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Recent times have seen an enormous growth of “omics” data, of which high-throughput

gene expression data are arguably the most important from a functional perspective.

Despite huge improvements in computational techniques for the functional classification

of gene sequences, common similarity-based methods often fall short of providing full

and reliable functional information. Recently, the combination of comparative genomics

with approaches in functional genomics has received considerable interest for gene

function analysis, leveraging both gene expression based guilt-by-association methods

and annotation efforts in closely related model organisms. Besides the identification

of missing genes in pathways, these methods also typically enable the discovery of

biological regulators (i.e., transcription factors or signaling genes). A previously built

guilt-by-association method is MORPH, which was proven to be an efficient algorithm

that performs particularly well in identifying and prioritizing missing genes in plant

metabolic pathways. Here, we present MorphDB, a resource where MORPH-based

candidate genes for large-scale functional annotations (Gene Ontology, MapMan bins)

are integrated across multiple plant species. Besides a gene centric query utility,

we present a comparative network approach that enables researchers to efficiently

browse MORPH predictions across functional gene sets and species, facilitating efficient

gene discovery and candidate gene prioritization. MorphDB is available at http://

bioinformatics.psb.ugent.be/webtools/morphdb/morphDB/index/. We also provide a

toolkit, named “MORPH bulk” (https://github.com/arzwa/morph-bulk), for running

MORPH in bulk mode on novel data sets, enabling researchers to apply MORPH to their

own species of interest.
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INTRODUCTION

Groups of genes involved in a common biological process
are often defined as pathways, which are traditionally
studied as if they were isolated groups. However, pathway
boundaries are inherently fuzzy which greatly compromises their
systematic delineation. In plants, the understanding of secondary
metabolism and stress regulated pathways is of paramount
importance and even though these pathways have been studied
extensively, discovering missing genes and understanding the
regulatory interrelations among them remains a fundamental
challenge.Moreover, despite more than two decades of functional
genomics research, the functions of most plant genes remain
unknown. These problems are exacerbated in newly sequenced
genomes and non-model organisms (Rhee and Mutwil, 2014).
Sequence similarity based tools such as Blast2GO (Conesa et al.,
2005; Conesa and Götz, 2008), BlastKOALA (Kanehisa et al.,
2016), PlantCyc’s EP2P (Schläpfer et al., 2017) and InterProScan
(Zdobnov and Apweiler, 2001; Jones et al., 2014), are often used
to provide a first clue about the function of a gene in a newly
sequenced and annotated genome. Other comparative genomics
methods aim to leverage annotation efforts in model organisms,
typically by utilizing clustering analysis, using e.g., OrthoMCL
(Li et al., 2003) or OrthoFinder (Emms and Kelly, 2015). After
the delineation of groups of homologous genes, annotations
are transferred between orthologs under the assumption that
evolutionary conservation implies a conserved function.

A complementary approach for gene function prediction
is to use “omics” data (e.g., transcriptomics and proteomics)
within an integrative analysis pipeline that builds on the
guilt-by-association (GBA) principle. GBA involves inferring
putative gene functions for unknown genes from genes with
known functions that show similar behavior across different
experimental conditions or data sets. For example, co-expression
based GBA with genes from known Gene Ontology (GO)
terms has been shown to be ubiquitously applicable across the
transcriptome of different species (Wolfe et al., 2005). Because
of the demonstrated general applicability of the GBA principle
and the fact that transcriptomic data is the most straightforward
’omics’ data to gather, there is an increasing usage of co-
expression networks for candidate gene prioritization in the plant
science community (Rhee and Mutwil, 2014; Serin et al., 2016).

A related methodology for in-depth analysis of gene
functions is comparative transcriptomics, in which evolutionary
relationships between genes are used to integrate expression
data across species (Movahedi et al., 2011, 2012; Hansen et al.,
2014). Such methods often use integrative network approaches
to allow discovery of conserved co-expressionmodules (Zarrineh
et al., 2011) across multiple species, again possibly leveraging
knowledge frommodel to non-model organisms. These networks
can often unveil missing pathway genes and regulators, as they
naturally cope with the fuzzy nature of pathway boundaries
while incorporating evolutionary relationships that can serve
as constraints and can discriminate between highly interesting
evolutionary conserved candidate genes and potential noise.
Indeed, it has been shown that comparative co-expression
networks may yield more accurate gene function predictions

(Hansen et al., 2014). Some important (comparative) co-
expression based tools for gene function analysis are ATTED-II
(Aoki et al., 2016), PlaNet (Proost and Mutwil, 2017), CORNET
(De Bodt et al., 2010; Van Bel and Coppens, 2017), AraNet (Lee
et al., 2015), MORPH (Tzfadia et al., 2012; Amar et al., 2015), and
CoExpNetViz (Tzfadia et al., 2016).

While co-expression based methods are extremely relevant
for gene function analysis, some important caveats are to
be noted. First and foremost, these networks are based on
correlation measures which are prone to spurious associations,
indirect functional links, and noise (both false positives and false
negatives) (Mutwil et al., 2011; Hansen et al., 2014). Therefore,
when analyzing large data sets, co-expression networks quickly
become dense, limiting their biological interpretability (Usadel
et al., 2009; Serin et al., 2016). Second, and associated with
these issues, is the problem of reproducibility, as many distinct
steps and filtering decisions have to be taken to produce a
co-expression network, while a standardized protocol does not
exist. Third, these networks are more suitable for inference of
biological processes than of molecular functions (Hansen et al.,
2014). Fourth, the conditions, tissues and perturbations used
in the expression compendium are also of great importance,
especially when one is interested in a specific tissue or condition-
dependent regulatory processes (Hansen et al., 2014; Serin et al.,
2016). Finally, co-expression analysis is expected to be more
suitable for genes and processes under strong transcriptional
control, whereas they are not well-suited for processes that are
mostly controlled at the translational or post-translational level.
For example, Kleessen et al. (2013) showed that co-expression
based GBA performs much better for primary and secondary
metabolism pathways than for hormone and cell wall related
biological processes. These reasons also make it desirable to
have some estimate of the performance of GBA on a particular
process of interest. A distinct andmore practical issue is thatmost
available tools (see above) cannot be easily applied to custom data
sets or novel species, limiting their usage to a handful of model
organisms.

MORPH (MOdule-guided Ranking of candidate PatHway
genes) is an algorithm for unveiling missing genes in biological
pathways (Tzfadia et al., 2012; Amar et al., 2015) and uses
multiple expression datasets and clustering thereof for the
prioritization of candidate genes. As with other gene expression
based GBA methods, it relies on an input set of ’bait’ genes
that are associated with the biological process of interest, and
uses the expression profiles of these bait genes across conditions
to prioritize candidate genes. MORPH uses clustering solutions
of the expression data to calculate a module partitioned co-
expression metric for each candidate gene with regard to the
input bait genes. Based on the input set of bait genes, MORPH
selects the optimal expression data—clustering combination
to be used for the prioritization of candidate genes. This
configuration learning step follows an approach commonly
known in machine learning as “model selection” (Guyon et al.,
2010). To this end, MORPH uses a leave-one-out cross validation
(LOOCV) procedure. For every gene gi in a given bait gene set G,
the MORPH algorithm is run with as input bait genes the set G′

defined as the set G with gi left out (i.e., G
′
= G \ {gi}). Using this
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bait gene set, the “self-rank” for gi is determined, defined as the
rank assigned to gi byMORPH using the setG′. The self-ranks for
every gi are collected and can then be plotted in a self-rank curve,
which shows for increasing rank threshold, the proportion of bait
genes with a rank higher than the threshold. The area under the
self-rank curve (AUSR) can then be used as a model selection
metric, as the data set—clustering combination that results in the
highest AUSR can be regarded as the one most appropriate to
use for GBA based candidate gene prioritization. Interestingly,
besides its use for model selection, this AUSR metric can also
be used as an estimate of the performance (and relevance) of
GBA based methods on a process of interest. While powerful
and with proven success, GBA and co-expression based methods
in general have not been fully exploited and their real value for
plant functional genomics is yet to be explored (Rhee andMutwil,
2014).

In this paper we extend and improve MORPH. We
present a new tool, called MorphDB, which covers more
organisms and functional annotations, and provides advanced
visualizations that can help researchers in performing genome-
wide comparative analyses for a series of model organisms. The
new analyses (genome-wide and comparative modes, functional
annotation of newly sequenced species) are explored using
multiple datasets and functional annotations. Gene-centric and
process-centric networks are used for visualization of predicted
candidate genes across species and functional categories, which is
instrumental in guiding knowledge discovery. Several examples
of use cases are shown, illustrating the potential of MorphDB
for gene discovery and advancing our understanding of plant
gene functions. The tool and the results are accessible via
a web interface: http://bioinformatics.psb.ugent.be/webtools/
morphdb/morphDB/index/. Besides, we offer a framework for
running genome-wide MORPH analyses, called “MORPH bulk”
(https://github.com/arzwa/morph-bulk), enabling researchers to
perform large scale MORPH analyses on their species and data
sets of interest.

MATERIALS AND METHODS

Expression Data Processing and
Functional Annotation Data
The functional annotation data for the model species was
retrieved from the PLAZA 3.0 comparative genomics platform
(Van Bel et al., 2012). For C. roseus and Z. marina, GO
annotations were acquired using InterProScan + InterPro2GO
and Blast2GO. The expression data and clustering solutions
used for A. thaliana, S. lycopersicum, S. tuberosum, O. sativa,
and C. roseus were those already configured for the MORPH
web tool (Amar et al., 2015). Expression data for M. truncatula
was obtained from the Medicago truncatula gene expression
atlas (Benedito et al., 2008). For P. trichocarpa expression data
from Shi et al. (2017) was used (GEO accession ID: GSE81077),
acquired as count tables. For Z. marina, RNA-Seq data from the
original genome project was used (Olsen et al., 2016), obtained
as both count and fragments per kilobase of exon per million
reads mapped (fpkm) data sets (GEO: GSE67579). All expression

data sets were filtered by gene-wise standard deviation, such that
∼75% of the genes were retained. All microarray data sets were
normalized using quantile normalization (Irizarry et al., 2003),
while all RNA-Seq data sets were normalized using the trimmed
mean of M-values (TMM) method (Robinson and Oshlack,
2010). Where expression data from previous MORPH releases
was used, the original clustering solutions were used as well.
Gene expression data sets that were not included in previous
MORPH analyses (M. truncatula, P. trichocarpa, and Z. marina)
were clustered using CLICK (Sharan and Shamir, 2000). For M.
truncatula, a metabolic clustering, with pathways as clusters, was
included as well.

MORPH Bulk Runs
To efficiently apply MORPH in a genome wide fashion,
a Python3.5 command line interface (CLI) was developed
named “morph-bulk.” The morph-bulk CLI uses the highly
computationally efficient MORPH C++ implementation
(v1.0.6) enabling very fast genome wide MORPH analyses. The
morph-bulk CLI enables performing MORPH bulk runs in
automatic pipeline mode or step by step, allowing full control
over the analysis pipeline. The morph-bulk CLI, including
installation instructions and a step-by-step protocol for MORPH
bulk analyses, is available at https://github.com/arzwa/morph-
bulk. We also provide a Singularity container (Kurtzer et al.,
2017) further ensuring portability of the software.

The analysis pipeline proceeds as follows: first, a new species
is automatically “added” to MORPH by generating the required
configuration files based on the input data (expression matrices
and corresponding clustering solutions). The different MORPH
jobs are then defined for a given functional annotation (e.g., GO
or MapMan) by taking the sets of genes annotated with a specific
ontology term for example, and using them as input bait genes.
MORPH is then run in bulk on all bait gene sets. Jobs with fewer
than 5 genes in all data sets are discarded since co-expression
based GBA methods are expected to give unreliable results for
few genes, especially in the module partitioned framework used
by MORPH. If desired, random MORPH bulk runs can then
be performed to perform permutation test based significance
assessment. In a random run, for each desired bait set size, n
random sets of bait genes are picked from a randomly chosen
data set and used in MORPH. The applied range of bait set
sizes was from 5 to 30 and the number of random bait sets to
analyze for each bait set size was set at 1,000. The corresponding
AUSR values are recorded and used to empirically estimate the
probability to observe AUSR value for a gene set size. This p-
value for a bait gene set of size S with observed AUSR∗ is then
defined as the fraction of occurrences of AUSR scores larger than
AUSR∗ among 1,000 random gene sets of size S. The empirical
probability distributions constructed in this fashion are shown
in Figure S1. We note that no considerable differences were
observed when using random gene sets drawn from the pool
of functionally annotated genes vs. random sets drawn from
the full genome (Figure S2). For extended annotation purposes,
these p-values were corrected for multiple testing using the
Benjamini and Hochberg procedure (Benjamini and Hochberg,
1995). After the main analysis, the results are summarized and
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extended functional annotations are generated. If desired, a
Resource Description Framework (RDF) graph forMorphDB can
be generated using the same CLI.

The MorphDB Database and Web Tool
MORPH bulk run data was parsed into an RDF graph using the
rdflib (v4.2.2) Python package. The main objects (subjects) in
the RDF graph are genes, gene sets (GO/MapMan terms), gene
families and scores of a gene for a specific gene set term. The
full list of predicates and objects is included in the about section
of the MorphDB website. The RDF graph as constructed using
rdflib was serialized to Turtle format [W3C recommendation
(W3C, 2014)] and loaded in a triple store using Apache Jena
(The Apache Software Foundation, 2011), queryable with the
SPARQL query language (W3C, 2008). For in-browser network
construction and visualization, the Cytoscape.js JavaScript library
was used (Franz et al., 2015).

RESULTS

MORPH Bulk Mode
The MORPH algorithm for candidate gene prediction uses as
input a set of genes known to belong to a specific pathway or to
have a common function (this set is referred to as the bait set) and
aims to propose and rank additional genes of the same function
or pathway. Expression profiles, their clustering solutions, and
biological networks are used in the prediction. We applied
MOPRH in a genome-wide fashion, hereafter called MORPH
bulk mode, on six important model organisms: Arabidopsis
thaliana, Medicago truncatula, Solanum lycopersicum, Solanum
tuberosum, Oryza sativa, and Populus trichocarpa, and two non-
model organisms, the recently sequenced seagrassZosteramarina
(Olsen et al., 2016) and the medicinal plant Catharanthus roseus.
In genome-wide runs, we provide as input toMORPH a genome-
scale functional annotation as acquired from public repositories
or popular software tools (e.g., Blast2GO or InterProScan). As
bait gene sets, Gene Ontology (GO) annotations (Ashburner
et al., 2000) were used, as well as MapMan annotations (Thimm
et al., 2004) when available. MORPH uses a machine learning
approach for performance estimation based on LOOCV and
reports the area under the self-rank curve (AUSR) as a metric
for the performance on a specific bait gene set. The AUSR ranges
from 0 to 1 (perfect score), but its reliability is strongly dependent
on the size of the bait gene set. Smaller sets are more likely to
have larger AUSR values by chance. Therefore, for each bait gene
set analyzed with MORPH, empirical p-values were computed
using a permutation test. For each candidate, MORPH calculates
a within-module Pearson correlation co-expression metric and
subsequently converts these values to z-scores, which enables a
common ranking across different modules. This z-score can then
be used to rank and select relevant candidates.

Investigating the overall performance of MORPH illustrates
its potential for gene function prioritization. Table 1 shows the
number of significant bait sets for different p-value thresholds.
MORPH performed best for A. thaliana, with 1,985 (66%) of the
3,005 GO terms and 279 (64%) of the 467 MapMan categories
showing significant AUSR scores (p < 0.05). For M. truncatula,

O. sativa and P. trichocarpa, a considerably smaller fraction of
the analyzed gene sets showed significant AUSR scores (43, 33,
and 24% respectively). For the Solanaceae species included (S.
lycopersicum and S. tuberosum), fewer bait sets had good scores,
probably due to a more limited GO annotation.

The performance of MORPH strongly depends on the
available functional annotation, the expression data, and the
clustering solutions. Interestingly, performance seems not to
differ dramatically among different GO sub-ontologies, namely
Biological Process (BP), Cellular Compartment (CC) and
Molecular Function (MF), as shown in Figure 1, indicating
that module-partitioned co-expression is manifest in every
sub-ontology. However, a closer look reveals that, with the
exception of O. sativa and P. trichocarpa, CC categories seem
to systematically have higher fractions of significantly scoring
gene sets. This observation may be explained by the fact
that in all species the average gene set size is larger for CC
GO categories than for BP or MF categories, e.g., 76 (CC)
compared to 53 (BP) and 58 (MF) for A. thaliana, or 64 (CC)
compared to 25 (BP) and 26 (MF) for M. truncatula. For
larger gene sets, the AUSR may be significant even when the
underlying co-expression strength is moderate. This can occur
when a large set of bait genes that shows moderate overall
co-expression contains some strongly co-expressed clusters
of genes, which is a scenario that is directly addressed by
the MORPH algorithm. While the BP ontology is probably
the most directly relevant for candidate gene prediction, the
other ontologies are also informative and hence included in
MorphDB.

Extending MORPH to Non-model
Organisms
We used MORPH in bulk mode to predict putative gene
functions for two non-model organisms, namely C. roseus and Z.
marina. As in-depth functional annotations are not available for
these organisms, we used established sequence-based algorithms
to obtain predicted GO terms. This is common practice when
analyzing newly sequenced organisms and non-model organisms
(Amar et al., 2014). Using the predicted GO terms as bait
sets, we applied MORPH using 5% FDR-corrected p-values for
determining sets with significant predictions. For significant
GO terms, we selected the top genes whose co-expression z-
score was larger than the 97.5% percentile of the theoretical
null distribution (z > 1.96). Our analysis resulted in 521 GO
terms that could be assigned to 18,842 genes for C. roseus. Of
these genes, 11,738 are currently unannotated, resulting in a
considerable improvement of the primary GO annotation for
these specific z-score cut-offs. For Z. marina, 794 GO categories
were significant, which could be assigned to 13,343 genes using
the same procedure as for C. roseus. Of these, 3,060 genes had no
GO terms assigned previously, again showing the potential of this
approach for improving automatically generated GO annotations
with putative gene functions.

The analysis above may result in a high false positive
rate and the resulting functional predictions are to be taken
as a set of possible annotations that should be further
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TABLE 1 | Number of bait gene sets (GO/MapMan) successfully analyzed with MORPH in bulk mode.

A. thaliana M. truncatula P. trichocarpa O. sativa S. lycopersicum S. tuberosum C. roseus Z. marina

GO # gene sets 3,005 2,461 2,903 2,528 1,232 1,540 907 1,272

p < 0.10 2,182 1,303 947 1,054 854 1,207 650 1,028

p < 0.05 1,985 1,046 711 846 736 1,099 591 893

MapMan # gene sets 467 488 461 367 170 – – –

p < 0.10 312 299 150 152 125 – – –

p < 0.05 279 251 111 116 111 – – –

Only bait gene sets with 5 or more genes in an expression data set are analyzed. p-values were calculated based on the empirical probability distribution of AUSR values for the relevant

gene set size in the relevant species.

FIGURE 1 | Performance of MORPH in bulk mode for different GO sub-ontologies. (Left) MORPH bulk results partitioned by sub-ontology (BP, CC, and MF) for the

different species under study are shown. Light gray: the total number of analyzed bait gene sets with MORPH; dark gray: the number of significantly scoring (p < 0.05)

bait gene sets. (Right) Histograms of AUSR values for different sub-ontologies in A. thaliana (using the same colors as in the left plot).

tested. Nevertheless, we here show some specific examples
of how these results can be used for generating biological
hypotheses for C. roseus, for which the community is particularly
interested in specialized metabolism pathways. C. roseus is
an important medicinal plant that serves as a source for the

potent indole alkaloid chemotherapeutic compounds vinblastine

and vincristine (Almagro et al., 2015). Mining basic functional

annotation data will often not suffice for finding interesting

unknown regulators and pathway genes, while constructing
co-expression networks and analyzing them can become very

laborious and complicated. Mining functional annotations

extended by MORPH offers an alternative. For example,

considering transcription factors that are assigned by MORPH

to aromatic compound biosynthetic processes (GO:0019438

and similar categories), several interesting candidates are
suggested. Three top-scoring candidates (z > 3.0) are shown
in Table 2. These genes also had high scores for other

relevant GO terms, such as flavonoid and quercetin (also a

flavonoid) metabolism related terms as well as response to

wounding and other more general metabolism related terms
(O-methyltransferase, NAD binding, Thiamine pyrophosphate
(TPP) binding and malate metabolism). Flavonoids, as well as
other phenylpropanoid compounds, are well known for their
roles in plant defense (Falcone Ferreyra et al., 2012; Tohge
et al., 2013). Plant defense responses are well known to correlate
with enhanced production of many specialized metabolites,
and such responses have been described for C. roseus as well
(Menke et al., 1999; Roepke et al., 2010). This simple example
demonstrates how extended functional annotations acquired by
MORPH can provide a valuable starting point for identifying
interesting candidates for pathways of interest in non-model
genomes.

MorphDB
We created a web-based tool named MorphDB that provides
access to MORPH’s predictions for the six important model
organisms discussed above, as well as for C. roseus and Z.
marina. For each species, MorphDB stores the top 100 candidates
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TABLE 2 | Subset of transcription factors in C. roseus associated with

GO:0019438 (aromatic compound biosynthetic process) by MORPH and their

respective other predicted GO terms.

Gene Description GO Term

Caros015806.1 ethylene-responsive

transcription factor

1B-like

GO:0019438, aromatic compound

biosynthetic process

GO:0004471, malate dehydrogenase

(decarboxylating) activity

GO:0008171, O-methyltransferase

activity

GO:0006108, malate metabolic

process

GO:0009611, response to wounding

GO:0051287, NAD binding

Caros031076.1 AP2/ERF

domain-containing

transcription factor

GO:0019438, aromatic compound

biosynthetic process

GO:0008171, O-methyltransferase

activity

GO:0080044, quercetin

7-O-glucosyltransferase activity

GO:0080043, quercetin

3-O-glucosyltransferase activity

GO:0052696, flavonoid

glucuronidation

GO:0009813, flavonoid biosynthetic

process

Caros003741.1 WRKY transcription

factor

GO:0019438, aromatic compound

biosynthetic process

GO:0030976, thiamine

pyrophosphate binding

GO:0008171, O-methyltransferase

activity

GO:0052696, flavonoid

glucuronidation

Only bait gene sets with an AUSR score with corresponding adjusted p-value < 0.05 are

included and only their candidate genes with z> 1.96 are annotated with the GO category

under consideration.

with z-scores that exceed the 90% percentile of the theoretical
null distribution (z > 1.28) for all gene sets with empirical p-
value < 0.10. The primary goal of MorphDB is to integrate
the MORPH candidate gene predictions across species using
orthogroup data as retrieved from the PLAZA comparative
genomics platform (Proost et al., 2009; Van Bel et al., 2012).
Both candidates and bait genes are linked to their respective
homologous candidates and to bait genes in the other species
in the MorphDB database. MorphDB allows querying in a gene
centric manner, enabling users to provide a set of genes of
interest and view the GO categories or MapMan terms that
were predicted for it by MORPH. Moreover, gene sets can
also be queried and visualized in a comparative network, i.e.,
across species, which allows identification of candidate genes
that manifest conserved signatures across different species (e.g.,
Figure 2). This analysis can be used for highlighting candidates
in less thoroughly studied species based on knowledge in other
organisms. Lastly, MorphDB has a SPARQL endpoint, allowing

arbitrarily complex queries of the database. We illustrate the use
and the potential of the tools in MorphDB in the next section.

Prioritizing Regulatory Genes for the Plant
Defense Response
In this section, we focus on plant defense responses and related
specialized metabolism pathways in A. thaliana, M. truncatula,
O. sativa, S. tuberosum, and S. lycopersicum.A case study is shown
as an illustration of the potential of MorphDB.

Figure 2 shows a comparative network generated by
MorphDB for the GO category “defense response” (GO:0006952)
in A. thaliana (AUSR = 0.15, p = 0.02, 269 bait genes), and O.
sativa (AUSR = 0.23, p = 0.02, 150 bait genes). The network
shows mainly signaling related genes for A. thaliana, with
high-scoring gene families such as HOM03D000133 and
HOM03D000006 (Leucine-rich receptor (LRR) kinases, all
z > 2.42), HOM03D000003 (protein kinases, all z > 2.76),
HOM03D002639 (phospolipase-like proteins, both z > 2.50)
and HOM03D000144 (autoinhibited Ca2+ ATPases, both z >

2.90). Besides these putatively signaling related genes, putative
transcription factors (TFs) are retrieved, such as WRKY TFs
(HOM03D000029) and MYB domain TFs (HOM03D000008).
Both AT2G23320 (WRKY15, z = 2.71) and AT5G49520
(WRKY48, z = 2.40) have been associated with the response
to chitin, an import plant-defense elicitor from fungal origin
(Libault et al., 2007). WRKY48 was also shown to be involved in
the defense response to bacterial pathogens (Xing et al., 2008).
Both TFs have been associated with diverse stress responses
in another large scale computational study (Heyndrickx and
Vandepoele, 2012). Both AT3G23250 (MYB15, z = 2.44) and
AT1G18570 (MYB51, z = 2.42) have been associated with
a whole range of hormone metabolism and stress response
related processes. MYB51 regulates glucosinolate biosynthesis
(Gigolashvili et al., 2007; Frerigmann et al., 2012), specialized
metabolites that act as antiherbivore compounds in plants.
MYB15 has been associated with the response to chitin (Libault
et al., 2007).

In addition, a highly remarkable group of predicted candidates
from the HOM03D000146 gene family is retrieved. These genes
belong to the EXO70 gene family, which are putative exocyst
subunits conserved in land plants (Chong et al., 2010; Wang
et al., 2010). EXO70B1 has been associated with autophagy-
related transport in A. thaliana (Kulich et al., 2013), a crucial
process in diverse plant stress responses. Interestingly, Zhao
et al. (2015) reported that exo70B1 mutants showed enhanced
defense response through activation of a nucleotide binding
domain and leucine-rich repeat-containing (NLR)-like disease
resistance protein. Their study provides a link between the plant
immune system and the exocyst complex, and they suggest
that pathogen effectors may manipulate and interact with the
plant secretion machinery. The MORPH results presented here
support this hypothesis, as for two species, independently,
exocyst related proteins are among the top 100 candidates with
acceptable to high scores (AT5G58430 (EXO70B1): z = 2.58,
AT3G14090 (EXO70D3): z = 2.57, AT5G59730 (EXO70H7): z
= 2.69 and OS01G69230: z = 1.44). Looking at the processes
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FIGURE 2 | Comparative MorphDB network of GO:0006952 (defense response) for A. thaliana and O. sativa. A. thaliana genes are indicated in green, O. sativa genes

indicated in yellow. Only genes among the top 100 candidates for this process with a homologous relation to another candidate in MorphDB for the same GO

category are included for clarity. Large diamonds represent the bait gene set and candidate genes are connected to their respective bait set. Bait genes themselves

are omitted for clarity as well. Genes with no functional description are depicted transparently. Transporters are shown as squares and kinases and receptors as

octagons. All other candidate genes are shown as circles. Gene families are shown as gray compound nodes and orthology relationships as dashed edges.

for which EXO70B1 was predicted as a candidate in A.
thaliana (Table 3), several defense related GO terms are obtained
(e.g., GO:0010337, GO:0031347, GO:0009410, GO:0009816, and
GO:0008219), further supporting the hypothesis of exocyst
related functions in plant defense responses.

Other candidate gene predictions that are consistent over
species can be retrieved, such as the candidates found in gene
families HOM03D000609 and HOM03D000757. The first family
again consists of an already known defense response regulator in
A. thaliana, namely AT2G22300 (z = 2.48) encoding CAMTA3
(Calmodulin-binding transcription activator), a putative CAM
binding TF. CAMTA3 mutants (camta3-1 and camta3-2)
show enhanced defense responses, with a high fraction of
defense associated upregulated genes in both the camta3-1
and camta3-2 mutant (Galon et al., 2008). The homolog in
O. sativa (OS04G31900) predicted by MORPH for GO:000652
has not been associated with defense responses before. Lastly,
HOM03D000757 also has a candidate predicted in both A.
thaliana (AT4G34390, z = 2.82) and O. sativa (OS11G10050,
z = 1.44). AT4G34390 encodes an extra-large GTP-binding
protein (XLG2), which has been shown to be involved in root
morphogenesis (Ding et al., 2007) and defense responses to
bacteria (Zhu et al., 2009). Again, as expected, the rice homolog
predicted by MORPH has not been functionally characterized,
and the MORPH prediction supports the hypothesis of a
conserved function in defense responses.

A more specific defense response related GO term that is
also well represented in MorphDB is GO:0002679 (respiratory
burst involved in defense response). The respiratory burst is
defined as the biological process in which elevated metabolic
activity increases oxygen consumption, and through an NADH
dependent system reactive oxygen species are formed (ROS),
such as hydrogen peroxide (Kawano, 2003). Again, a MorphDB
network was constructed, with a focus on comparative aspects
between A. thaliana (AUSR= 0.74, p < 0.005) andM. truncatula
(AUSR = 0.54, p < 0.01) (Figure 3). Below, we focus on several
interesting observations that can be made from the network.

Interestingly, several unknown Arabidopsis genes are
predicted as candidates for this biological process. For
HOM03D002351, both Arabidopsis gene family members
are among the top 100 MORPH predicted candidates. This gene
family consists of proteins with a domain of unknown function
(DUF) DUF4228, which is functionally uncharacterized. One
of the two Arabidopsis duplicates (AT1G28190) has been linked
to defense response related processes (JA and SA signaling and
hypersensitive response) in a large-scale systems biology study
(Heyndrickx and Vandepoele, 2012). The other Arabidopsis
homolog (AT5G12340) has no functional term assigned and
was predicted to have a mitochondrial subcellular localization,
which is consistent with a putative role in respiratory burst.
Interestingly, the unknown gene AT5G12340 is ranked higher
(z = 3.01) than the previously associated homolog AT1G28190

Frontiers in Plant Science | www.frontiersin.org 7 March 2018 | Volume 9 | Article 352

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zwaenepoel et al. Gene Function Prioritization With MORPH

TABLE 3 | GO terms for which AT5G58430 is among the top 100

MORPH-predicted candidates.

GO term Term description # bait

genes

AUSR p-value z-score

GO:0009612 Response to mechanical

stimulus

53 0.58 0.00 2.80

GO:0010337 Regulation of salicylic acid

metabolic process

7 0.48 0.00 2.84

GO:0031347 Regulation of defense

response

100 0.42 0.00 2.62

GO:0043623 Cellular protein complex

assembly

25 0.42 0.00 2.33

GO:0052541 Plant-type cell wall cellulose

metabolic process

25 0.38 0.00 2.46

GO:0004805 Trehalose-phosphatase

activity

13 0.35 0.00 2.51

GO:0046351 Disaccharide biosynthetic

process

14 0.32 0.00 2.28

GO:0001871 Pattern binding 15 0.30 0.00 2.56

GO:0009410 Response to xenobiotic

stimulus

45 0.29 0.00 2.30

GO:0005484 SNAP receptor activity 19 0.26 0.00 2.72

GO:0009816 Defense response to

bacterium, incompatible

interaction

43 0.23 0.00 3.15

GO:0009652 Thigmotropism 5 0.51 0.01 2.52

GO:0009312 Oligosaccharide

biosynthetic process

15 0.27 0.01 2.48

GO:0005991 Trehalose metabolic process 16 0.26 0.01 2.28

GO:0008219 Cell death 43 0.16 0.01 2.13

GO:0006952 Defense response 269 0.15 0.02 2.58

GO:0009690 Cytokinin metabolic process 21 0.18 0.03 2.14

Only GO terms with an AUSR score corresponding to p < 0.05 are shown.

(z = 2.71). An inspection of the phylogenetic tree of this
gene family on PLAZA shows that the family is angiosperm
(Magnoliophyta) specific and that it is conserved across this
clade. The tree indicates that the duplication event from which
the Arabidopsis homologs are derived precedes the divergence of
the angiosperms, as inferred from the position of the Amborella
trichopoda homologs in the tree. The ancient origin of this gene
family and the conservation across the angiosperm tree indicates
a high likelihood of functional importance.

HOM03D002694 is another gene family without functional
characterization. The Arabidopsis gene AT1G19020 has been
shown to be involved in oxidative stress signaling in a mutant
phenotype screen (Luhua et al., 2008), and has been associated
with response to wounding, response to insect, SAR, SAmediated
signaling and defense response to fungus by Heyndrickx and
Vandepoele (2012). A gene centric search in MorphDB shows
that AT1G19020 is predicted for a plethora of stress and defense
response related GO terms (Table S1). A similar gene centric
search in MorphDB reveals that the functionally uncharacterized
Medicago homolog MT4G106500 is also predicted to be
involved in anthocyanin-containing compound biosynthesis
(GO:0009781). Anthocyanin biosynthesis is regulated by JA
signaling (Shan et al., 2009) and anthocyanin accumulation is

associated with enhanced herbivore resistance in Arabidopsis
(Khan et al., 2016).

Interestingly, tetraspanin gene family members
(HOM03D000276) are also present in the network for both
Arabidopsis andMedicago. This family of membrane proteins has
been mainly studied in the context of development (Wang et al.,
2012, 2015) and it has been suggested that tetraspanins have a
role in cell-cell communication during various developmental
stages. However, it has been observed that many tetraspanins
remain active also in mature differentiated tissues (Wang et al.,
2015), and some tetraspanin promoter regions contain defense
and pathogen response elements (Wang et al., 2015). Therefore,
it is tempting to suggest a role in defense response through
sensing of pathogen related molecules, because of the putative
role in developmental cell-cell communication, the presence of
extracellular loops and the presence of pathogen response related
promoter elements. Also, this gene family has undergone several
duplications and has been shown to contain putative functionally
divergent clades (Wang et al., 2012), supporting the possibility of
tetraspanins involved in defense response.

Lastly, we analyzed jasmonate (JA) and salicylic acid (SA)
signaling. SA is one of the major important signaling molecules
involved in the plant defense response (Loake and Grant, 2007;
Zhang et al., 2013). SA biosynthesis is activated in response to
a wide variety of phytopathogens, and SA mediated signaling
results in the accumulation of pathogenesis-related (PR) proteins
(Loake and Grant, 2007). It is the main molecular signal
involved in the establishment of both local and systemic acquired
resistance (SAR) (Loake and Grant, 2007). Besides its roles in
defense and disease resistance, SA is known to regulate leaf
senescence, flowering and thermogenesis (Dempsey et al., 2011;
Zhang et al., 2013). Next to salicylic acid (SA) mediated signaling,
JA mediated signaling is the main signaling pathway for plant
defense responses (Turner et al., 2002; Chini et al., 2007), and
JA is thought to be the key regulator for many specialized
metabolism pathways that are triggered during biotic and abiotic
stresses. Investigation of functional gene sets for SA and JA
mediated signaling is therefore highly relevant in the context
of this case study. MORPH results for GO:0009753 (response
to jasmonic acid stimulus) for A. thaliana (AUSR = 0.27, p <

0.01), and S. tuberosum (AUSR = 0.26, p < 0.01) were based on
gene sets of 236 and 74 bait genes respectively. GO:0009863 (SA
mediated signaling pathway) scored an AUSR of 0.44 (p < 0.001)
for a bait set consisting of 132 genes. The network of the top 50
candidates is shown in Figure 4.

Again, the results illustrate the strength of a systematic
network-based analysis. Many relevant gene families are
identified, some with putative TF genes. For example, the
MYB TF family HOM03D00008, which has roles in defense
related specialized metabolism (Liu et al., 2015), is represented
in the network. The gene family HOM03D000011 consists of
AP2/ERF domain containing TFs, and the selected Arabidopsis
gene AT4G17500 in this family has been associated with defense
response (Fujimoto et al., 2000; Onate-Sanchez and Singh, 2002).
HOM03D000029 consists of WRKY domain containing TFs,
already discussed above. HOM03D000015 consists of NACDNA-
binding domain containing proteins of which NAC16, NAC53
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FIGURE 3 | MorphDB network for GO:0002679 (respiratory burst involved in defense response) for A. thaliana (green) and M. truncatula (blue). For more details, see

Figure 2.

and TCV-interacting protein are among the top 50 candidates
for either GO:0009751 or GO:0009863 in A. thaliana, all with
high co-expression scores (z > 2.59). NAC proteins are widely
recognized for their roles in hormonally controlled development
(Aida et al., 1997; Xie et al., 2000) and biotic and abiotic stress
responses (Lee et al., 2012; Nuruzzaman et al., 2013) (NAC53).
However, A. thaliana consists of 92 NAC domain containing
proteins, of which many have not been functionally characterized
in detail. NAC16 has been previously associated with the response

to chitin in Arabidopsis (Libault et al., 2007) and TCV-interacting
protein has been shown to physically interact with turnip crinkle
virus (TCV) viral capsids (Ren et al., 2000; Donze et al.,
2014).

Interestingly, a family of RING type ubiquitin ligases is also
present in the network (HOM03D000017). Both AT5G27420,
which encodes CNI1 (Carbon/Nitrogen Insensitive1, also
known as ATL31), and AT3G05200 (ATL6) have been
linked previously to both fungal (Libault et al., 2007) and
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FIGURE 4 | MorphDB network for GO:0009753 (response to jasmonic acid stimulus) and GO:0009863 (SA mediated signaling pathway) for A. thaliana (green) and S.

tuberosum (pale yellow). Only the top 50 candidates for each GO category that have a homolog predicted in some other species in MorphDB are shown. For more

details, see Figure 2.

bacterial defense responses (Maekawa et al., 2012). The potato
homolog ST03G034300 has not been functionally characterized
before, and MORPH strongly suggests a role in defense
responses. An interesting family of oxidoreductases is obtained
(HOM03D000012) as well, with putative functions in flavonoid
biosynthesis. Lastly, this network also shows several totally
uncharacterized genes, of which the Arabidopsis genes in the
gene family HOM03D002351 seem particularly interesting.
AT1G28190 was previously associated with various hormonal
signaling pathways, among which JA, SA, abscisic acid and
ethylene signaling, by Heyndrickx and Vandepoele (2012)
consistent with a putative role in defense. The homolog
AT5G12340 could only be associated with a mitochondrial
subcellular localization and is further not functionally
characterized. A gene centric query for AT5G12340 shows
that this gene is predicted as a high scoring candidate for a
plethora of stress response related processes, further supporting
a role in stress and defense responses. MORPH results as
integrated in MorphDB can provide useful hints on gene
functions for these enigmatic genes.

DISCUSSION

MORPH is a highly valuable tool that was developed to accelerate
gene discovery for plantmetabolic pathways (Tzfadia et al., 2012).
Here, the usage of MORPH was reconsidered from a genome-
wide and comparative viewpoint in the context of functional

annotation, gene discovery and candidate gene prioritization.
Besides a framework and methodology for performing MORPH
bulk runs, a database and web-tool, MorphDB, were developed,
providing a friendly interface for consulting MORPH bulk
predictions of several important model organisms. An additional
key feature of the MORPH bulk framework is the easy usage
of MORPH with custom data or novel species, which was
not supported previously. This enables researchers to use the
MORPH algorithm for candidate gene prioritization in their
species of interest and tackle specific research questions.

In this work, we showed how MORPH can be used in

bulk mode on non-model species, such as C. roseus and Z.
marina, for rendering putative gene functions by analyzing bait

gene sets defined by GO categories. MORPH bulk runs were

also performed for already well-studied organisms, with gene

discovery and candidate gene prioritization as main objectives.

The integration of MORPH results with homology information
from PLAZA (Van Bel et al., 2012) in MorphDB, as well
as the comparative network visualization implemented in the

same web tool, were shown to be particularly useful for gene

discovery and candidate gene prioritization objectives in a

case study concerning the plant defense response in several

model organisms. MORPH predictions were shown to be well
in accordance with the literature or with previously described
functions for homologous genes. Our findings illustrate the
relevance and potential of MORPH predictions, which may be
particularly interesting for the elucidation and prioritization of
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regulatory roles for members of large gene families of TFs and
signaling genes. Indeed, while sequence similarity and profile
based methods can easily assign a TF, kinase or receptor function
based on characteristic protein domains, it remains virtually
impossible to associate these functions with specific biological
processes. For these purposes, gene expression based methods
provide a valuable solution, as we have shown in our defense
response case study.

In our case study, we showed how the integration of
MORPH results with homology data strengthens hypotheses
suggested by MORPH and renders highly interesting candidates.
A key advantage of using MORPH in a comparative fashion
over classical comparative co-expression networks such as in
CoExpNetViz (Tzfadia et al., 2016) is that using candidate genes
predicted byMORPH instead of the top co-expressed genes based
on Pearson correlation values is expected to render a higher
fraction of relevant candidates. Even relatively small MORPH
networks can therefore render highly relevant candidates, with
the additional advantage that these networks are relatively
simple and easy to browse using the MorphDB resource. Here
also the tight integration with the PLAZA platform accelerates
biological discovery. The case study also showed that the visual
highlighting of classes of regulatory sets of genes (defined here
as: transcription factors, kinases, receptors and transporters) is
quite helpful in browsing the networks for interesting candidates
efficiently. As functional biology is shifting to multi-omics
analyses, interest in network based approaches for visualization
and data exploration is growing. Networks enable the easy
integration of additional experimental data such as proteomic,
protein-protein interaction or genetic interaction data.

We expect that gene expression based analysis will remain
central in the future elucidation of gene functions. High
performing candidate gene prioritization algorithms such as
MORPH enable further in-depth exploration of the functional
gene space in both model and non-model organisms, but the

results remain largely speculative. This is in contrast with
similarity based approaches, which render quite confident gene
functions but result in a largely incomplete exploration of the
functional landscape of a genome. Applying MORPH in bulk
mode enables researchers to generate a large set of putative
functional associations, which can be further mined by domain
experts to address specific research questions, as we have shown
in this work. Moreover, the MorphDB web resource enables
efficient querying and interpretation in a comparative setting,
further aiding researchers in the prioritization of candidate genes
for their particular biological process of interest.
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Kulich, I., Pečenková, T., Sekereš, J., Smetana, O., Fendrych, M., Foissner, I.,

et al. (2013). Arabidopsis exocyst subcomplex containing subunit EXO70B1

is involved in the autophagy-related transport to the vacuole. Traffic 14,

1155–1165. doi: 10.1111/tra.12101

Kurtzer, G. M., Sochat, V., and Bauer, M. W. (2017). Singularity:

scientific containers for mobility of compute. PLoS ONE 12:e0177459.

doi: 10.1371/journal.pone.0177459

Lee, S., Seo, P. J., Lee, H.-J., and Park, C.-M. (2012). A NAC transcription

factor NTL4 promotes reactive oxygen species production during

drought-induced leaf senescence in Arabidopsis. Plant J. 70, 831–844.

doi: 10.1111/j.1365-313X.2012.04932.x

Lee, T., Yang, S., Kim, E., Ko, Y., Hwang, S., Shin, J., et al. (2015). AraNet

v2: an improved database of co-functional gene networks for the study of

Arabidopsis thaliana and 27 other nonmodel plant species. Nucleic Acids Res.

43, D996–D1002. doi: 10.1093/nar/gku1053

Li, L., Stoeckert, C. J., and Roos, D. S. (2003). OrthoMCL: identification

of ortholog groups for eukaryotic genomes. Genome Res. 13, 2178–2189.

doi: 10.1101/gr.1224503

Libault, M., Wan, J., Czechowski, T., Udvardi, M., and Stacey, G. (2007).

Identification of 118 Arabidopsis transcription factor and 30 ubiquitin-ligase

genes responding to chitin, a plant-defense elicitor.Mol. PlantMicrobe Interact.

20, 900–911. doi: 10.1094/MPMI-20-8-0900

Liu, J., Osbourn, A., and Ma, P. (2015). MYB transcription factors as

regulators of phenylpropanoid metabolism in plants. Mol Plant. 8, 689–708.

doi: 10.1016/j.molp.2015.03.012

Loake, G., and Grant, M. (2007). Salicylic acid in plant defence—the players and

protagonists.Curr. Opin. Plant Biol. 10, 466–472. doi: 10.1016/j.pbi.2007.08.008

Luhua, S., Ciftci-Yilmaz, S., Harper, J., Cushman, J., and Mittler, R. (2008).

Enhanced tolerance to oxidative stress in transgenic arabidopsis plants

expressing proteins of unknown function. Plant Physiol. 148, 280–292.

doi: 10.1104/pp.108.124875

Maekawa, S., Sato, T., Asada, Y., Yasuda, S., Yoshida, M., Chiba, Y., et al.

(2012). The Arabidopsis ubiquitin ligases ATL31 and ATL6 control the defense

response as well as the carbon-nitrogen response. Plant Mol. Biol. 79, 217–227.

doi: 10.1007/s11103-012-9907-0

Menke, F. L., Parchmann, S., Mueller, M. J., Kijne, J. W., and Memelink, J. (1999).

Involvement of the octadecanoid pathway and protein phosphorylation

in fungal elicitor-induced expression of terpenoid indole alkaloid

biosynthetic genes in catharanthus roseus. Plant Physiol. 119, 1289–1296.

doi: 10.1104/pp.119.4.1289

Movahedi, S., Van Bel, M., Heyndrickx, K. S., and Vandepoele, K. (2012).

Comparative co-expression analysis in plant biology. Plant Cell Environ. 35,

1787–1798. doi: 10.1111/j.1365-3040.2012.02517.x

Movahedi, S., Van de Peer, Y., and Vandepoele, K. (2011). Comparative network

analysis reveals that tissue specificity and gene function are important factors

influencing the mode of expression evolution in Arabidopsis and rice. Plant

Physiol. 156, 1316–1330. doi: 10.1104/pp.111.177865

Mutwil, M., Klie, S., Tohge, T., Giorgi, F. M., Wilkins, O., Campbell, M.

M., et al. (2011). PlaNet: combined sequence and expression comparisons

across plant networks derived from seven species. Plant Cell 23, 895–910.

doi: 10.1105/tpc.111.083667

Nuruzzaman, M., Sharoni, A. M., and Kikuchi, S. (2013). Roles of NAC

transcription factors in the regulation of biotic and abiotic stress responses in

plants. Front. Microbiol. 4:248. doi: 10.3389/fmicb.2013.00248

Olsen, J. L., Rouzé, P., Verhelst, B., Lin, Y.-C., Bayer, T., Collen, J., et al. (2016).

The genome of the seagrass Zostera marina reveals angiosperm adaptation to

the sea. Nature 530, 331–335. doi: 10.1038/nature16548

Oñate-Sánchez, L., and Singh, K. B. (2002). Identification of Arabidopsis ethylene-

responsive element binding factors with distinct induction kinetics after

pathogen infection. Plant Physiol. 128, 1313–1322. doi: 10.1104/pp.010862

Proost, S., and Mutwil, M. (2017). Planet: comparative co-expression

network analyses for plants. Methods Mol. Biol. 1533, 213–227.

doi: 10.1007/978-1-4939-6658-5_12

Proost, S., Van Bel, M., Sterck, L., Billiau, K., Van Parys, T., Van de Peer, Y.,

et al. (2009). PLAZA: a comparative genomics resource to study gene and

genome evolution in plants. Plant Cell 21, 3718–3731. doi: 10.1105/tpc.109.

071506

Ren, T., Qu, F., and Morris, T. J. (2000). HRT gene function requires interaction

between a NAC protein and viral capsid protein to confer resistance to turnip

crinkle virus. Plant Cell 12, 1917–1926. doi: 10.1105/tpc.12.10.1917

Frontiers in Plant Science | www.frontiersin.org 12 March 2018 | Volume 9 | Article 352

https://doi.org/10.1104/pp.109.147215
https://doi.org/10.1199/tab.0156
https://doi.org/10.1111/j.1365-313X.2007.03335.x
https://doi.org/10.1016/j.virol.2013.11.018
https://doi.org/10.1186/s13059-015-0721-2
https://doi.org/10.3389/fpls.2012.00222
https://doi.org/10.1093/bioinformatics/btv557
https://doi.org/10.3389/fpls.2012.00242
https://doi.org/10.1105/tpc.12.3.393
https://doi.org/10.1016/j.febslet.2008.02.037
https://doi.org/10.1111/j.1365-313X.2007.03099.x
https://doi.org/10.3389/fpls.2014.00394
https://doi.org/10.1104/pp.112.196725
https://doi.org/10.1093/biostatistics/4.2.249
https://doi.org/10.1093/bioinformatics/btu031
https://doi.org/10.1016/j.jmb.2015.11.006
https://doi.org/10.1007/s00299-003-0591-z
https://doi.org/10.1104/pp.16.00278
https://doi.org/10.1105/tpc.113.111039
https://doi.org/10.1111/tra.12101
https://doi.org/10.1371/journal.pone.0177459
https://doi.org/10.1111/j.1365-313X.2012.04932.x
https://doi.org/10.1093/nar/gku1053
https://doi.org/10.1101/gr.1224503
https://doi.org/10.1094/MPMI-20-8-0900
https://doi.org/10.1016/j.molp.2015.03.012
https://doi.org/10.1016/j.pbi.2007.08.008
https://doi.org/10.1104/pp.108.124875
https://doi.org/10.1007/s11103-012-9907-0
https://doi.org/10.1104/pp.119.4.1289
https://doi.org/10.1111/j.1365-3040.2012.02517.x
https://doi.org/10.1104/pp.111.177865
https://doi.org/10.1105/tpc.111.083667
https://doi.org/10.3389/fmicb.2013.00248
https://doi.org/10.1038/nature16548
https://doi.org/10.1104/pp.010862
https://doi.org/10.1007/978-1-4939-6658-5_12
https://doi.org/10.1105/tpc.109.071506
https://doi.org/10.1105/tpc.12.10.1917
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zwaenepoel et al. Gene Function Prioritization With MORPH

Rhee, S. Y., and Mutwil, M. (2014). Towards revealing the functions of all genes in

plants. Trends Plant Sci. 19, 212–221. doi: 10.1016/j.tplants.2013.10.006

Robinson, M. D., and Oshlack, A. (2010). A scaling normalization method

for differential expression analysis of RNA-seq data. Genome Biol. 11:R25.

doi: 10.1186/gb-2010-11-3-r25

Roepke, J., Salim, V., Wu, M., Thamm, A. M. K., Murata, J., Ploss, K., et al.

(2010). Vinca drug components accumulate exclusively in leaf exudates

of Madagascar periwinkle. Proc. Natl. Acad. Sci. U.S.A. 107, 15287–15292.

doi: 10.1073/pnas.0911451107

Schläpfer, P., Zhang, P., Wang, C., Kim, T., Banf, M., Chae, L., et al. (2017).

Genome-wide prediction of metabolic enzymes, pathways, and gene clusters

in plants. Plant Physiol. 173, 2041–2059. doi: 10.1104/pp.16.01942

Serin, E. A. R., Nijveen, H., Hilhorst, H. W. M., and Ligterink, W. (2016). Learning

from co-expression networks: possibilities and challenges. Front. Plant Sci.

7:444. doi: 10.3389/fpls.2016.00444

Shan, X., Zhang, Y., Peng, W., Wang, Z., and Xie, D. (2009). Molecular mechanism

for jasmonate-induction of anthocyanin accumulation in Arabidopsis. J. Exp.

Bot. 60, 3849–3860. doi: 10.1093/jxb/erp223

Sharan, R., and Shamir, R. (2000). CLICK: a clustering algorithm with applications

to gene expression analysis. Proc. Int. Conf. Intell. Syst. Mol. Biol. 8, 307–316.

Shi, R., Wang, J. P., Lin, Y.-C., Li, Q., Sun, Y.-H., Chen, H., et al. (2017).

Tissue and cell-type co-expression networks of transcription factors and

wood component genes in Populus trichocarpa. Planta 245, 927–938.

doi: 10.1007/s00425-016-2640-1

The Apache Software Foundation (2011). Apache Jena. Wakefield, MA : The

Apache Software Foundation.

Thimm, O., Bläsing, O., Gibon, Y., Nagel, A., Meyer, S., Krüger, P., et al. (2004).

MAPMAN: a user-driven tool to display genomics data sets onto diagrams

of metabolic pathways and other biological processes. Plant J. 37, 914–939.

doi: 10.1111/j.1365-313X.2004.02016.x

Tohge, T., Watanabe, M., Hoefgen, R., and Fernie, A. R. (2013). The evolution

of phenylpropanoid metabolism in the green lineage. Crit. Rev. Biochem. Mol.

Biol. 48, 123–152. doi: 10.3109/10409238.2012.758083

Turner, J. G., Ellis, C., and Devoto, A. (2002). The jasmonate signal pathway. Plant

Cell 14(Suppl), S153–S164. doi: 10.1105/tpc.000679

Tzfadia, O., Amar, D., Bradbury, L.M. T.,Wurtzel, E. T., and Shamir, R. (2012). The

MORPH algorithm: ranking candidate genes for membership in Arabidopsis

and tomato pathways. Plant Cell 24, 4389–4406. doi: 10.1105/tpc.112.104513

Tzfadia, O., Diels, T., DeMeyer, S., Vandepoele, K., Aharoni, A., andVan de Peer, Y.

(2016). CoExpNetViz: comparative co-expression networks construction and

visualization tool. Front. Plant Sci. 6:1194. doi: 10.3389/fpls.2015.01194

Usadel, B., Obayashi, T., Mutwil, M., Giorgi, F. M., Bassel, G. W., Tanimoto,

M., et al. (2009). Co-expression tools for plant biology: opportunities

for hypothesis generation and caveats. Plant Cell Environ. 32, 1633–1651.

doi: 10.1111/j.1365-3040.2009.02040.x

Van Bel, M., and Coppens, F. (2017). Exploring plant co-expression and gene-

gene interactions with CORNET 3.0. Methods Mol. Biol. 1533, 201–212.

doi: 10.1007/978-1-4939-6658-5_11

Van Bel, M., Proost, S., Wischnitzki, E., Movahedi, S., Scheerlinck, C., Van de

Peer, Y., et al. (2012). Dissecting plant genomes with the PLAZA comparative

genomics platform. Plant Physiol. 158, 590–600. doi: 10.1104/pp.111.189514

Wang, F., Muto, A., Van de Velde, J., Neyt, P., Himanen, K., Vandepoele, K.,

et al. (2015). Functional analysis of the Arabidopsis TETRASPANIN gene

family in plant growth and development. Plant Physiol. 169, 2200–2214.

doi: 10.1104/pp.15.01310

Wang, F., Vandepoele, K., and Van Lijsebettens, M. (2012). Tetraspanin genes in

plants. Plant Sci. 190, 9–15. doi: 10.1016/j.plantsci.2012.03.005

Wang, J., Ding, Y., Wang, J., Hillmer, S., Miao, Y., Lo, S. W., et al. (2010).

EXPO, an exocyst-positive organelle distinct from multivesicular endosomes

and Autophagosomes, mediates cytosol to cell wall exocytosis in Arabidopsis

and tobacco cells. Plant Cell 22, 4009–4030. doi: 10.1105/tpc.110.080697

Wolfe, C. J., Kohane, I. S., and Butte, A. J. (2005). Systematic survey reveals general

applicability of “guilt-by-association” within gene coexpression networks. BMC

Bioinformatics 6:227. doi: 10.1186/1471-2105-6-227

W3C (2008). SPARQL Query Language for RDF. Cambridge, MA: Massachusetts

Institute of Technology.

W3C (2014). RDF 1.1 Turtle. Cambridge, MA: Massachusetts Institute of

Technology.

Xie, Q., Frugis, G., Colgan, D., and Chua, N. H. (2000). Arabidopsis NAC1

transduces auxin signal downstream of TIR1 to promote lateral root

development. Genes Dev. 14, 3024–3036. doi: 10.1101/gad.852200

Xing, D.-H., Lai, Z.-B., Zheng, Z.-Y., Vinod, K., Fan, B.-F., and Chen,

Z.-X. (2008). Stress- and pathogen-induced Arabidopsis WRKY48 is a

transcriptional activator that represses plant basal defense. Mol. Plant. 1,

459–470. doi: 10.1093/mp/ssn020

Zarrineh, P., Fierro, A. C., Sánchez-Rodríguez, A., De Moor, B., Engelen, K., and

Marchal, K. (2011). COMODO: an adaptive coclustering strategy to identify

conserved coexpression modules between organisms.Nucleic Acids Res. 39:e41.

doi: 10.1093/nar/gkq1275

Zdobnov, E. M., and Apweiler, R. (2001). InterProScan - an integration platform

for the signature-recognition methods in InterPro. Bioinformatics 17, 847–848.

doi: 10.1093/bioinformatics/17.9.847

Zhang, K., Halitschke, R., Yin, C., Liu, C.-J., and Gan, S.-S. (2013). Salicylic

acid 3-hydroxylase regulates Arabidopsis leaf longevity by mediating

salicylic acid catabolism. Proc. Natl. Acad. Sci. U.S.A. 110, 14807–14812.

doi: 10.1073/pnas.1302702110

Zhao, T., Rui, L., Li, J., Nishimura, M. T., Vogel, J. P., Liu, N., et al.

(2015). A truncated NLR protein, TIR-NBS2, is required for activated

defense responses in the exo70B1 mutant. PLoS Genet. 11:e1004945.

doi: 10.1371/journal.pgen.1004945

Zhu, H., Li, G.-J., Ding, L., Cui, X., Berg, H., Assmann, S. M., et al. (2009).

Arabidopsis extra large G-protein 2 (XLG2) interacts with the gbeta subunit

of heterotrimeric G protein and functions in disease resistance. Mol. Plant. 2,

513–525. doi: 10.1093/mp/ssp001

Conflict of Interest Statement: The authors declare that the research was

conducted in the absence of any commercial or financial relationships that could

be construed as a potential conflict of interest.

Copyright © 2018 Zwaenepoel, Diels, Amar, Van Parys, Shamir, Van de Peer and

Tzfadia. This is an open-access article distributed under the terms of the Creative

Commons Attribution License (CC BY). The use, distribution or reproduction in

other forums is permitted, provided the original author(s) and the copyright owner

are credited and that the original publication in this journal is cited, in accordance

with accepted academic practice. No use, distribution or reproduction is permitted

which does not comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 13 March 2018 | Volume 9 | Article 352

https://doi.org/10.1016/j.tplants.2013.10.006
https://doi.org/10.1186/gb-2010-11-3-r25
https://doi.org/10.1073/pnas.0911451107
https://doi.org/10.1104/pp.16.01942
https://doi.org/10.3389/fpls.2016.00444
https://doi.org/10.1093/jxb/erp223
https://doi.org/10.1007/s00425-016-2640-1
https://doi.org/10.1111/j.1365-313X.2004.02016.x
https://doi.org/10.3109/10409238.2012.758083
https://doi.org/10.1105/tpc.000679
https://doi.org/10.1105/tpc.112.104513
https://doi.org/10.3389/fpls.2015.01194
https://doi.org/10.1111/j.1365-3040.2009.02040.x
https://doi.org/10.1007/978-1-4939-6658-5_11
https://doi.org/10.1104/pp.111.189514
https://doi.org/10.1104/pp.15.01310
https://doi.org/10.1016/j.plantsci.2012.03.005
https://doi.org/10.1105/tpc.110.080697
https://doi.org/10.1186/1471-2105-6-227
https://doi.org/10.1101/gad.852200
https://doi.org/10.1093/mp/ssn020
https://doi.org/10.1093/nar/gkq1275
https://doi.org/10.1093/bioinformatics/17.9.847
https://doi.org/10.1073/pnas.1302702110
https://doi.org/10.1371/journal.pgen.1004945
https://doi.org/10.1093/mp/ssp001
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	MorphDB: Prioritizing Genes for Specialized Metabolism Pathways and Gene Ontology Categories in Plants
	Introduction
	Materials and Methods
	Expression Data Processing and Functional Annotation Data
	MORPH Bulk Runs
	The MorphDB Database and Web Tool

	Results
	MORPH Bulk Mode
	Extending MORPH to Non-model Organisms
	MorphDB
	Prioritizing Regulatory Genes for the Plant Defense Response

	Discussion
	Author Contributions
	Funding
	Supplementary Material
	References




