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Water Stress Scatters Nitrogen
Dilution Curves in Wheat
Marianne Hoogmoed and Victor O. Sadras*

South Australian Research and Development Institute, Adelaide, SA, Australia

Nitrogen dilution curves relate a crop’s critical nitrogen concentration (%Nc) to biomass
(W) according to the allometric model %Nc = a W−b. This model has a strong theoretical
foundation, and parameters a and b show little variation for well-watered crops. Here
we explore the robustness of this model for water stressed crops. We established
experiments to examine the combined effects of water stress, phenology, partitioning
of biomass, and water-soluble carbohydrates (WSC), as driven by environment and
variety, on the %Nc of wheat crops. We compared models where %Nc was plotted
against biomass, growth stage and thermal time. The models were similarly scattered.
Residuals of the %Nc - biomass model at anthesis were positively related to biomass,
stem:biomass ratio, 113C and water supply, and negatively related to ear:biomass ratio
and concentration of WSC. These are physiologically meaningful associations explaining
the scatter of biomass-based dilution curves. Residuals of the thermal time model
showed less consistent associations with these variables. The biomass dilution model
developed for well-watered crops overestimates nitrogen deficiency of water-stressed
crops, and a biomass-based model is conceptually more justified than developmental
models. This has implications for diagnostic and modeling. As theory is lagging, a
greater degree of empiricism might be useful to capture environmental, chiefly water,
and genotype-dependent traits in the determination of critical nitrogen for diagnostic
purposes. Sensitivity analysis would help to decide if scaling nitrogen dilution curves for
crop water status, and genotype-dependent parameters are needed.

Keywords: water stress, carbon isotope discrimination, phenology, Triticum aestivum, water-soluble
carbohydrates

INTRODUCTION

Nitrogen dilution curves relate a crop’s critical nitrogen concentration (%Nc, the minimum
nitrogen concentration required for maximum growth) to crop biomass (W). These curves are
used in the diagnostics of crop nitrogen status and modeling, and have the form (Gastal et al.,
2015):

%Nc = aW−b (1)

where, b is a dimensionless parameter that represents the nitrogen dilution relative to crop biomass
and a is the crop nitrogen concentration when W = 1 t ha−1. The theoretical foundations of this
model are strong (Greenwood et al., 1990; Lemaire and Gastal, 1997). The dilution of nitrogen
occurs because at the start of the growing season, biomass mostly consists of leaves with high
proportion of metabolic tissue and high nitrogen concentration, but as the crop grows, relatively
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more structural tissue, i.e., stem with a smaller nitrogen
concentration, is produced. In addition, shading of older leaves
causes nitrogen relocation within the plant. Concentration of
nitrogen in biomass (%N) is

%N = (%Nm
∗Wm +%Ns

∗Ws)/W (2)

where subscripts m and s indicate metabolic and structural tissue,
respectively.

The nitrogen nutrition index, defined as the ratio between
actual and critical nitrogen concentration from dilution curves,
is a robust measure of crop nitrogen status (Gastal et al.,
2015). For crop management, the nitrogen nutrition index
is used directly (Neuhaus et al., 2017) or as a reference to
calibrate spectral indices (Colaço and Bramley, 2018; Cossani
and Sadras, 2018). However, most experiments used to derive
nitrogen dilution curves have been conducted in well-watered
crops (e.g., Justes et al., 1994) and this may have contributed
to the consistency of the parameters in eq. (1) (Gastal et al.,
2015). In potato and tall fescue where dilution curves have
been derived from crops exposed to contrasting water supply,
%Nc declined with water stress (Bélanger et al., 2001; Errecart
et al., 2014). Understanding the influence of crop water status
on %Nc is important, as using dilution curves from well-watered
crops may over-estimate nitrogen deficits in water-stressed crops
(Sadras and Lemaire, 2014). In addition, this is theoretically
interesting as it connects the water and nitrogen economies of
the crop.

Variation in nitrogen dilution curves for wheat has been
reported that relates to phenological development, hence the
attempts to model critical nitrogen against phenological stage
(Angus, 2007; Yue et al., 2012; Zhao et al., 2014; Ratjen and Kage,
2016). Variation in allometric relations, between organs as well as
between structural and labile carbohydrates, partially underlies
the effect of phenology on nitrogen dilution curves (Gastal et al.,
2015; Hoogmoed and Sadras, 2016; Yan et al., 2016).

The aim of this study was to examine the combined
effects of water stress, phenology, partitioning of biomass, and
water-soluble carbohydrates (WSC) on the critical nitrogen
concentrations of wheat crops.

MATERIALS AND METHODS

Site Description
Field trials were conducted over three growing seasons (May –
November, 2014–2016) in South Australia. In 2014, trials were
established at Hart (33◦45 ‘S, 138◦24 ‘E) and Turretfield (34◦32 S,
138◦47 ‘E). In 2015 and 2016 trials were conducted at Roseworthy
(34◦31 ‘S, 138◦57 ‘E). These sites have a Mediterranean climate
with hot and dry summer, and wet and mild winter. Daily
weather data were collected from nearby Australian Bureau
of Meteorology’s weather stations1. Soils were sandy loam
(Dermosol) at Hart, calcareous loam (Calcarosol) at Roseworthy
and loam over clay (Chromosol) at Turretfield (Isbell, 1996).

1https://www.longpaddock.qld.gov.au/silo/index.html

Trial Design
In 2014, we established a factorial experiment combining 4
varieties and 5 nitrogen rates in a randomized block design
with 3 replicates. In 2015 and 2016, the variety by nitrogen
factorial was grown under two water regimes: rainfed and
irrigated. Crops were sown in the agronomically recommended
window between 16 May and 30 June (Supplementary Table S1).
Hereafter, “environment” refers to each of the six combinations
of location, season, and water regimes.

We used four Australian cultivars: very early maturing
Axe (Australian Grain Technologies), early maturity Mace
(Australian Grain Technologies), and mid-long maturity Scout
and Trojan (LongReach). Wheat was sown in plots of 10 m
long, with six rows (25 cm spacing) and a sowing density of 210
plants m−2. Urea pellets were spread evenly in the plots by hand
according to the following treatments: (1) 0 kg N ha−1; (2) 60 kg
N ha−1 at seeding; (3) 120 kg N ha−1 split between see-
ding and tillering (GS20–23); (4) 180 kg N ha−1 split
between seeding and tillering; (5) 240 kg N ha−1 split
between seeding and tillering. At Hart in 2014, an
additional treatment was included: (6) 180 kg N ha−1 split
between seeding, tillering and stem elongation (GS31–
32). In all cases, split applications were 50:50. In 2016 at
Roseworthy, crops received 40 kg P ha−1 as superphosphate at
sowing.

Soil Moisture and Nitrogen at Sowing
Soils were sampled just before sowing with hand auger or
hydraulic soil corer to 0.6 m deep and separated into 0.2 m
soil layers to determine water and nitrogen content. For
each soil layer, moisture was determined gravimetrically in
10 g subsamples. The remainder of the fresh soil was dried
at 40◦C for 1 week and crushed to pass a 2 mm mesh.
KCl extractable NO3

−-N and NH4
+-N were measured

in CSBP Soil and Plant Analysis Laboratory, Western
Australia. Soil drying may have contributed to loss of N-NH3,
which is a minor component of available nitrogen in our
system.

Phenology, Biomass and Nitrogen
Phenological stage was recorded regularly using Zadoks’ scale
(Zadoks et al., 1974). Shoot biomass was sampled four to six
times between GS23 and GS69. Shoots were cut close to the
soil surface with a hand sickle, in two segments of 50 cm in
the two central rows of the plot. Samples were oven dried at
60◦C until constant weight and then weighed. A dry subsample
was separated into leaves, stems, and ears when they were
present. The plant components were weighed and ground
separately using a mill (Thomas Wiley R© model 4, Swedesboro,
NJ, United States) and analyzed for total nitrogen content by dry
combustion (CSBP Soil and Plant Analysis Laboratory, Western
Australia).

Stems from the anthesis samples were analyzed for WSC.
Whole shoot samples of treatments that corresponded to %Nc
were analyzed at anthesis for stable carbon isotope composition
δ13C (h). WSC and δ13C were analyzed by Environmental
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Analysis Laboratory, NSW, Australia. WSC was measured in
a water extraction and then flow injection analysis using the
alkaline ferricyanide decolouration method. δ13C was measured
using a Thermo-Finnigan Delta V Plus Isotope Ratio Mass
Spectrometer (IRMS). 13C discrimination (113C) at anthesis was
calculated as:

113C(h) = (δair − δsample)/(1000+ δsample) × 1000 (3)

in which δair is the 13C composition of air (−8 h, Farquhar et al.,
1989) and δsample is the 13C composition of the sample. Smaller
113C means a higher degree of water stress (Errecart et al., 2014;
Sadras et al., 2016).

Statistical Analysis
Statistical analyses were performed in R (R Development Core
Team, 2008). ANOVAs were performed using the Anova()
function in the car package, and Tukey HSD post hoc tests
used HSD.test() in the agricolae package. Model I, least square
regression assuming only error in y, was performed using the
lm() function. Model II, standardized major axes regression
accounting for error in both x and y (Niklas, 1994) was performed
using the sma() function in the smatr package. We used Model
II where our aim was to derive parameters for allometric
relations, as the parameters depend on the model (Niklas, 1994).
Otherwise, when we only wanted to test for the magnitude
of association, we used Model I as R2 is independent of the
method.

Critical Nitrogen Concentration
Shoot N concentration (%Nshoot) was calculated using the
relative weights of the plant components and their nitrogen
concentrations:

%Nshoot = (Wstem
∗%Nstem +Wleaf

∗%Nleaf

+Wear
∗%Near)/(Wstem +Wleaf +Wear) (4)

where W is biomass, and %N the nitrogen concentration of
the plant component. The %Nc at each sampling date was
calculated for each environment and each variety following the
method of Greenwood et al. (1990). For each sampling time and
variety, biomass dry weight was compared among the nitrogen
treatments using one-way-ANOVA. If differences among the
nitrogen treatments were not significant, the data from that
sampling date and variety were not used. This lack of nitrogen
effect on biomass was verified in 42 out of 120 samples (30
sampling times × 4 varieties), and was likely related to high
nitrogen available in soil at sowing in some trials (Supplementary
Table S1). If differences were significant (P < 0.1), Duncan’s
post hoc test was performed following Marino et al. (2004) to
reduce the chance of type II error. The treatment with the
highest mean biomass was identified. If more than one treatment
resulted in similarly high biomass i.e., not significantly different
(P > 0.1), the nitrogen treatment resulting in the lowest shoot
nitrogen concentration was selected with corresponding %Nc
and biomass.

Three models were used to describe nitrogen dilution: (1) the
classical nitrogen dilution curve, that relates %Nc to biomass

(biomass model hereafter); (2) a dilution curve that relates %Nc to
thermal time from sowing with base temperature = 0◦C (thermal
time model); and (3) a categorical model where %Nc is related
to growth stages (growth stage model). For the first two models,
%Nc = a X−b curves were fit using standardized major axis
regression, where X is either biomass (t ha−1) or thermal time
(◦C d). No curve was fitted for the growth stage model as
the numerical scale neither has a true biological meaning
nor is quantitative; instead, average %Nc and standard
deviations were calculated for the data pooled in five
growth stage intervals: 30–34, 35–39, 40–49, 50–59, and
60–69.

Residual Analysis
Residual analysis was used to explore drivers of scatter around
the biomass and thermal time models. Residuals were calculated
as the difference between the actual %Nc and the fitted
curves. ANOVA was used to test for the effects of variety
and environment on the residuals (Sadras and Moran, 2012;
Badyaev et al., 2017). Model II regression was used to test
for associations between the residuals of each nitrogen dilution
model and the following variables (1) biomass, (2) mass fractions
of leaf, stem and ear, (3) WSC concentration in stem and
shoot, (4) 113C, (5) water supply calculated as available soil
water at sowing plus rainfall and irrigation, (6) reference
evapotranspiration ETo (Allen et al., 1998), and (7) water supply
per unit ETo.

RESULTS

Growing Conditions
Mineral soil nitrogen at sowing ranged from 34 to 345 kg ha−1

(Supplementary Table S1). Crop available water at sowing
ranged from negligible to 83 mm in the top 0.6 m soil
layer (Supplementary Table S1); dry soils at sowing are a
common feature of these environments with dominant winter
rainfall and unlikely rain during fallow (Sadras and Rodriguez,
2007). The 2014–2016 growing seasons differed in amount and
distribution of precipitation, and in temperature (Figure 1). In
2015, seasonal precipitation started relatively late, and a hot
and dry finish caused water deficit even in irrigated crops.
In contrast, precipitation was above average and irrigation
was applied only a few times early in 2016. Intensity of
water deficit was further quantified with 113C and water
budget in section Sources of scatter in the biomass model
below.

Dynamics of Growth and Nitrogen
Uptake
Across environments, nitrogen rate affected biomass of stem,
leaf and ear (all P < 0.0001), and amount of nitrogen in each
of these organs (all P < 0.0001). Variety affected leaf biomass
(P < 0.0001), amount of nitrogen in stem (P < 0.05), and
amount of nitrogen in leaf (P < 0.001). Figure 2 illustrates the
effect of nitrogen rate and variety for biomass, and Figure 3 for
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FIGURE 1 | Cumulative reference evapotranspiration (ETo), cumulative rain and irrigation, and temperature against thermal time from sowing in six environments in
South Australia. Vertical lines indicate anthesis sampling. ETo is calculated with the FAO-56 method (Allen et al., 1998).

nitrogen uptake, highlighting the larger effect of nitrogen rate
on nitrogen uptake compared to biomass conducive to changes
in nitrogen concentration, which are analyzed in the following
sections.

Biomass Model
Fitting eq. (1) to our data returned a R2 = 0.77 (P < 0.0001),
and showed substantial scatter with small standard errors in
%Nc (Figure 4A). Across growing conditions, varieties, and
crop stages, the median coefficient of variation of %Nc was
5.5%. Further, the coefficient of variation of %Nc was similar
in the rainfed and irrigated experiments at Roseworthy in
both seasons: 4.5% under irrigation vs. 4.0% under rainfed
conditions in 2015, and 4.2% under irrigation vs. 4.0%
under rainfed conditions in 2016. These relatively small
errors together with the clustering of some experiments in
Figure 4A indicate that crop and environmental factors were
more likely sources of scatter. For example, the %Nc under
severe water deficit in rainfed crops at Roseworthy 2015
(Figure 1) clustered below the dilution curve (filled blue circles
in Figure 4A).

Growth Stage and Thermal Time Models
To analyze the impact of phenology on dilution curves we plotted
%Nc against growth stage; the scatter was large at early stages,
and seemed to diminish toward flowering (Figure 4B). Table 1

summarizes %Nc as average and standard deviation for selected
developmental windows. As development related with thermal
time (Figure 4C), we plotted %Nc against thermal time from
sowing (Figure 4B). The R2 of 0.82 for the thermal time model
was slightly better than that for the biomass model, but substantial
scatter remained.

Comparison of Scatter in Biomass and
Thermal Time Models
Figure 5 compares the residuals for the biomass and thermal time
models. Positive residuals indicate under-estimation and negative
residuals an over-estimation of the actual %Nc relative to the
fitted model. For both models, ANOVA of residuals revealed
significant environmental effect (P < 0.0001), and lack of variety
(P > 0.66) and variety-by-environment interaction (P > 0.81).

TABLE 1 | Average (± standard deviation) critical nitrogen concentration of wheat
for Zadoks’ growth stages from early stem elongation to anthesis (Zadoks et al.,
1974).

Growth stage Critical N (%)

30–34 4.7 ± 0.5

35–39 4.4 ± 0.2

40–49 2.9 ± 0.7

50–59 2.1 ± 0.3

60–69 1.8 ± 0.2
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FIGURE 2 | Dynamics of dry matter in leaf (light gray), stem (black), and ear (dark gray) for wheat crops in a factorial experiment combining four varieties and five
rates of nitrogen fertilizer. Data from irrigated crops at Roseworthy, 2016.

For the biomass model, residuals were positive and moderate
in most environments, except for rainfed crops at Roseworthy
2015, where residuals were strongly negative. For the thermal
time model, the residuals were particularly large for rainfed crops
at Turretfield 2014.

Sources of Scatter in the Biomass Model
To further explore the sources of scatter in %Nc among the
environments, we compared total biomass, and allocation of
biomass to leaf, stem and ear. Maximum biomass at anthesis
ranged from 3.7 t ha−1 for rainfed crops at Roseworthy
2015 to 10.5 t ha−1 for irrigated crops at Roseworthy
2016 (P < 0.01). Much of this variation was related to
water, as biomass at anthesis related closely with both water
supply and 113C (Table 2). The mass fractions of leaf, stem
and ear at similar growth stages also differed among the
environments and correlated with total biomass at GS31 and
GS60–69 (Table 3). The mass fraction of stem correlated
positively with total biomass, while mass fraction of leaf
correlated negatively, except at anthesis where there was no
correlation with leaf, and instead the mass fraction ear correlated
negatively with total biomass. Residuals of critical nitrogen
concentration at anthesis correlated positively with both biomass

and mass fraction stem, and negatively with mass fraction ear
(Figures 6A–C).

Crop water stress varied among the environments as indicated
by the range of 113C from 21h for both irrigated and rainfed
crops at Roseworthy 2016, to 15.9 h in the most stressed crops
at Roseworthy 2015 (P < 0.01) (Figure 6D). Water supply and

TABLE 2 | Correlation matrix of crop traits at anthesis (biomass, mass stem
fraction, mass ear fraction, 113C, concentration of water soluble carbohydrates)
and environmental factor (water supply) that contributed to the scatter of the
%Nc-biomass curve.

Biomass Mass
fraction

stem

Mass
fraction

ear

113C Water
supply

Mass fraction
stem

0.89∗∗

Mass fraction
ear

−0.86∗∗ −0.90∗∗

113C 0.92∗∗ 0.88∗∗ −0.88∗∗

Water supply 0.87∗∗ 0.65∗∗ −0.81∗∗ 0.90∗∗

Water soluble
carbohydrates

−0.41 −0.10 0.28 −0.39 −0.50∗

∗∗P < 0.01; ∗P ≤ 0.05.
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FIGURE 3 | Dynamics of nitrogen uptake in leaf (light gray), stem (black), and ear (dark gray) for wheat crops in a factorial experiment combining four varieties and
five rates of nitrogen fertilizer. Data from irrigated crops at Roseworthy, 2016.

TABLE 3 | Correlation coefficient (r) for leaf, stem and ear mass fraction with total
biomass and 113C among the six environments.

Variable Growth stage N Total biomass 113C

Mass fraction stem 23–69 78 0.81∗∗ −0.40∗∗

31 17 0.48∗ −0.56∗

40–49 19 0.36 −0.16

60–69 21 0.88∗∗ 0.88∗∗

Mass fraction leaf 23–69 78 −0.81∗∗ 0.65∗∗

31 17 −0.54∗ 0.59∗

40–49 19 −0.42 0.07

60–69 21 −0.29 −0.23

Mass fraction ear 60–69 21 −0.86∗∗ 0.88∗∗

∗P ≤ 0.05, ∗∗P < 0.01.

113C correlated, reinforcing the confidence in our coarse water
budget (Table 2). Residuals of %Nc from the biomass model
correlated positively with 113C and water supply and negatively
with reference evapotranspiration (Figures 6D,E and Table 4).

Average WSC concentration in stem at anthesis differed
among the environments, from 10.3% at Turretfield to 25.1% at
Hart, both rainfed in 2014. Residuals from the biomass model

correlated negatively with WSC (Figure 6F). WSC increased
under water deficit as indicated by the relationship between WSC
at anthesis and water supply (Table 2); the relationship between
WSC and 113C was negative but did not reach significance
(P = 0.08).

Sources of Scatter in the Thermal Time
Model
With few exceptions, residuals for the thermal time model were
weakly associated with the explanatory variables that correlated
with the residuals from the biomass model (Table 4). For example,
residuals from the thermal time model did not correlate with
biomass, and correlations were weaker, and of opposite sign
than those from the biomass model for stem mass fraction and
ear mass fraction (Table 4). The consistent associations between
residuals and water-related variables found for the biomass model
were absent for the thermal time model, except for reference
evapotranspiration (Table 4).

DISCUSSION

We examined the combined effects of water stress, phenology,
partitioning of biomass among organs, and partitioning between
structural and WSC on the critical nitrogen concentration of
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FIGURE 5 | Comparison of residuals for the biomass and thermal time
models in five environments resulting from combination of locations, seasons
and water regimes. Values are means ± standard error.

wheat crops. Tight nitrogen dilution curves are often derived for
well-watered crops, e.g., wheat (Justes et al., 1994) and maize
(Plénet and Lemaire, 1999); larger scatter was observed in potato
crops under variable water supply (Bélanger et al., 2001). Here we
found scattered dilution curves for crops grown under varying
water deficits (Figure 4A). We tested three nitrogen dilution
models and, informed by physiological principles, used analysis

TABLE 4 | Correlation coefficients (r) between residuals from biomass and thermal
time nitrogen dilution models, and shoot biomass, mass fraction of stem, leaf, ear,
concentration of water-soluble carbohydrates (WSC) in stem and shoot, 113C,
water supply, cummulative reference evapotranspiration (ETo), and cummulative
water supply per unit reference evapotranspiration.

Variable Model

Biomass Thermal time

Biomass1 0.92∗∗ −0.23

Mass fraction stem1 0.75∗∗ −0.47∗

Mass fraction leaf1 −0.07 0.57∗∗

Mass fraction ear1 −0.83∗∗ 0.21

113C1 0.88∗∗ −0.25

WSC in stem1
−0.54∗ 0.04

WSC in shoot1 −0.17 −0.18

Water supply2 0.87∗∗ 0.16

ETo2
−0.68∗∗ 0.61∗∗

Water supply/ ETo2 0.91∗∗ −0.16

Water supply was calculated as available water in the soil at sowing plus irrigation
and rainfall. ∗P ≤ 0.05, ∗∗P < 0.01. 1Measured at anthesis; 2Cumulative from
sowing to anthesis.

of residuals to explore the sources of scatter in the biomass
and thermal time models (Figures 5, 6 and Table 4). Small
errors in %Nc (Figure 4A) combined with analysis of residuals
supported the conclusion that the large scatter in biomass-based
dilution curves was caused by physiologically meaningful drivers,
particularly water supply and patterns of dry matter allocation
(Figure 6).
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FIGURE 6 | Residuals from the critical nitrogen concentration vs. biomass model at anthesis in relation to (A) biomass, (B) mass fraction stem, (C) mass fraction ear,
(D) 113, (E) water supply, and (F) water-soluble carbohydrates in stem. Lines are Model II regressions, with ∗∗∗P < 0.001, ∗P < 0.05. Symbols: Hart 2014 rainfed
(black); Turretfield 2014 rainfed (gray); Roseworthy 2015 rainfed (filled blue); Roseworthy 2015 irrigated (open blue); Roseworthy 2016 rainfed (filled red); Roseworthy
2016 irrigated (open red).

Phenological Development
Phenology-dependent changes in allocation of biomass between
metabolic and structural tissue (eq. 2) explain part of the
scatter in the biomass model. Zhao et al. (2014) used a
growth stage model to account for phenological development,
but fitting curves to growth stages is not justified because
the independent variable is nominal rather than quantitative.
Instead, we analyzed critical nitrogen concentration against
growth stage in a discrete model (Figure 4B and Table 1), and
used a thermal time scale to fit a quasi-developmental model
(Figures 4C,D) and analyze residuals (Figure 5 and Table 4).
We still found a large spread of %Nc within growth stages,
especially early in the season, and statistically similar scatter
in the thermal time and biomass models (Figure 5). In the
earlier growth stages (stem elongation to booting), the leaf : stem
ratios changed more rapidly than in later growth stages (ear
emergence and anthesis). Accuracy in determining phenology is
important, for example any comparison between early (GS31)
and late (GS37) stem elongation will incur a large effect on
leaf : stem ratio and thus %Nc. Our average %Nc between
GS31 and GS49 was higher than reported for winter wheat by

Zhao et al. (2014) (and other references therein) but similar at
anthesis (GS60–69).

Partitioning of Biomass
Beyond phenological stages, genetic and environmental factors
affect partitioning of biomass with implications for nitrogen-
biomass allometry (Niklas, 2004; Weiner, 2004; Poorter et al.,
2012). Within growth stages, there was still a difference in
mass fractions of leaf, stem and ear among the environments.
Total biomass correlated positively with stem mass fraction
and negatively with leaf mass fraction. Water stress affects
wheat allometry (Kumakov et al., 2001; Ratjen et al., 2016).
In our dataset, the mass fractions of stem and ear correlated
best with 113C at anthesis, with a decrease in stem, and an
increase in ear mass fraction with increasing water stress, but
no change in leaf mass fraction. Kumakov et al. (2001) found
a similar result in wheat, and Poorter et al. (2012) found
the same trend in a meta-analysis of intra-specific variation
and environmental control of biomass partitioning. In contrast,
Ratjen et al. (2016) found an increase in stem growth rate
relative to leaf growth rate under water stress during stem
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elongation. Importantly, allocation of biomass to ear and stem,
but not to leaf, explained a significant proportion of the
scatter in the biomass model (Figures 6B,C and Table 4).
Allocation of biomass to leaf was, however, a factor accounting
for some of the scatter in the thermal time model (Table 4),
highlighting again the interplay between phenology and biomass
partitioning.

Water Stress and Water-Soluble
Carbohydrates
As expected from theory (Sadras and Lemaire, 2014; Hoogmoed
and Sadras, 2016) and empirical evidence in other species
(Bélanger et al., 2001; Errecart et al., 2014), we found that
the critical nitrogen concentration of wheat was lower under
water stress, and with high concentration of WSC (Figure 6).
Three independent water-related variables associated with the
residuals of the biomass model: 113C, water supply and reference
evapotranspiration (Figure 6 and Table 4). Further, the strong
correlation between biomass and 113C (Table 2) indicates the
association between residuals and biomass (Figure 6A) was
likely mediated by the effect of water deficit on biomass. Our
dilution curve thus returned lower critical nitrogen compared
with the original curve for well-watered wheat in France
(Justes et al., 1994). Dilution curves for winter wheat in
China (Yin et al., 2018) and for spring wheat in Canada
(Ziadi et al., 2010) were also below the original curve for
well-watered crops, and this is partially attributable to water
deficit.

Under our experimental conditions, concentration of WSC
increased under water deficit. Previous studies showed that stress
decreased (Foulkes et al., 2002, 2007; Ehdaie et al., 2006; Rebetzke
et al., 2008) or increased WSC (Zhu et al., 2009; Saint Pierre
et al., 2010). In our study, the association between residuals of
the biomass model and water supply was partially mediated by
the effects of water supply on WSC. Our experiment confirmed
our early prediction of smaller critical nitrogen concentration in
crops where genotype, environment and their interaction favor
high storage of labile carbohydrates (Hoogmoed and Sadras,
2016).

Statistical, Agronomic and Modeling
Implications
Studies of nitrogen dilution curves rarely specify the method used
to fit curves; but whether regressions are fitted with Model I
(least squares) or Model II (standardized maximum axis), is
unimportant in close-fitting relationships as parameters are
similar if R2 is high (Niklas, 1994), which is usually the case
(Justes et al., 1994; Plénet and Lemaire, 1999). Where the growing
conditions scatter dilution curves, as in this study, Model II
should be used (Niklas, 1994) and reporting confidence intervals
of parameters would be useful for comparisons (Figure 4A, see
also Zhao et al., 2014).

The water-driven scatter in nitrogen dilution curves has
agronomic and modeling implications. In both cases, sensitivity
analysis would help to decide if adjustments to capture the
effect of water deficit are necessary. In Mediterranean-type

environments, unreliable seasonal rainfall is a large source of
uncertainty that favors a conservative approach to nitrogen
fertilization in risk-averse farmers (Monjardino et al., 2013).
This uncertainty in rainfall and yield provides an agronomic
background to evaluate the errors in estimating crop nitrogen
status using alternative dilution curves. In this context, locally
estimated critical nitrogen for particular phenostages could be
useful.

CONCLUSION

The %Nc -biomass dilution curve developed for well-watered
crops would overestimate nitrogen deficiency of water-stressed
wheat. The effects of water deficit on critical nitrogen
concentration at anthesis are likely mediated by two changes
in allocation of carbon: between stem and ear, and between
structural and labile, as indicated by the increase in WSC
with stress. The causal connections between water stress
and these two aspects of carbon allocation deserve refined
investigation. Biomass-based models are conceptually superior
to developmental-based models, as both showed statistically
similar scatter but the former has a stronger theoretical
foundation, reinforced by the close relationships between model
residuals and physiologically meaningful factors. Conceptually,
nitrogen-biomass dilution curves need to account for genotypic
and environmental sources of variation in biomass allocation,
including phenology and WSC.
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