the stress type, intensity and
duration.

In non-limiting light conditions, stress will differentially
affect the variable fluorescence signal (Fv) and fluorescence
derived variables, such as the efficiency of photosystem II
in light (Fv

′/Fm
′) and the Non-Photochemical Quenching

(NPQ) (Figure 2). Each parameter reflects a specific aspect of
photosynthetic activity, and in sum they depict a picture of the
state of the photosynthetic light harvesting machinery (Roháček,
2002; Maxwell and Johnson, 2004). For the entire spectrum
of stress response, Fv remains fairly constant (Figure 2 –
dotted line) until membrane failure at the cellular scale takes
place, proximally leading to death of the plant after a distal
cause such as severe drought (Guadagno et al., 2017). NPQ
(Figure 2 – solid line) is known to have a tight correlation with
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FIGURE 2 | Dynamics of chlorophyll a fluorescence and derived parameters in response to abiotic stress in optimal light conditions. On the x-axis, the stress level is
reported as a continuum between a minimum value at physiological equilibrium (green shadow), passing through early sensing (purple shadow) and possible
recovery (yellow shadow), till death (red shadow). The y-axis represents fluorescence in arbitrary units: dotted, dashed and solid lines representing Fv (variable
fluorescence signal), Fv

′/Fm
′ (maximum efficiency of photosystem II in light) and NPQ (Non-Photochemical Quenching), respectively. On the top part of the panel,

working clocks are reported for the most studied physiological states while clock with the question marks represent the states where clock behavior is completely
unknown. The red cross signifies the complete disruption of the clock when plants die.

increasing stress (both for duration and/or intensity) (Müller
et al., 2001; Demmig-Adams et al., 2014) until complete cellular
failure at which point Fv will decline to zero and the plant
is considered dead (Guadagno et al., 2017). Fv

′/Fm
′ seems

to be the most reliable parameter to follow stress response
dynamics from early sensing to mortality (Figure 2 – dashed
line). For instance, Fv

′/Fm
′ is able to capture the onset of the

stress (early sensing) and increases to compensate for limited
gas exchange due to stomatal closure with drought (Greenham
et al., 2017). This is an informative outcome because in the
past the theoretical maximum efficiency of PSII (Fv/Fm) has
always been considered the main indicator of plant stress
response (Murchie and Lawson, 2013). Typically, Fv/Fm values
decrease most significantly only under marked stress, when the
survival of plants may have already been irretrievably reduced
(Chen et al., 2015). On the other hand, Fv

′/Fm
′ dynamics

more closely follow stress dynamics and the relative changes in
redox state from early sensing to death in both conifers and
herbaceous plants (Guadagno et al., 2017) (Figure 2 – dashed
line).

We emphasize the diurnal timing of plant response to
abiotic stress can be critical, as we recently showed in
Brassica rapa under mild drought stress (Des Mairas, 2017;
Greenham et al., 2017). During the day, a phase shift in
expression pattern for genes related to photosystem efficiency
and light response pathways (e.g., Light Harvesting Chlorophyll
a/b Binding-LHCB2.2, Photosystem II Manganese Binding-PSBY)
was observed, consistent with the increase in Fv

′/Fm
′ (Greenham

et al., 2017). Diel changes in chlorophyll a fluorescence were
first shown in algae and phytoplankton (Prézelin and Ley, 1980;
Sorek et al., 2013). Later, the same fluorescence parameters
were observed to have rhythmicity in Arabidopsis mutants and
barley under constant blue and white light conditions (Litthauer
et al., 2015; Hussien et al., 2017), suggesting fluorescence as
a possible high-throughput marker for circadian rhythms in
plants as well as for changes in clock phase resulting from
stress.

CONCLUSION

During the last few years, several studies have confirmed
circadian rhythms in redox state across species, suggesting
the existence of a strong clock/redox interconnection.
Although it seems clear that redox state and the circadian
clock are interlocked in stress response, it remains unknown
if the clock is reset by stress and if any type of protective
acclimation is triggered at the cell level. In this perspective,
we propose that a timely avenue of research lies in
investigating the details of the recovery phase from the
stress. We suggest a more intensive use of chlorophyll
a fluorescence to assess variation in circadian rhythms,
and summarized the importance of fluorescence dynamics
at different stress levels. Fluorescence data as a high-
throughput screen, coupled with ROS analysis, proteomic,
metabolomics and gene expression, will inform and improve
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existing process models: acquiring realistic predictions for plant
responses to a changing environment and ultimately improving
breeding strategies.
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