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To increase genetic gain for tolerance to drought, we aimed to identify environmentally

stable QTL in per se and testcross combination under well-watered (WW) and drought

stressed (DS) conditions and evaluate the possible deployment of QTL using marker

assisted and/or genomic selection (QTL/GS-MAS). A total of 169 doubled haploid lines

derived from the cross between CML495 and LPSC7F64 and 190 testcrosses (tester

CML494) were evaluated in a total of 11 treatment-by-population combinations under

WW and DS conditions. In response to DS, grain yield (GY) and plant height (PHT)

were reduced while time to anthesis and the anthesis silking interval (ASI) increased

for both lines and hybrids. Forty-eight QTL were detected for a total of nine traits. The

allele derived from CML495 generally increased trait values for anthesis, ASI, PHT, the

normalized difference vegetative index (NDVI) and the green leaf area duration (GLAD; a

composite trait of NDVI, PHT and senescence) while it reduced trait values for leaf rolling

and senescence. The LOD scores for all detected QTL ranged from 2.0 to 7.2 explaining

4.4 to 19.4% of the observed phenotypic variance with R2 ranging from 0 (GY, DS, lines)

to 37.3% (PHT, WW, lines). Prediction accuracy of the model used for genomic selection

was generally higher than phenotypic variance explained by the sum of QTL for individual

traits indicative of the polygenic control of traits evaluated here. We therefore propose to

use QTL-MAS in forward breeding to enrich the allelic frequency for a few desired traits

with strong additive QTL in early selection cycles while GS-MAS could be used in more

mature breeding programs to additionally capture alleles with smaller additive effects.
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INTRODUCTION

Agriculture faces the challenge of increasing grain yield of major crops under climate scenarios
with higher temperatures and more erratic precipitations as a result of anticipated climate change
(Lobell et al., 2011). Climate change will have the strongest detrimental effects on crop production
in tropical and subtropical environments since climate change is expected to have larger negative
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impact than in most other environments (Porter et al., 2014;
Rosenzweig et al., 2014). Drought affects approximately 20%
of the tropical and subtropical maize produced in developing
countries in any given year (Heisey and Edmeades, 1999).
Moreover, frequency and intensity of drought are projected
to increase in the next decades (Li et al., 2009). Rates of
genetic gain are below the ones needed to meet the projected
demand in the next few decades in many countries in Sub-
Saharan Africa, Central America and Asia (Ray et al., 2013).
Under drought, genetic gain is limited by large genotype-by-
environment interaction and the complexity of the genetic basis
of drought tolerance (Bartels and Sunkar, 2005; Trachsel et al.,
2016). Development of maize tolerant to drought that also
performs well in non-stressed conditions is essential to ensure
food security in the future (Pennisi, 2008).

In the past, secondary traits with strong genetic correlation
with grain yield, high heritability, and cost-effective to measure
have facilitated the selection in tropical breeding programs
(Chapman and Edmeades, 1999; Betrán et al., 2003). Examples
include anthesis silking interval (ASI), ears per plant, time to
anthesis, leaf rolling, PHT, and senescence (Edmeades et al., 1999;
Monneveux et al., 2006). More recently, NDVI measured during
canopy development stages, as an indicator for early vigor was
proposed as a secondary trait to be included in breeding formaize
grain yield under both WW and DS conditions (Trachsel et al.,
2016).

Traditional marker-assisted selection using QTL-MAS has
been another complementary tool to speed up andmake selection
more efficient in maize breeding programs (Ribaut and Ragot,
2007; Tuberosa and Salvi, 2009; Beyene et al., 2016). Moreover,
several QTL have been identified for grain yield under WW
conditions (Messmer et al., 2009, 2011) and drought stressed
conditions (Hao et al., 2010; Almeida et al., 2013), for PHT and
NDVI (Trachsel et al., 2016), stay green (Almeida et al., 2013)
and root traits (Trachsel et al., 2009). However, identification of
QTL that are constitutive across environments and populations is
essential for use inmarker-assisted selection (Bernier et al., 2008).
As a result of genotype-by-environment interaction, genetic
correlation among traits and QTL detected usually differ among
environments (Bolanos and Edmeades, 1996; Tuberosa et al.,
2002). Moreover, QTL detected for a trait usually differ among
genetic background (Rong et al., 2007) and between inbred line
per se and their testcross hybrids (Mei et al., 2005; Szalma et al.,
2007).

Many QTL studies carried out in the past have limited value
for breeding because marker densities and genetic resolution
were too low. Recently, however, genotyping-by-sequencing
(GBS) has been proposed as an approach to increase the
availability of molecular markers from∼100 to thousands of SNP
evenly distributed throughout the genome (Elshire et al., 2011;
Poland et al., 2012). Thus, the confidence interval surrounding
a QTL was reduced, allowing the development of genetic maps
with high resolution and precise mapping of QTL.

Marker-assisted selection based on genomic selection (GS-
MAS) was highlighted as a new approach for maize breeding
(Meuwissen et al., 2001). In GS-MAS, favorable individuals are
selected based on genomic estimated breeding values (GEBVs).

The major advantage of GS-MAS is that alleles with minor effects
can be captured and used in selection (Meuwissen et al., 2001).
Both QTL-MAS and GS-MAS require a high marker density in
the discovery or training phase, respectively. In the deployment
phase QTL-MAS only requires the use of markers flanking
the target QTL (more for backcrosses with selection against
the genome of the donor outside the area of the target QTL),
while GS-MAS requires a higher number of markers adequately
covering the entire genome resulting in higher genotyping cost
for GS-MAS (Peng et al., 2014).

Simulation and empirical studies indicate that GS-MAS
outperforms QTL-MAS for complex traits controlled by many
QTL with minor effects or low heritability (Bernardo and Yu,
2007; Mayor and Bernardo, 2009; Heffner et al., 2010; Guo
et al., 2013). If adequately integrated in the breeding workflow
GS-MAS can partially replace field testing and reduce line
development time (Heffner et al., 2010), while QTL-MAS can
be used to introgress favorable alleles into an elite background
and for integration of (native) traits into a breeding pipeline
(Lorenzana and Bernardo, 2009; Zhao et al., 2012; Peng et al.,
2014).

A combination of QTL-MAS and GS-MAS has also been
suggested as an integration of knowledge on functional markers
as either known causative mutations or known QTL associations
with yet to be identified genes, for improved prediction (Zhao
et al., 2012; Jonas and De Koning, 2016; Cao et al., 2017).
These propositions suggest the importance of flexible GS
as a method for introduction into breeding programs and
combining it with QTL-MAS (Nakaya and Isobe, 2012). For
both QTL-MAS and GS-MAS the success depends on excellent
phenotypic characterization during the discovery or training
phase, respectively.

In an aim to better understand the genetic architecture
of drought tolerance and to evaluate the suitability of QTL-
or GS-MAS for selection toward drought tolerance, we used
genotyping-by-sequencing technology to detect QTL and to
develop GS models for grain yield and secondary traits in a
DH population in per se and testcross evaluations, under WW
and DS conditions. The specific objectives of this study were
to: (i) evaluate QTL consistency across per se and testcross
evaluations under WW and DS conditions, and detect QTL
that are constitutive across studies with related populations; (ii)
compare how QTL mapping and GS are affected by population
(line per se vs. testcrosses) and treatments (WW vs. DS) and
strategize their deployment in a drought breeding program.

MATERIALS AND METHODS

Plant Material
A bi-parental DH line population, consisting of 169 genotypes
and the testcross hybrids, consisting of 190 genotypes was
evaluated. The DH population was derived from an F1 cross
between drought tolerant lines, La Posta Sequia C7-F64-2-6-
2-1-B-B (LPSC7F64), and an elite inbred line from CIMMYT,
CML495 (Cairns et al., 2013). The first parental line is traced to
the La Posta Sequia Population (LPS), a white dent, Tuxpeño-
related synthetic, well adapted to lowland tropics. Full sib

Frontiers in Plant Science | www.frontiersin.org 2 March 2018 | Volume 9 | Article 366

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Cerrudo et al. GS Outperforms MAS for Drought

recurrent selection was carried out under drought conditions
from cycle 0 to cycle 7. The second parental line is a white
flint line described as late-lowland with tolerance to rust,
helminthosporium, good standability, belonging to heterotic
group A. The lines were testcrossed to CML494 for the
phenotypic evaluation.

Experimental Design and Environmental
Conditions
Each of the populations (i.e., hybrids and lines) was evaluated
under well-watered (WW) and drought stressed (DS) conditions
in experiments conducted in different locations inMexico during
winter cycles of 2013, 2014, and 2016 (Table 1). A total of
11 experiments were conducted in Iguala (Guerrero, Mexico;
IG), Agua Fria (Puebla, Mexico; AF) and Tlatizapan (Morelos,
Mexico; TL); three for hybrids-WW (IG2013, AF2016, TL2016),
four for hybrids-DS (IG2013, TL2013, TL2014, TL2016), two
for lines-WW (IG2013, TL2013) and two for lines-DS (IG2013,
TL2013).

For all the experiments, the design was an alpha-lattice (0, 1)
replicated twice with incomplete blocks size of 5. Plots consisted
of one row 4.5m long at row spacing of 0.75m. Plots were hand-
seeded with two seeds per hill and thinned to one plant per hill
(22 plants per plot; 6.6 plants/m2) three weeks after planting.

For the DS treatment, water deficit was induced by
withholding irrigation 12-15 days (∼190 GDD) before flowering
with the aim of reaching the permanent wilting point at flowering
at 40 cm soil depth. In the case of severe drought, as indicated by
an ASI above 5 d on trial average, irrigation was applied 7 d after
completion of anthesis, while a second irrigation was applied 3
wk after completion of anthesis. In the case of moderate DS,
only one irrigation was applied during the grain filling period,
2 wk after completion of anthesis. For the WW experiments,
evapotranspirated water was fully compensated for through
weekly irrigations. Soil moisture content was measured at 10,
20, 30, 40, 60, and 100 cm soil depth three times weekly using
Delta-t PR2/6 soil moisture probes (Delta-T devices, Cambridge,
United Kingdom) to schedule irrigations in the drought stress

treatment. Fertilization, insecticides and herbicides were applied
as needed. Fertilizer quantities applied at each location are
reported in Table 1.

Phenotypic Data Acquisition
Several phenotypic traits were measured in each plot throughout
the growing season. Two, four, five, and six weeks after planting
the NDVI was measured using an RT-505 Greenseeker (Trimble,
Ukia, CA, USA). NDVImeasurements were taken by running the
sensor in the middle of each plot at a height of 80 cm above the
canopy. NDVI was calculated per the following equation: RNIR-
RRed/RNIR+RRed, where RNIR is the reflectance of near infrared
wavelength, and RRed is the reflectance of red wavelength. The
NDVI illustrates the part of red wavelength which is absorbed
by the plant. At flowering, anthesis and silking dates were
recorded when 50% of plants within a plot were shedding pollen
and growing silks, respectively. The ASI was calculated as the
difference between female and male flowering dates. Two, four
and six weeks after flowering senescence was measured visually
using a scale ranging from 1 (no senescence) to 9 (complete
senescence) to approximate stay green (Trachsel et al., 2016).
Leaf rolling was measured visually at flowering, and one and two
weeks after flowering using a scale ranging from 1 (unrolled,
turgid) to 5 (rolled, onion leaf). For NDVI, leaf rolling and
senescence, the area under the curve was calculated by integrating
a polynomial function of second degree fitted to individual
measurements taken before (for NDVI) or after flowering (for
senescence and leaf rolling). In this study, a new secondary trait
indicative of early vigor, senescence and overall green leaf area
and duration (GLAD) is proposed and evaluated. GLAD was
calculated as:

GLAD = (PHT x NDVI)/senescence

were PHT is plant height at flowering and NDVI and senescence
are area under the curve of four NDVI readings and three
senescence scores as described above. The area under the curve
(AUC) for NDVI and senescence was calculated by integrating
a polynomial function of second degree fitted to individual

TABLE 1 | Summary of experiments describing their location, season, population, treatment (well-watered, WW; and drought stressed conditions, DS), planting date

(PD), seasonal precipitation, mean seasonal temperatures (T), fertilization rates and latitude, longitude and altitude above sea level (asl).

Location Season Population Treatment PD Precipitation T Fertilizaction Latitude Longitude asl

(mm) (◦C) (NPK, kg/ha) (◦N) (◦W) (m)

Iguala 2013 Hybrids WW 29/11/2012 115 23.6 160/60/25 18.349 99.508 732

Agua Fria 2016 Hybrids WW 6/12/2015 55 22.6 150/80/30 27.455 97.640 110

Tlaltizapan 2016 Hybrids WW 24/12/2015 41 21.8 160/60/25 18.679 99.130 945

Iguala 2013 Hybrids DS 29/11/2012 115 23.6 160/60/25 18.349 99.508 732

Tlaltizapan 2013 Hybrids DS 11/12/2012 267 24.1 160/60/25 18.679 99.130 945

Tlaltizapan 2014 Hybrids DS 16/12/1013 52 20.8 160/60/25 18.679 99.130 945

Tlaltizapan 2016 Hybrids DS 19/12/2015 41 21.6 160/60/25 18.679 99.130 945

Iguala 2013 Lines WW 29/11/2012 115 23.6 160/60/25 18.349 99.508 732

Tlaltizapan 2013 Lines WW 11/12/1012 267 24.1 160/60/25 18.679 99.130 945

Iguala 2013 Lines DS 29/11/2012 115 23.6 160/60/25 18.349 99.508 732

Tlaltizapan 2013 Lines DS 11/12/1012 267 24.1 160/60/25 18.679 99.130 945
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measurements taken before (for NDVI) or after flowering (for
senescence).

After physiological maturity was reached, all ears of each plot
were collected and shelled, grain moisture was recorded. Grain
yield is reported at 12% moisture.

Phenotypic Data Analysis
The mixed effect linear model used for the analysis of phenotypic
data measured in multilocation trials was:

Yhmlk = µ + αh + Eml + αhEml + rm(Eml)+ rm(Eml)δk + ehmlk

Where Yhmlk is the trait value of the hth genotype (h = 190
and 169 for hybrids and lines, respectively) for the lth location
(hybrids-WW: l = 3; hybrids-DS: l = 4, lines-WW: I = 2; lines-
DS: I= 2), the mth replication (m= 2);µ the overall mean, αh the
main effect of the genotype, Eml the effect of the location, αhEml

the genotype-by-location interaction, rm(Eml) the replication
within location effect and rm(Eml)δk the effect of blocks within
replicates within locations and the random error term ehmlk.
All factors except µ were set as random. Best linear unbiased
predictors (BLUPs) of genotypes, variance components, and
broad sense heritability were obtained. Data for each population-
by-treatment combination were analyzed separately. Analysis of
the genotype-by-treatment (i.e., WW and DS) interactions was
carried out separately for hybrids and lines. For that, terms for
treatment and genotype-by-treatment interaction were added to
the model described before. Location, genotype and treatment
were set as fixed and the rest as random factors. Plant stand was
used as a covariate for grain yield and NDVI calculations. Plots
with less than 18 plants were removed from the analysis. Variance
components were estimated by restricted maximum likelihood
(REML) and heritability as the relationship between genetic and
phenotypic variance, according to the formula:

h2 = (σ2G)/((σ
2
G + (σGxE

2/l)+ e/(r∗l))

where σ2G is the genotypic variance, σGxE
2 the genotype-by-

environment interaction variance, e the error term, l the number
of environments and r the number of replications within
environments.

BLUPs for genotypes effects are shrinkage predictors obtained
as:

α̃ = G Ẑ’Vˆ− 1(y− 1µ)

using matrix notation, where y is the vector of the response
variable, Gˆ the matrix of variance covariance of the random
effects, Z the design matrix for random effects in the model,
Vˆ estimated variance of y, 1 a vector of ones and µ the overall
mean, the only fixed parameter in the model. The cor.test
function in R was used to calculate correlations among BLUPs.
Genetic correlations among traits were estimated with a method
described previously (Cooper and Delacy, 1994).

Genotyping and Linkage Map Construction
For all the maize lines tested in this study, leaf samples bulked
from 12 plants of each line were used for DNA extraction

with a Cetyltrimethylammonimum bromide (CTAB) procedure
(CIMMYT, 2005). A genotyping-by-sequencing (GBS) protocol
commonly used by the maize research community was applied
at the Cornell University Biotechnology Resource Center in this
study (Elshire et al., 2011; Wu et al., 2016). Briefly, the GBS
libraries were constructed in 96-plex, and genomic DNA was
digested with the restriction enzyme ApeK1. Each library was
sequenced on a single lane of Illumina flow cell. SNP calling was
performed using TASSEL 5.0 GBS Discovery Pipeline with B73 as
the reference genome. Initially, 955,690 SNPs evenly distributed
onmaize chromosomes were called for each line; 955,120 of them
were assigned to chromosomes 1–10, and 570 of them could
not be anchored to any of the 10 maize chromosomes. A bin
map was constructed by using 20,473 high quality filtered GBS
SNPs, details on how to construct the linkage map were described
previously (Cao et al., 2017). In brief, neighbor SNPs having high
similarity haplotype information were clustered into one bin, and
each bin was treated as single marker to construct the genetic
map. The following steps were performed to reduce genotyping
error and eliminate the low quality SNPs from the bin map: (1)
DH lines with heterozygosity rate greater than 5% and/or missing
rate greater than 20% were eliminated from further analysis; (2)
unlinked SNPs were removed from further analysis, where the
window size was 8, similarity rates of all the SNPs within each
window were calculated to remove the unlinked SNPs, threshold
of similarity rate was 95%; (3) the consecutive SNPs with high
similarity rate, i.e., 95%, were merged into one bin; and (4) bins
were treated as genetic markers to construct a genetic map. The
genetic map was constructed with 191 bins in software QTL
IciMapping Version 4.0 (www.isbreeding.net; Wang et al., 2014).
The total genetic map length was 987.35 cM resulting in an
average distance between markers of 5.15 cM.

Genomic Selection Analysis
Genomic prediction was implemented in rrBLUP package
(Endelman, 2011) in DH population. SNPs in the genetic map
were used for genomic prediction. Details of the implementation
of rrBLUP were described earlier (Zhao et al., 2012). A five-
fold cross-validation scheme with 100 replications was used to
generate the training and validation sets and assess the prediction
accuracy. The average value of the correlations between the
phenotype and the genomic estimated breeding values was
defined as genomic prediction accuracy (rMG).

RESULTS

Heritability, Phenotypic Data and
Correlations Between Grain Yield and
Secondary Traits
A population of DH lines was evaluated per se and in
testcross combination under WW and DS conditions. Significant
genotype-by-location interaction was detected when experiments
were combined by population and irrigation treatment (i.e.,
hybrids-WW and hybrids-DS; lines-WW and lines-DS) for all
traits, with exception of PHT for lines under DS (Table 2).
For most traits, heritability of the combined analysis remained
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TABLE 2 | Mean, 1st and 3rd quartile, heritability, genotype effect and genotype-by-location interaction (g*l), for different traits evaluated in experiments that included

hybrids under well-watered (Hybrids_WW), hybrids under drought stress (Hybrids_DS), lines under well-watered (Lines_WW) and lines under drought stress conditions

(Lines_DS).

Experiment Trait

GY AD PHT ASI NDVI SEN LR GLAD DSS

(t/ha) (days) (cm) (days) (%)

Hybrids_WW Mean 7.02 81.8 221 −0.11 15.9 63.0

SE 0.65 1.43 7.2 1.26 0.99 NA

1st quartile 6.71 81.2 218 −0.29 15.7 61.3

3rd quartile 7.39 82.4 225 0.04 16.1 64.8

h2 0.70 0.78 0.75 0.52 0.51

genotype *** *** *** *** ***

g*l *** *** *** *** ***

Hybrids_DS Mean 2.59 83.1 195 1.83 14.1 127 52.9 22.6

SE 0.38 0.87 0.35 0.86 0.71 6.9 4.96 1.67

1st quartile 2.51 82.7 194 1.78 13.9 126 52.5 22.3

3rd quartile 2.68 83.5 196 1.88 14.3 128 53.1 23.0

h2 0.37 0.65 0.31 0.17 0.57 0.38 0.14 0.53

genotype ** ** ** * ** *** ns ***

g*l *** *** *** *** *** *** ** ***

Lines_WW Mean 2.07 87.4 112 0.61 11.6 63.8

SE 0.28 NA 8.2 2.59 0.69 NA

1st quartile 1.89 86.3 107 0.38 11.4 60.2

3rd quartile 2.25 88.5 117 0.82 11.7 68.7

h2 0.52 0.79 0.81 0.30 0.45

genotype *** *** *** * ***

g*l *** *** *** *** ***

Lines_DS Mean 0.75 89.6 102 1.07 10.9 142 69.0 8.14

SE 0.21 1.5 7.49 1.42 0.18 11.2 5.56 0.26

1st quartile 0.63 88.0 98.5 1.81 10.6 139 66.3 7.46

3rd quartile 0.85 91.3 106 0.20 11.3 145 71.4 8.65

h2 0.76 0.91 0.80 0.76 0.71 0.61 0.66 0.81

genotype *** *** *** *** *** *** *** ***

g*l *** *** ns * ** *** *** ***

Traits measured included grain yield (GY), anthesis date (AD), plant height (PHT), anthesis-silking interval (ASI), normalized differential vegetative index (NDVI), senescence (SEN), leaf

rolling (LR), GLAD and drought stress susceptibility (DSS).

ns, *, **, *** non-significant, and significant at p < 0.1, 0.05, and 0.01, respectively.

acceptably high. Heritability of PHT and anthesis were the
highest in most experiments, with values above 0.75. The ASI
had the lowest values, ranging from 0.17 to 0.76. Under DS
conditions, grain yield, NDVI and GLAD had the highest
heritability values, ranging from 0.45 to 0.81. Meanwhile,
senescence and leaf rolling had the lowest heritability, ranging
from 0.14 to 0.66.

Grain yield for lines and hybrids was on average reduced
by 63% under DS relative to WW (Table 2). Drought stress
equally increased ASI (1.94 and 0.38 days for hybrids and lines,
respectively), decreased PHT (26 and 10 cm for hybrids and
lines, respectively) and delayed anthesis (1.8 and 2.2 days for
hybrids and lines, respectively). Differences in NDVI between
WW and DS before the onset of drought, can be explained
by differences in environments as a result of unbalanced
experimental data. Drought trials were all carried out in

the winterseason (with lower temperatures compared to the
summerseason), while the non-stressed trials were grown in
both the summer and winterseason. Since the crop typically
develops slower in winter and NDVI readings were taken
in calendar days after planting, plants were on average less
developed in Winter, relative to plants grown in trials carried
out in both summer and winter, resulting in lower NDVI
values.

DS were measured at completely dry locations (∼900–1,100
masl) whereas additional WW treatments were included in
locations with higher precipitations.

Senescence, leaf rolling and GLAD were only recorded under
DS conditions. Averaged across treatments, hybrids reached
anthesis six days earlier, grew 101 cm taller and had 24% higher
NDVI than lines. Leaf rolling, and GLAD were 30 and 177%
higher in the hybrids than in the lines and senescence was 11%
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higher for the lines. The ASI did not differ among lines and
hybrids (p > 0.05).

Correlations among grain yield and secondary traits differed
across populations and irrigation treatments (Table 3). Grain
yield was moderately correlated to NDVI (rg = 0.84; rp = 0.53)
and GLAD (rg = 0.70; rp = 0.49), for hybrids-WW and hybrids-
DS, respectively. Grain yield correlated moderately to weakly
with PHT, with highest correlation coefficients (rg = 0.67; rp
= 0.54) for hybrids-WW. Correlations with anthesis, ASI, leaf
rolling and senescence were weak or even non-significant for
some trait-by-treatment combinations.

Detected QTL for Grain Yield and
Secondary Traits; Collocation in Bins 1.02,
1.03, and 7.04
The analysis revealed a total of 48 significant QTL for nine traits
evaluated (Table 4). They included 13 QTL detected in hybrids-
WW, 12 in hybrids-DS, 12 in lines-WW and nine in lines-DS.
Thirteen QTL were detected for PHT, eight for grain yield, seven
for anthesis, six for senescence, four for ASI, three for GLAD
and two each for leaf rolling, NDVI and DSS. In most cases, the
allele derived from CML495 increased trait values for anthesis,
ASI, PHT, NDVI, DSS, and GLAD, while it reduced trait values
for DSS, leaf rolling and senescence. The LOD scores for all
detected QTL ranged from 2.0 (grain yield, hybrids-DS) to 7.2
(grain yield, lines-WW) explaining 4.4 (grain yield, lines-WW)
to 19.4% (grain yield, lines-WW) of the observed phenotypic
variance. Only one constitutive QTL for grain yield was detected,
which mapped to bin 8.08 for lines in WW and DS. The trait
increasing allele was derived from LPSC7F64 in both cases. None

TABLE 3 | Phenotypic (rp) and genotypic (rg) correlations between grain yield and

different secondary traits for lines per se and their testcross hybrids under

well-watered (WW) and drought stressed (DS) conditions.

Trait Hybrids_WW Lines_WW

rp rg rp rg

Anthesis ns ns ns ns

PHT 0.54*** 0.67*** 0.26*** 0.25***

ASI ns ns −0.22*** −0.66***

NDVI 0.53*** 0.84*** 0.53*** 0.70***

Hybrids_DS Lines_DS

Anthesis −0.20*** ns −0.18*** −0.21***

PHT 0.29*** ns 0.36*** 0.38***

ASI −0.27*** ns −0.14*** −0.21***

NDVI 0.42*** 0.72*** 0.48*** 0.66***

Senecence −0.11* ns −0.32*** −0.25***

Leaf rolling −0.20*** ns −0.42*** −0.52***

GLAD 0.49*** 0.70*** 0.60*** 0.61***

Traits evaluated included anthesis, plant height (PHT), anthesis-silking interval (ASI),

normalized differential vegetative index NDVI, senescence, leaf rolling and GLAD.

ns,*, **, *** Correlations non-significant, significant at p< 0.1, 0.05, and 0.01, respectively.

of the 39 QTL detected for secondary traits overlapped for hybrid
and line or across treatments.

A collocation of QTL for grain yield (hybrids-WW), anthesis
(lines-DS), PHT (hybrids-WW), NDVI (hybrids-WW), and
GLAD (hybrids-DS) was detected in bin 1.03 (Table 4). The
phenotypic variance explained by each QTL ranged from 4.8
(GLAD, hybrids-DS) to 13.8% (NDVI, hybrids-WW). The allele
derived from CML495 delayed anthesis by 1.07 d, increased
GLAD by 0.16, grain yield by 0.18 t/ha, NDVI by 0.13 and PHT
by 2.89 cm. Another collocation was identified in bin 1.02, where
QTL for DSS (hybrids), anthesis (hybrids-DS), PHT (hybrids-
WW) and GLAD (hybrids-DS) were detected. The phenotypic
variance explained by those QTL ranged from 4.7 (GLAD,
hybrids-DS) to 10.9% (anthesis, hybrids-DS). The allele derived
from CML495 delayed flowering by 0.26 d, increased GLAD by
0.16, PHT by 1.55 cm and DSS by 1.12%. Another collocation
of QTL for PHT (hybrids-WW), leaf rolling (hybrids-DS) and
senescence (hybrids-DS) detected in bin 7.04 is indicative of a
beneficial effect of early vigor when stress occurs during the
post flowering period. The allele derived from CML495 increased
PHT and decreased leaf rolling and senescence.

The positive effect of a short ASI on grain yield was confirmed
by a collocation of repulsive QTL for ASI and grain yield in bin
4.08 (Table 4). A collocation of repulsive QTL for anthesis and
grain yield in bin 4.10 is indicative of the contribution of this
chromosomal region to drought escape by early flowering. The
grain yield QTL in this bin had the largest phenotypic variance
explained among all detected QTL in this study (19.4%), with the
trait increasing allele derived from LPSC7F64.

R2of QTL and Prediction Accuracy of GS
Models for Grain Yield and Secondary
Traits
The variation (R2) explained by all QTL for a single trait-by-
experiment combination was moderate for grain yield (25.1%,
lines-WW), PHT (37.3%, lines-WW) and senescence (25.2%,
lines-DS), indicating that genetic control was well captured and
is potentially usable in QTL-MAS (Table 5). Lower R2 values for
the rest of the trait-by-experiment combinations indicate that
traits are controlled by many minor effect QTL and genotype-
by-environment interactions are high, which are not suitable for
QTL-MAS. The prediction accuracy of GSmodels was larger than
the R2 values for grain yield and secondary traits, for hybrids
and lines both under WW and DS conditions; except for grain
yield and ASI in lines-WW and for leaf rolling in lines-DS.
The advantages of the GS-MAS over the QTL-MAS approach
were larger under DS than under WW conditions for grain
yield, anthesis and PHT as indicated in differences between R2

(QTL-MAS) and prediction accuracies (GS-MAS); for instance,
prediction accuracy of GS and R2 values for grain yield were 16.9
vs. 0 and 22.3 vs. 0 for hybrids-DS and lines-DS, respectively.
Moreover, the prediction accuracy of grain yield under WW
was better than under DS (23.5 and 19.6 for the average of
hybrids and lines under WW and DS, respectively) and the
prediction of most of the secondary traits were better than for GY
except for lines-WW. A similar trend was also observed for the
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TABLE 4 | Summary of all QTL detected in experiments (Exp) of hybrids (HY) and lines (LI), under well-watered (WW) and drought stressed (DS) conditions showing

chromosome (Chr), position (Pos), bin, flanking markers, LOD scores, phenotypic variance explained by a QTL (PVE), and additive effects.

Trait Exp Chr Pos (cM) Bin Left marker Right marker LOD PVE (%) Add

DSS Hybrids 1 44 1.02 1_26208604 1_28662442 2.48 7.42 −1.12

Anthesis HYDS 1 40 1.02 1_22101580 1_26208604 3.91 10.95 −0.26

GLAD HYDS 1 33 1.02 1_14260188 1_18734111 2.10 4.73 −0.16

PHT HYWW 1 43 1.02 1_22101580 1_26208604 2.48 6.85 −1.55

NDVI HY 1 70 1.03 1_49826154 1_54856976 4.62 13.06 −0.13

GLAD HYDS 1 64 1.03 1_42290528 1_46373739 2.11 4.81 −0.16

Grain yield HYWW 1 61 1.03 1_42290528 1_46373739 3.13 8.97 −0.18

PHT HYWW 1 64 1.03 1_42290528 1_46373739 4.32 9.87 −2.89

Anthesis LIDS 1 58 1.03 1_37544296 1_42290528 3.72 13.85 −1.07

ASI LIWW 1 73 1.04 1_54856976 1_59889149 2.52 8.66 −0.13

PHT LIWW 1 73 1.04 1_54856976 1_59889149 2.68 5.80 −2.10

Anthesis HYWW 1 109 1.06 1_193139090 1_197536500 3.71 11.01 0.30

Grain yield HYDS 1 139 1.07 1_216309112 1_222372321 2.00 6.34 −0.03

PHT HYWW 1 117 1.07 1_200801163 1_200801163 2.27 5.78 1.43

NDVI LI 1 137 1.07 1_216309112 1_222372321 2.06 5.40 −11.3

ASI HYWW 2 21 2.02 2_6452607 2_7335967 2.03 4.83 −0.08

PHT LIWW 2 101 2.07 2_194130021 2_195513479 5.48 11.84 3.06

PHT HYWW 2 132 2.08 2_218568786 2_222185087 2.93 6.51 2.35

Senecence HYDS 2 164 2.09 2_233065497 2_236696694 3.90 11.56 0.57

PHT HYWW 2 164 2.09 2_233065497 2_236696694 2.57 5.86 2.00

Senecence HYDS 3 15 3.01 3_3103988 3_3809626 2.25 6.67 0.44

DSS Lines 3 53 3.04 3_27522260 3_39144097 2.17 8.02 −1.73

PHT HYWW 3 61 3.05 3_123719230 3_139771507 2.03 5.16 −1.35

Senecence LIDS 3 105 3.06 3_179531424 3_182811545 3.80 14.80 2.03

ASI HYWW 4 48 4.03 4_16118475 4_19556036 2.44 6.72 0.09

Grain yield LIWW 4 54 4.04 4_24377671 4_61369128 3.16 7.25 0.08

Senecence LIDS 4 56 4.05 4_61369128 4_116190231 3.10 12.01 −1.84

PHT LIWW 4 60 4.06 4_148669865 4_155298867 5.43 11.64 2.96

ASI HYDS 4 116 4.08 4_185251502 4_186037532 4.57 12.35 −0.03

Grain yield LIWW 4 106 4.08 4_180189654 4_181422373 2.05 4.45 0.06

Anthesis LIDS 4 137 4.09 4_232389072 4_233931750 2.30 7.42 −0.79

Anthesis LIWW 4 148 4.10 4_237578508 4_238180236 2.90 9.41 −0.62

Grain yield LIWW 4 158 4.10 4_238612431 4_239603458 7.25 19.41 0.13

Anthesis LIWW 5 100 5.07 5_206242623 5_207497380 2.19 6.68 0.51

Senecence LIDS 5 48 5.09 5_77670149 5_97282620 2.79 10.74 −1.78

PHT LIDS 6 15 6.08 6_60180411 6_89140482 2.32 8.73 −1.87

Grain yield HYWW 7 61 7.02 7_89338077 7_109910472 2.03 5.36 −0.14

GLAD HYDS 7 74 7.03 7_128254490 7_129764113 2.62 6.39 −0.19

PHT LIWW 7 87 7.03 7_134468855 7_136543672 5.32 11.40 −2.93

Leaf rolling HYDS 7 126 7.04 7_165776873 7_166705322 3.19 9.21 0.14

Senecence HYDS 7 117 7.04 7_162474709 7_164294427 2.99 8.77 0.51

PHT HYWW 7 112 7.04 7_159247704 7_161345394 4.10 11.58 −2.06

PHT HYDS 8 95 8.06 8_155841571 8_162287143 2.43 7.23 −0.33

Grain yield LIDS 8 138 8.08 8_171722422 8_172044417 2.05 7.28 0.06

Grain yield LIWW 8 137 8.08 8_171722422 8_172044417 2.50 5.42 0.07

Grain yield HYDS 9 0 9.00 9_1265981 9_2794057 2.33 7.29 0.03

Anthesis LIDS 9 110 9.07 9_151402029 9_152104326 2.22 7.11 −0.77

Leaf rolling LIDS 10 65 10.05 10_134751974 10_135546981 2.45 8.67 1.43

Traits include normalized differential vegetative index NDVI, anthesis, anthesis-silking interval (ASI), plant height (PHT), senescence, GLAD, grain yield, and drought stress susceptibility

(DSS).

Frontiers in Plant Science | www.frontiersin.org 7 March 2018 | Volume 9 | Article 366

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Cerrudo et al. GS Outperforms MAS for Drought

TABLE 5 | Total phenotypic variance explained by all QTL detected for individual traits (R2) and prediction accuracy of genomic selection models measured in hybrids and

lines per se under well-watered (WW) and drought stressed (DS) conditions.

Phenotypic var. explained by all QTL; R2 GS prediction accuracy

Trait Hybrid_WW Hybrid_DS Line_WW Line_DS Hybrid_WW Hybrid_DS Line_WW Line_DS

GY 8.59 0 25.1 0 21.5 16.9 25.5 22.3

DSS 6.78 NA 0 NA 20.6 NA 0.25 NA

Anthesis 10.4 9.57 9.1 11.8 30.3 38.3 25.2 48.9

PHT 17 6.45 37.3 0 30.0 27.7 26.0 28.0

ASI 0 12.4 7.7 0 19.5 44.9 25.3 40.6

NDVI 12.2 NA 0 NA 16.0 NA 25.0 NA

SEN NA 14.4 NA 25.2 NA 31.4 NA 42.9

LR NA 8.59 NA 7.84 NA 18.7 NA −7.1

GLAD NA 7.07 NA 0 NA 32.3 NA 25.1

Traits displayed are: grain yield (GY), drought stress susceptibility (DSS), anthesis, plant height (PHT), anthesis silking interval (ASI), normalized differential vegetative index NDVI,

senescence (SEN), leaf rolling (LR) and GLAD.

secondary traits. A positive correlation was observed between the
genomic prediction accuracy and trait heritability for hybrids-
WW (R2 = 0.83; p < 0.02, Figure 1). For the other treatment-
by-population combinations the correlation between genomic
prediction accuracy and trait heritability was low.

Hybrids With Best Yield Potential and Yield
Stability
The best ten hybrids for WW and DS conditions out-yielded
the commercial check (DK357) and the trial mean by 12 and
13% under WW, and by 18 and 11% under DS conditions,
respectively (Table 6). Although the genotype-by-water
treatment interaction was significant (data not shown)
three hybrids with outstanding yield potential and stability
(i.e., good performance under WW and DS) were identified
(Table 6). The hybrids (LPSC7F64/CML495)DH220/CML494,
(LPSC7F64/CML495)DH290/CML494 and (LPSC7F64/
CML495)DH30/CML494, ranked 1st, 2nd, and 3rd under
WW conditions, and 22nd, 18th, and 13th, out of 190 under
DS conditions, respectively. On average, the three hybrids with
high yield potential and yield stability across environments out
yielded the commercial check and the trial mean by 12 and 13%
under WW and by 12 and 6% under DS, respectively.

DISCUSSION

We created contrasting WW and DS conditions for the per se
evaluation of DH lines and in testcross combination. The grain
yield reduction of 63% under DS compared to WW conditions
was similar to the ones reported for experiments following the
same protocols, with a related hybrid population (Trachsel et al.,
2016). Moderate to severe drought stress levels allowed us to
detect QTL across experiments and treatments (i.e., hybrids-
WW, hybrids-DS, lines-WW and lines-DS) and to identify lines
and hybrids with good performance across treatments.

Both PHT and NDVI were positively correlated with grain
yield under WW and DS conditions, supporting their potential
utility for indirect selection for improved grain yield under
drought stress as suggested previously (Messmer et al., 2011;

Trachsel et al., 2016). GLAD had large positive correlations
with grain yield both for lines and hybrids (only measured
under DS conditions). GLAD integrates information on different
morpho-physiological traits related to grain yield (i.e., early and
general vigor and senescence) and could be used to identify
genotypes that better combine those traits. Since neither PHT
nor senescence were correlated with grain yield for hybrids,
it is likely that the positive correlation was caused by large
NDVI.

Beneficial Effects of Early Vigor and
Escape on Grain Yield Evidenced in Bins
1.02, 1.03, and 7.04
A collocation of QTL for anthesis (hybrids-DS), PHT (hybrids-
WW), GLAD (hybrids-DS), and DSS (hybrids) is indicative of
the importance of bin 1.02 for the genetic control of grain yield
and early vigor. Detection of QTL for anthesis and for DSS in
this region indicates that the physiological mechanism conveying
grain yield under drought stressed conditions is drought escape
achieved through an earlier flowering. The importance of this
bin is further supported by collocations with QTL detected for
anthesis (Salvi et al., 2011) and PHT (Schön et al., 1993) in other
genetic backgrounds. Collocations of QTL were detected for
PHT, NDVI and senescence, which are all components of GLAD,
in the same bin (Trachsel et al., 2016). Two candidate genes
potentially accounting for the detected QTL are ct2 (compact
plant2) and cfr1 (coupling factor reduction1). The first gene is
involved in CLAVATA signaling, which controls shoot meristem
size and shoot growth (Bommert et al., 2013), while cfr1 affects
chloroplast function and seedling vigor (Echt et al., 1987).

A collocation of QTL for anthesis (lines-DS), GLAD (hybrids-
DS), grain yield (hybrids-WW), PHT (hybrids-WW), and NDVI
(hybrids-WW) was detected in bin 1.03, indicative of the
importance of this bin for the genetic control of early and general
vigor (i.e. NDVI and PHT) and grain yield. Candidate genes
for the response related to this chromosome region are a set of
genes related to chlorophyll fluorescence (hcf3,hcf31, hcf6) and
leaf color (pg∗-N484A, pg∗-N484B, and pg∗-N526C), which may
relate to seedling vigor.
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FIGURE 1 | Genomic selection prediction accuracy as a function of the heritability for different traits of maize hybrids under well-watered (Hybrids_WW), hybrids under

drought stress (Hybrids_DS), lines under well-watered (Lines_WW) and lines under drought stress conditions (Lines_DS). Traits measured included grain yield, anthesis

date, plant height, anthesis-silking interval, normalized differential vegetative index, senescence, leaf rolling, GLAD and drought stress susceptibility.

TABLE 6 | Grain yield (t/ha) for the top 10 performing hybrids, the local check (DK-357) and the mean of all evaluated hybrids, under well-watered (WW) and drought

stressed (DS) conditions, and grain yield for three hybrids with best combination of potential and grain yield stability, also under well-watered and drought stressed

conditions.

Top 10 under WW Top 10 under DS Best for potential—stability combination

Hybrid ID WW DS Hybrid ID DS WW Hybrid ID WW DS

(LPSC7F64/CML495)DH220/CML494 8.43 2.75 (LPSC7F64/CML495)DH243/CML494 2.96 7.4 (LPSC7F64/CML495)DH220/CML494 8.43 2.75

(LPSC7F64/CML495)DH265/CML494 8.20 2.51 (LPSC7F64/CML495)DH56/CML494 2.93 6.9 (LPSC7F64/CML495)DH290/CML494 7.99 2.76

(LPSC7F64/CML495)DH290/CML494 7.99 2.76 (LPSC7F64/CML495)DH40/CML494 2.93 7.3 (LPSC7F64/CML495)DH30/CML494 7.85 2.79

(LPSC7F64/CML495)DH13/CML494 7.91 2.73 (LPSC7F64/CML495)DH95/CML494 2.91 7.4

(LPSC7F64/CML495)DH87/CML494 7.88 2.60 (LPSC7F64/CML495)DH24/CML494 2.87 7.5

(LPSC7F64/CML495)DH15/CML494 7.85 2.62 (LPSC7F64/CML495)DH257/CML494 2.86 7.4

(LPSC7F64/CML495)DH241/CML494 7.85 2.73 (LPSC7F64/CML495)DH119/CML494 2.82 7.1

(LPSC7F64/CML495)DH30/CML494 7.85 2.79 (LPSC7F64/CML495)DH30/CML494 2.82 7.4

(LPSC7F64/CML495)DH11/CML494 7.84 2.68 (LPSC7F64/CML495)DH127/CML494 2.82 7.0

(LPSC7F64/CML495)DH9/CML494 7.83 2.56 (LPSC7F64/CML495)DH282/CML494 2.80 7.5

Top 10 mean 7.96 2.67 2.87 7.28

Commercial check 7.12 2.43

All trial mean 7.04 2.59

A collocation of QTL for PHT (hybrids-WW), leaf rolling
(hybrids-DS) and senescence (hybrids-DS) detected in bin 7.04
may suggests that general vigor confers stress avoidance later in
the season, since the QTL for PHT was in repulsion with the
QTL for leaf rolling and senescence. While PHT reflects general
shoot vigor, it may also indicate root vigor (Richner et al., 1996;
Hammer et al., 2009; Grieder et al., 2013) as a result of allometric
root-shoot relations. Shoot vigor indicative of a vigorous root
system, would indirectly allow for greater water and nutrient
uptake from deeper soil layers resulting in lower stress levels and
reduced leaf rolling and senescence under drought stress. This
hypothesis is supported by QTL previously detected for PHT

(Sibov et al., 2003) and root architecture in this bin (Tuberosa
et al., 2003; Trachsel et al., 2009; Cai et al., 2012). Potential
candidate genes underlying the observed response are hcf101,
hcf103, and hcf104, which are related to chlorophyll fluorescence
conveying sufficient assimilates and plant vigor.

Detection of QTL Constitutive Across
Environments or Consistent Across
Populations
Although a total of 48 QTL were detected for grain yield
and secondary traits, none of them was consistently detected
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in hybrids and lines as a result of the low correlation found
among lines and hybrids and across treatments as a result
of genotype-by-environment interaction, epistasis and heterosis
(Mei et al., 2005; Mihaljevic et al., 2005; Szalma et al., 2007;
Hallauer et al., 2010). These results highlight the need to use
the testcross’ phenotype in mapping studies rather than lines’
as done previously (Trachsel et al., 2009, 2010), when aiming to
identify QTL to be deployed in hybrids. Only one QTL detected
for grain yield in lines was constitutive across treatments. Since
there was low correlation of grain yield among lines and hybrids,
its usefulness in breeding programs is limited. No QTL for any
other trait was detected across treatments, as observed previously
(Edmeades et al., 1999). Nevertheless high correlations were
found across treatments for anthesis (hybrids and lines) and for
PHT (lines).

One constitutive QTL was identified when QTL reported here
were compared to results from another study evaluating the same
population under nitrogen deficient conditions (DHpop1; Liu
personal communication) and an advanced backcross population
with a common parent (LPSC7F64; Trachsel et al., 2016) under
DS and WW. A senescence QTL under drought (Trachsel
et al., 2016) and nitrogen deficient conditions (Liu personal
communication) was also detected in bin 4.05; only for lines-
DS here, for two populations of hybrids under low N stress
(Liu personal communication). These findings are in agreement
with two QTL related to senescence detected in this bin by
Belícuas et al. (2014) under rain-fed conditions. This QTL has
great value for breeding as it could bring yield advantages under
two common stresses occurring in tropics (i.e., drought and
low soil nitrogen) through improved stay-green. Two candidate
genes related to senescence have been reported in this bin.
One is SWEET15a, which regulates sucrose translocation in the
plant (Chen, 2014). The second is nnr1, which regulates nitrate
reductase, a crucial enzyme in nitrite assimilation in plants
(Rockel et al., 2002).

Correlation Between Genomic Prediction
Accuracy and Trait Heritability
In this study, the results showed that the prediction accuracy of
grain yield under WW conditions was better than that under
DS conditions. The prediction accuracy of the secondary traits
were generally higher than the prediction accuracy of GY under
almost all the conditions. However, a positive correlation was
only observed between the genomic prediction accuracy and trait
heritability for hybrids WW. Low correlation between genomic
prediction accuracy and trait heritability was observed for all
other treatment-by-population combinations. Since the training
population was of the same size for all traits the lower prediction
accuracy irrespective of the heritability could potentially be
attributed to reduced phenotypic variation or large genotype-by-
environment interaction (Zhang et al., 2017). Since Combs and
Bernardo (2013) additionally show that prediction accuracy may
also be dependent on the genetic architecture of a specific trait it
is conceivable that genetic and physiological mechanisms acting
under stressed conditions are responsible for the observed lack of
correlation between trait heritability and prediction accuracy.

R2 of QTL and Prediction Accuracy of GS
Models for Grain Yield and Secondary
Traits
Prediction accuracy of GS-MAS was higher than the overall
variance explained by all QTL for a trait (R2) in QTL-MAS
for grain yield as observed previously (Meuwissen et al., 2001;
Bernardo and Yu, 2007; Lorenzana and Bernardo, 2009; Mayor
and Bernardo, 2009; Heffner et al., 2010; Guo et al., 2012; Zhao
et al., 2012). A similar pattern was observed for secondary traits
(i.e., anthesis, PHT, ASI, NDVI, senescence, leaf rolling and
GLAD). From a practical point of view, strong QTL remain
important in QTL-MAS, as suggested by Heffner et al. (2010).
While GS-MAS requires several hundred markers, only flanking
markers of target QTL are needed in QTL-MAS. Detected QTL
with beneficial effects on early vigor, drought escape, grain yield
and stay-green, such as the ones detected in bins 1.02, 1.03, 7.04,
and 4.05 could be used in forward breeding to enrich alleles for
these traits in a breeding program or for line conversions, while
GS-MAS could be used in more mature breeding programs to
additionally capture alleles with smaller additive effects (Heffner
et al., 2010; Cao et al., 2017). Ideally selection could be carried
out for major and minor additive effects simultaneously by using
major QTLs as fixed factors in GS-MAS as described by Bernardo
(2014).

Best Performing Hybrids
To be commercially successful, a hybrid needs to perform
well under non-stressed and stressed conditions. The fact
that no hybrid reached the top ten under both WW and
DS conditions is indicative of the difficulty to achieve high
grain yield across environmental conditions due to potential
physiological tradeoffs between optimal and stressed conditions.
However, hybrids (LPSC7F64/CML495)DH220/CML494,
(LPSC7F64/CML495)DH290/CML494 and
(LPSC7F64/CML495)DH30/CML494 performed well under
WW conditions (all of them in the top ten) and drought
stressed conditions (all of them were within the best 22 out of
190). Their superior yield potential and stability was reflected
by 12% higher grain yield relative to the commercial check
(DK357) under both WW and DS conditions. Also, the hybrid
(LPSC7F64/CML495)DH109/CML494, ranking 14th and 27th
out of 190 under WW and DS conditions, respectively (data
not shown) ranked fourth in a study where the same set of
hybrids was grown under low nitrogen (Liu et al., personal
communication). After further evaluations across sites, in
combination with multiple testers, lines DH220, DH290 and
DH30 could be released as CIMMYTmaize lines for deployment
in drought prone environments, while line DH190 could
potentially be used in environments prone to drought and low
nitrogen.
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