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The integrative omics approach is crucial to identify the molecular mechanisms
underlying high-temperature response in non-model species. Based on future scenarios
of heat increase, Pinus radiata plants were exposed to a temperature of 40◦C for a
period of 5 days, including recovered plants (30 days after last exposure to 40◦C) in
the analysis. The analysis of the metabolome using complementary mass spectrometry
techniques (GC-MS and LC-Orbitrap-MS) allowed the reliable quantification of 2,287
metabolites. The analysis of identified metabolites and highlighter metabolic pathways
across heat time exposure reveal the dynamism of the metabolome in relation to high-
temperature response in P. radiata, identifying the existence of a turning point (on
day 3) at which P. radiata plants changed from an initial stress response program
(shorter-term response) to an acclimation one (longer-term response). Furthermore,
the integration of metabolome and physiological measurements, which cover from
the photosynthetic state to hormonal profile, suggests a complex metabolic pathway
interaction network related to heat-stress response. Cytokinins (CKs), fatty acid
metabolism and flavonoid and terpenoid biosynthesis were revealed as the most
important pathways involved in heat-stress response in P. radiata, with zeatin riboside
(ZR) and isopentenyl adenosine (iPA) as the key hormones coordinating these multiple
and complex interactions. On the other hand, the integrative approach allowed
elucidation of crucial metabolic mechanisms involved in heat response in P. radiata,
as well as the identification of thermotolerance metabolic biomarkers (L-phenylalanine,
hexadecanoic acid, and dihydromyricetin), crucial metabolites which can reschedule the
metabolic strategy to adapt to high temperature.

Keywords: pine, heat-acclimation, metabolomics, multivariate integrative analyses, biomarkers

INTRODUCTION

As a consequence of climate change, the intensity and frequency of extreme weather events, such
as heat waves, are projected to increase, these being one of the major global risks (EEA, 2012). Heat
waves (when the temperature rises at least 5◦C above normal values) can have a short duration
(about a few days). Although plants are known to be able to respond to altered climatic conditions
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(e.g., Schworer et al., 2014), in woody plants, and specifically
the response and heat adaption rate have been barely studied.
In forest ecosystems, climate change could have significant
implications in timber production (Martinich et al., 2017).
Therefore, in order to reach the future demand for wood
products, it is necessary to focus research in improving the
production, health, and performance of the commercially valued
forest species, such as Pinus radiata, in future scenarios of
increased temperature.

In plants, it has been reported that high temperature
has negative effects in various physiological processes such
as photosynthesis, primary and secondary metabolism, water
relations, or lipid metabolism (Xu et al., 2006). Specifically, it is
known that heat stress generates damage to the cell membrane,
overproduction of reactive oxygen species (ROS), senescence,
inhibition of photosynthesis, and cell death. However, plants have
designed specific protection mechanisms to minimize and repair
the damage caused by high temperatures in order to cope with
heat waves that they will inevitably face during their lifespan.

When a plant perceives environmental stress, multiple
signaling cascades are activated. These include the intricate cross-
talk between the different plant hormones and other signaling
pathways involving kinases and phosphatases, calcium, ROS, and
lipids. Previous studies in P. radiata showed salicylic acid (SA)
and abscisic acid (ABA) as crucial factors in the initial response
to heat stress (Escandón et al., 2016), probably due to the rush of
the plant to quickly regulate stomatal closure as observed in other
species (Acharya and Assmann, 2009). Other phytohormones
such as cytokinins (CKs) and indolacetic acid (IAA) seem to be
more important for the acclimation and recovery of the plant
(Skalák et al., 2016). Nevertheless, how these hormones interact
and trigger changes in the plant metabolome to deal with heat
stress is still unknown.

Environmental stress results in a reorganization of the
metabolism in order to assure homeostasis, which is often
accomplished by maintaining essential metabolism and
synthesizing metabolites with stress-protective and signaling
properties (Fernández de Simón et al., 2017). Changes in
secondary metabolism are usually triggered by environmental
stresses (Routaboul et al., 2012; Fernández de Simón et al., 2017)
such as extreme temperatures, salinity, water availability, or high
light intensity, being involved in most plant adaptive responses
in combination with signaling mechanisms regulated by plant
hormones. Phenolic compounds are one of the most important
classes of secondary metabolites in plants as they play important
roles in the response to high-temperature stress. Specifically,
high-temperature stress promotes the production of phenolic
compounds such as flavonoids, phenylpropanoids, anthocyanins,
and lignins which are related to the suppression of stress-induced
oxidation of most cell molecules (Wahid et al., 2007).

Lipid metabolism is also altered by high-temperature stress as
a basic mechanism to control membrane fluidity, cell signaling,
and movement of substances (Falcone et al., 2004). According
to Grover et al. (2000) and Umesha (2005), the accumulation
of highly saturated fatty acids might confer tolerance to high-
temperature stress by means of reducing structural membrane
fluidity when this is increased by environmental warmth.

Metabolomics profile analyses can be considered an important
diagnostic tool for verifying the physiological responses of
plant species to environmental changes and to understand the
mechanisms behind the complex biological response (Gibbons
et al., 2015; Zhang et al., 2015; Meijón et al., 2016), providing
a snapshot of the physiological status of the plant in response
to an environmental stress (Gibbons et al., 2015; Patel and
Ahmed, 2015; Zhang et al., 2015). The feasibility of metabolome
analysis for biomarker discovery relies on the assumption
that metabolites are important players in biological systems
(Monteiro et al., 2013) and stress situations cause drastic changes
of metabolomics pathways, which are not new concepts (Shulaev
et al., 2008; de Leonardis et al., 2015; Pascual et al., 2017).
Currently, using MS-based platforms and combining different
analytical technologies, it is possible to increase metabolome
coverage. The use of GC-MS technique allows measuring the
most of the primary metabolites, while LC-MS provide a better
coverage of large hydrophobic metabolites predominant in
secondary metabolisms (Doerfler et al., 2013). Both techniques
together can assure a better metabolome, allowing the elicitation
of a complete view of metabolic dynamics involved in the
heat response of P. radiata. However, these kinds of studies
also require a system biological approach using bioinformatics
tools to understand their implications for cell function and to
attach the missing connections between molecules and plant
physiology (Bruggeman and Westerhoff, 2007; Meijón et al.,
2016).

In this study, P. radiata plants were exposed to high
temperatures aiming to mimic future scenarios of increased
warmth. Metabolome and physiological data were analyzed
comprehensively using a multivariable approach combining both
sets of data. The analysis revealed the dynamic behavior of
the metabolic and signaling transduction pathways, as well
as connections among the pathways. Classical physiological
measurements combined with cutting-edge technologies such as
mass spectrometry-based analytical procedures for characterizing
the variations in the metabolome revealed key metabolites
related to high-temperature response in P. radiata. These key
metabolites have a possible use as biomarkers in P. radiata
and other species, due to the similarity of metabolites and
basic metabolic pathways between very different species, while
proteins, genes, and mRNAs are diversified from one species
to another (Peng et al., 2015). Altogether, this work provides
a deep knowledge of the response and acclimation process to
heat stress in P. radiata, as well as the selection of possible
universal thermotolerance biomarkers or crucial metabolites
which can be further considered by breeders and forest
managers.

MATERIALS AND METHODS

Plant Material and Experimental Design
The assay was conducted in a climate chamber under controlled
conditions (Fitoclima 1200, Aralab). One-year-old P. radiata
seedlings (plant size about 33 ± 4 cm) in 1-dm3 pots (blond
peat:vermiculite, 1:1) were kept under a photoperiod of 16 h
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(400 µmol m−2.s−1) at 25◦C and 50% relative humidity (RH),
and 15◦C and 60 % RH during the night period. The plants
had been previously acclimated over a 1-month period inside
the climate chamber, being watered with nutritive solution (NPK,
5:8:10).

Control plants (C) were collected before starting the heat
exposure and were maintained at 25◦C for the duration of
the trial. Heat exposure treatment began with an increasing
temperature gradient from 15 to 40◦C over 5 h and maintained
for 6 h. This experimental procedure was repeated for
5 days. Sampling was performed at: 3 h after 40◦C was
reached on day 1 (T1/2) and at the end of the 6-h heat
exposure on day 1 (T1), day 2 (T2), day 3 (T3), and day
5 (T5). Plants were watered every day to 80% FC (full
capacity) and weekly fertilized with a nutritive solution (NPK,
5:8:10). Plants of each treatment were allowed to recover
for 1 month under the control conditions. Recovered plants
(R) represent an intermediate exposure time (T3 recovered
plants) because there was no significant difference (at the
morpho-physiological level) between recovered plants exposed
to the different heat exposures. This experimental design
aimed to cover the entire stress sensing–response–adaption
process, increasing the density of analysis at short-term (T1/2,
T1, T2), longer exposures (T5), and recovered plants (R),
complementing previous short-term response (C, T1, and T3)
analysis (Escandón et al., 2017).

Mature needles from each plant (16 plants/exposure) were
sampled, cleaned with a moistened cloth, and immediately frozen
in liquid nitrogen until metabolites were extracted. Pools of
3 plants for each biological replicate were performed. Data of
physiological measurements – electrolyte leakage (EL), relative
water content (RWC), maximum quantum efficiency of PSII
(Fv/Fm), quantum yield of photosystem II photochemistry
(ϕPSII), malondialdehyde content (MDA), proline content,
starch content, total soluble sugars (TSS), chlorophyll a content
(Chla), chlorophyll b content (Chlb), and carotenoid content
(Carot) – and fitohormone data – SA, indol-3-acetic acid (IAA),
ABA, zeatin riboside (ZR), dihydrozeatin riboside (DHZR),
gibberellin 7 (GA7), jasmonic acid (JA), gibberellin 9 (GA9),
isopentenyl adenosine (iPA), isopentenyl adenine (iP), and
castasterone (BK) – were taken from Escandón et al. (2016) for
multivariable and integrative analysis.

Metabolite Extraction
Metabolite extraction was performed according to Valledor et al.
(2014a) using 100 mg of needle fresh weight. Briefly, samples
(C, T1/2, T1, T2, T3, T5, R) were ground in liquid nitrogen
and 600 µL of cold (4◦C) metabolite extraction solution –
Methanol:Chloroform:H2O (2.5:1:0.5) – was immediately added
to each tube. Then, samples were centrifuged at 20,000 g for
4 min at 4◦C and the supernatant transferred to new tubes.
Finally, 800 µL of Chloroform:water (1:1) were added and the
tubes vortexed and again centrifuged at 20,000 g for 4 min at
4◦C. Two layers formed: an upper aqueous layer, containing the
polar metabolites and a lower organic layer, containing the non-
polar. Both fractions were transferred to new tubes and dried in a
speed vac.

Polar Metabolite Identification and
Quantitation Using LC-Orbitrap-MS
Analysis
The polar fraction of each sample was analyzed twice on
an LC-Orbitrap-MS, first in positive ion mode and then in
negative. A Dionex Ultimate 3000 (Thermo Fisher Scientific,
United States) UHPLC was used and a LC-Orbitrap LTQ XL-MS
system (controlled by Xcalibur version 2.2, Thermo Fisher
Corporation) was run according to the procedure described in
Escandón et al. (2017). The resolution and sensitivity of the
Orbitrap were controlled by the injection of a mixed standard
after the analysis of each batch, and the resolution was also
checked with the aid of lock masses (phthalates). Blanks were also
analyzed during the sequence.

LC-Orbitrap-MS raw data were processed and compared
using MZmine software version 2.10 (Pluskal et al., 2010). MS1
spectra were filtered establishing a noise threshold at 5.5E03 and
minimum peak height at 6E03 with a minimum time peak of
0.15 min. Peaks were smoothed and deconvoluted by using a local
minimum search algorithm (98% chromatographic threshold,
minimum retention range 5 min, minimum relative height of
90%, and minimum ratio top/edge of 1.2). Chromatograms were
aligned using the RANSAC algorithm with a tolerance of 5 ppm
of and 1.0 min retention time. Normalized peak areas were used
for quantification, and their values were log transformed before
statistical analyses (Supplementary Table S1a).

The individual peaks were identified following different
approaches; the first step was performed against an in-house
library (>100 compounds) and manual annotation considering
m/z and retention times. In the second step, masses were assigned
using the KEGG, PubChem, METLIN, MassBank, HMDB, and
Plantcyc databases as reported by Escandón et al. (2017) with
built-in MZmine plugins with a 5 ppm threshold and considering
as “identified” beyond doubt those metabolites that were defined
after the comparison to our standard compound library or by a
matching of MS/ MS to the small number of plant compounds
for which their MS/MS is available in public databases (Meijón
et al., 2016); and as “tentatively assigned” those with molecular
ions with exact masses corresponding to identified metabolites
in databases. Metabolite identification against our library was
confirmed by retention time (RT), mass, isotopic pattern, and
ring double bound parameters. Supplementary Data S1 includes
the detailed interpretation of experimental MS/MS spectra which
support our tentative identifications of the candidate metabolites
that were not identified beyond doubt in the first term.

Non-polar Metabolite Identification and
Quantitation Analysis
Non-polar metabolites were derivatized with 295 µL tert-
methyl-Butyl-Ether (MTBE) and 5 µL of trimethylsulfonium
hydroxide (TMSH) for 30 min at room temperature. The tubes
were centrifuged for 3 min at 20,000 g to remove insoluble
particles before transferring the supernatants to GC-microvials.
GC-MS measurements were carried out following a previously
developed procedure (Valledor et al., 2014b) on a triple quad
instrument (TSQ Quantum GC; Thermo, United States). The
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mass spectrometer was operated in electron-impact (EI) mode
at 70 eV in a scan range of m/z 40–600. Metabolites were
identified based on their mass spectral characteristics and
GC retention times through comparison with the retention
times of reference compounds in an in-house reference library
and the current version of Golm Metabolome Database
(Hummel et al., 2007) using LC-Quant software (Supplementary
Table S1b).

Quantitative Real-Time PCR of Selected
Genes
RNA was extracted from 100 mg of needle fresh weight as
described by Valledor et al. (2014a). cDNA was obtained from
1,000 ng of RNA using the RevertAid kit (Thermo Scientific,
United States) and random hexamers as primers following
the manufacturer’s instructions. Later, qPCR reactions were
performed in a CFX Connect Real Time PCR machine (Bio-Rad)
with SsoAdvanced Universal SYBR Green Supermix (Bio-Rad,
United States); three biological and two analytical replicates were
performed for each treatment.

ACTIN (ACT), RIBOSOMAL PROTEIN 18S, GLYCERALDEH
YDE 3-212 PHOSPHATE DEHYDROGENASE (GAPDH), and
UBIQUITINE (UBI) genes were tested as endogenous control
employing geNorm following the criteria of Hellemans et al.
(2007). ACT and UBI were the most stable and consequently
selected as endogenous genes. Normalized Relative Quantities
(NRQ) and Standard Errors of RQ were determined according to
Hellemans et al. (2007). Primers were designed using transcript
sequences available in a P. radiata in-house database obtained
from RNA-Seq data (unpublished results). Detailed information
about the primers used for qPCR experiments is available in
Supplementary Table S2.

Statistical and Bioinformatics Analysis
Five biological replicates were used for metabolites and
physiological parameter statistical analysis. The procedures were
conducted with the R programming language running under the
open-source computer software R v2.15.2 (R Development Core
Team, 2015) and RStudio (RStudio Team, 2015). Metabolome
datasets were pre-processed following the recommendations of
Valledor et al. (2014c). In brief, missed values were imputed
using a k-nearest neighbors approach, and variables were
filtered out if they were not present in all replicates of one
treatment or in at least 45% of the analyzed samples. Data
was transformed following a sample-centric approach followed
by log transformation. Centered and scaled values (z-scores)
were subjected to multivariate analysis and Heatmap clustering.
The calculation of the number of common metabolites for all
combinations of treatments and unique metabolites in a single
treatment was performed using core functions of R.

Metabolomics pathways of each metabolite (Supplementary
Table S3a) were searched against KEGG pathway maps (KEGG
Mapper, Kanehisa et al., 2012) and p-values of each metabolomics
pathways (Supplementary Table S3b) in MBROLE 2.0 (López-
Ibánez et al., 2016). Heat mapping was carried out using the
Manhattan distance method to group metabolites in different

KEGG pathways with an MBROLE FDR correction of less
than 0.05. Multivariate analysis of metabolites and physiological
parameters (Supplementary Table S4) were conducted with
mixOmics (Lê Cao et al., 2009) using Principal Component
Analysis (PCA), Sparse Partial Least Squares (sPLS), and network
analyses. The normalization of the datasets was performed before
combining them. sPLS algorithm was used to find correlations
between predictor (metabolites matrix) and response variables
(physiological parameters) and its graphic representation in
the network analysis. Network topology was defined after
applying sPLS regression using the function network() of the
mixOmics package and filtered (only edges equal or higher
than |0.60| were maintained) in Cytoscape v.3.3.0 (Cline et al.,
2007). Univariate analyses were conducted: one-way ANOVA,
p < 0.05 for metabolites and physiological parameters and
Student’s t-test, p < 0.1 for qPCR analysis. Graphics were plotted
employing ggplot2 (Wickham, 2009) and pheatmap (Kolde,
2015).

RESULTS

Characterization of the Metabolome
During Heat Treatment
The combination of LC-Orbitrap-MS for polar and GC-MS
for non-polar metabolites allowed the reliable quantification
of a total of 2,287 ions based on the obtained m/z and
retention times (Supplementary Table S1). These different ions
can be considered different metabolites since each combination
of m/z and retention time should be unique for each
metabolite and spatial conformation. The fusion of a customized
searching/identification algorithm based on in-house and public
databases resulted in the unequivocal identification of 41 ions
(identical matches to our compound library) and 747 ions
that were tentatively assigned after comparing its very accurate
mass against reference compound databases (Supplementary
Table S1). The combination of both ionization modes (GC-MS
and LC-Orbitrap-MS) gave a broad characterization of the pine
metabolomes during heat-induced response, which covered most
of the primary and secondary metabolism pathways.

Metabolome analysis showed that most of the metabolites
are present in all treatments or at least in two different
treatments (880 or 2,014 metabolites, respectively, “common” in
Figure 1 and Supplementary Table S5). Conversely, a total of
273 metabolites were identified only in one of the treatments
(Figure 1), Control (C) being the sample that showed the highest
number of characteristic metabolites (78), followed by T5 (44)
and R (42). Otherwise, T5 and C were the treatments that shared
a greater number of metabolites (106 metabolites; Supplementary
Table S5).

The complexity of the metabolome data was reduced by
focusing on the specific pathways in relation to the relative
abundance of the metabolites identified. Heatmap-clustering
analysis (Figure 2 and Supplementary Figure S1), distinguished
four different groups in relation to metabolic pathways identified:
C, T1/2-T1, T2-T3, and T5-R group that is highly separated of C
and shorter-term treatments.
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FIGURE 1 | Total metabolite diagram: Qualitative common metabolites (2,014) and unique metabolites (273) for each treatment. C, control; R, recovered; T1/2, 3 h
after 40◦C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5; common, qualitative common metabolites in at least two treatments.

On the other hand, the clustering based on the profile
of KEGG pathways did not show any clear trend, each
group presenting a different pathway profile across the sample
times, e.g., glucosinate biosynthesis and flavone and flavonol
biosynthesis increased their activities in treatments T1/2, T1,
T2, or T3; conversely, pentose phosphate pathway and flavonoid
biosynthesis showed the maximum in T5 and/or R. Other
pathways, such as the biosynthesis of unsaturated fatty acids
increased the activity in T2, T3, and T5 or only in the longer-
term exposure (T3 and T5) as arginine and proline metabolism
pathways. In contrast, pathways related with phenylalanine
metabolism enhance their activity during the stress but decrease
at T5 (at the levels of C and R). Lastly, riboflavin metabolism
showed a substantial increase only in T5 and glutathione
metabolism showed a fluctuating tendency, highlighting its
maximum in T3.

These results seem to underlie two different types of heat-
response in P. radiata (shorter-term and longer-term response)
where different pathways are necessary at a different time of
stress.

Shorter-Term and Longer-Term
Responses to Heat Stress Were
Confirmed by Integrative Analysis of
Metabolome and Physiological Datasets
To simplify the dimensionality of the results and integrate
metabolome data with physiological datasets, sPLS (Figure 3A
and Supplementary Table S6) and PCA (Supplementary Figure S2
and Supplementary Table S7) analyses were used. sPLS and
PCA scores revealed a trajectory of the different sampling times
by the combination of the two main components. Recovered
(R) and long-term exposed (T5) plants were separated from
the other treatments by the first component, which seems to
be gathering the variance related to long-term stress adaption,
while the second component, considering top correlated variables
(Supplementary Figure S2 and Supplementary Table S6) is related
to heat-response/tolerance. This component revealed differences
between Control-Recovered and heat-treatments.

Altogether, multivariate results provided hints about two
different responses to stress. First, an initial response to
stress (shorter-term response), involves increased ABA and
SA activities in samples T1/2, T1, T2, and T3 (Figure 3A,
Supplementary Table S6a, Comp 1). Secondly, adaptive
mechanisms, such as TSS and ZR, seem to be involved in the
distinction between T5 and T3, as well as between the recovered
and control plants according to sPLS analysis (Figure 3A,
Supplementary Table S6a, Comp 1).

The interaction networks built from this analysis (Figure 3B
and Supplementary Table S6) showed a complex correlation
between different metabolites and hormones and physiological
parameters. The important role of CKs was demonstrated
during heat response, as well as the links of these hormones
with different compounds of the metabolome and physiological
parameters in response to high temperatures. Two main
nodes in the constructed network were detected: ZR and iPA
nodes. The ZR node was negatively correlated with numerous
saturated and unsaturated fatty acids (C16:0 and C18:0 with
their unsaturated forms), flavonoids (including kandelin A-1
or eujambolin), amino acids (such as L-proline and L-serine),
and L-phenylalanine (key metabolite in several pathways, such
as phenylalanine metabolism, phenylpropanoid biosynthesis and
biosynthesis of plant hormones). The presence of L-proline in the
network indicates the relevance of the accumulation of this amino
acid in longer-term response (T3 and T5) to high temperatures
in P. radiata, as it has already been showed in Escandón et al.
(2016) and confirmed by the increased activity of its metabolism
(Figure 2, arginine and proline metabolism). Additionally, ZR
was positively correlated with fatty acids involved in sphingolipid
metabolism, terpenoids (including abscisic-alcohol 11-glucoside)
and other secondary metabolites: dihydrokaempferol (related
to flavonoid biosynthesis) and cis-1,2-dihydro-3-ethylcatechol
(implicated in the degradation of aromatic compounds). In this
node, it is also important to note that the physiological parameter,
EL, appeared negatively correlated by an unknown metabolite
(p537) to IAA and DHZR which, in turn, were also positively
linked to tetracosanoic acid (saturated fatty acid, C24:0). This
confirms the relevance of these hormones (Du et al., 2013;
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FIGURE 2 | Heatmap-clustering analyses of KEGG pathways considering only the pathways that exceed MBROLE FDR-correction (p < 0.05). Numbers inside the
boxes indicate normalized abundance of each pathway (as a percentage) calculated as the sum of all identified/assigned metabolites within each pathway according
to KEGG pathway. C, control; R, recovered; T1/2, 3 h after 40◦C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.

Černý et al., 2014) and fatty acid signaling (Los and Murata,
2004) to repair membrane damage related to heat stress. On
the other hand, iPA was positively correlated with fatty acids,
such as tetradecanoic acid and (9Z)-octadecenoic acid, as well
as metabolites involved in diterpenoid biosynthesis (sclareol);
and this hormone was negatively correlated with compounds
involved in flavonoid biosynthesis, such as dihydromyricetin.

Interestingly, the analysis of the network dynamics and
particularly the quantitation of the represented variables showed

a two-step response, with T3 as the transition point
between shorter-term and longer-term responses
(Supplementary Movie S1). This observation is consistent
with the conducted sPLS and PCA analyses. This behavior
can be considered an adaptive mechanism to cope with rapid
environmental changes that occur daily (i.e., sun heat following a
rainy period). In this case, plants require a mechanism to quickly
overcome the first impact of stress; however, the physiology
should return to ideal values after the removal of the stress factor
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FIGURE 3 | Multivariate analysis of metabolome, and physiological parameters in needles during heat treatment. (A) Classification of the different samples according
to sPLS. Components 1 and 2 allowed the clustering of treatments analyzed according to shorter-term (T1/2, T1, T2, and T3) and longer-term (T5 and R) heat-stress
responses. (B) Interaction networks constructed after sPLS analysis using metabolites as the predictor matrix and physiological measurements as the response
matrix. Edge color represents the correlation value. Only those correlations equal or higher, in absolute value, than 0.6 are shown. Color nodes reflect the amount of
control that this node exerts over the interactions of other nodes in the network (higher control = lighter color). EL, electrolyte leakage; ZR, zeatin riboside; iPA,
isopentenyl adenosine; IAA, indol-3-acetic acid; DHZR, dihydrozeatin riboside; BK, castasterone; GA7, gibberellin 7; C, control; R, recovered; T1/2, 3 h after 40◦C
on day 1; T1 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.

in order to achieve an optimal energetic balance. A previous work
(Escandón et al., 2016) showed that photosynthetic state was
only slightly affected in the first impact to heat stress (T1/2, T1
and T2), recovered to control levels in T3, and even improved on
T5, probably related to the beginning of the acclimation process;
while lipids peroxidation analysis showed a slight accumulation
of MDA in shorter-term exposures (T1/2, T1 and T2) prior to the
activation of acclimation mechanisms. On the other hand, if the
stress persists the plant must adapt to the new situation with the
cost of reducing its growth and reproductive capacity compared
to an ideal situation (Bradford and Hsiao, 1982).

Using Metabolomics to Explore Possible
Thermotolerance Biomarkers
The metabolome analysis revealed the essential role of
specific metabolites (Figure 3) and pathways (Figure 2 and
Supplementary Figure S1) in relation to high-temperature
adaptation in P. radiata.

The accumulation of three different metabolites belonging
to pathways with higher significant changes across high-
temperature treatments is showed in Figure 4. One of these
three key compounds is L-phenylalanine which participates in
numerous pathways (Meyermans et al., 2000; Wittstock and
Halkier, 2000; Teufel et al., 2010; Tzin and Galili, 2010; Yoo et al.,
2013), such as phenylalanine metabolism, phenylpropanoid
biosynthesis, phenylalanine, tyrosine and tryptophan
biosynthesis, glucosinolate biosynthesis, and biosynthesis of
plant hormones, most of them highly related/interconnected.
Its accumulation profile reflected a level increase from T1/2 to

T3 (Figure 4A), decreasing to control levels in T5 and reaching
the lowest accumulation values in R. Phenylpropanoids and
flavonoids play a key role in protecting plants against abiotic
stress, largely by inhibiting the formation of ROS through a
number of different mechanisms (Mierziak et al., 2014). The
increment of L-phenylalanine in the shorter treatments may be
related to the need to cope with the production of ROS. The
decrease in L-phenylalanine in T5 and R could be related to
the increased activity of PHENYLALANINE AMMONIA LYASE
(PAL; crucial enzyme in phenylpropanoid pathway), which
transforms L-phenylalanine into trans-cinnamic acid (Rivero
et al., 2001). The activity increase of this enzyme is considered
one of the most important ways of cell acclimation against stress
in plants (Levine et al., 1994; Leyva et al., 1995; Rivero et al.,
2001).

Other pathway highlighted by heatmap-clustering (Figure 2
and Supplementary Figure S1) was the glutathione metabolism,
which showed the highest accumulation in T3. Ascorbic acid
is key in this pathway; however, it showed decreased levels in
short-term treatments (Figure 4B), reaching the highest values
in T5 and R. Ascorbic acid and glutathione are both antioxidants,
which are crucial for plant defense against oxidative stress
(Noctor and Foyer, 1998). The decrease of ascorbic acid in shorter
treatments could be explained by their use in this defense against
oxidative damage.

D-(−)-ribose (Figure 4C), which participates in pentose
phosphate and ABC transporters pathways, showed a decline
in shorter-term, recovering the control values in T5 and R.
This may indicate that plants reduce their metabolism until T3,
recovering the activity in T5 and R when the plants are adapted.
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FIGURE 4 | Time-course accumulation of key metabolites involved in phenylalanine metabolism (L-phenylalanine) (A), glutathione metabolism (Ascorbic acid) (B),
and pentose phosphate pathway and ABC transporters (D-Ribose) (C). Box plot representation of the LOG transform data (Supplementary Table S4). The ID of each
metabolite is upper the identification by in-house database. C, control; R, recovered; T1/2, 3 h after 40◦C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3,
day 3; T5, day 5.

Although sugars play an important role against heat stress in
many species (Wahid et al., 2007), in P. radiata it has been
showed that the total amount of soluble sugars tends to decrease
in the first moments of stress (Escandón et al., 2016). This may
be because plants maintains growth patterns although they are
driven by consuming carbohydrates reserves (Mitchell et al.,
2013; Escandón et al., 2016).

Under high temperatures, plants alter lipid composition,
causing membranes to become more fluid and thus interrupting
membrane processes (Falcone et al., 2004). High-temperature-
tolerant plants show an increased presence of saturated fatty acids
to counteract increased fluidity during heat stress (Grover et al.,
2000; Umesha, 2005). Levels of candidate metabolites related to
biosynthesis of unsaturated fatty acids pathway are represented in
Figure 5 including both saturated fatty acids (Figures 5A,D) and
unsaturated fatty acids (Figures 5B,C,E,F). Saturated fatty acids,
hexadecanoic acid (C16:0, Figure 5A) and C18:0 (Figure 5D),
shared an increasing tendency in short-term response, starting to
fall in T3 (in the case of C16:0) or earlier in T2 (C18:0). In both,
the lowest accumulation values were reached in R. This saturated
fatty acids raise is consistent with the hypothesis by Grover et al.
(2000), which indicates the plants increase saturation until seems
to be already acclimated to the heat stress.

In the case of unsaturated fatty acids, they showed different
patterns depending on the studied fatty acid. C16:2 and C18:2
showed a slight decrease in short-term response (Figures 5B,E),
conversely, C16:3 and C18:3 (Figures 5C,F) presented increased
levels in T1/2 and T1. In longer-term response, the most common
tendency is the recovery at the control values (Figures 5B,C,E)
even surpassing them, except for C18:3 where this only occurs in
R (Figure 5F). This differential accumulation patterns seems to
evidence the different roles of each unsaturated fatty acid during
heat-stress response.

Flavonoids related pathways are also crucial elements
according to heatmap-clustering analysis (Figure 2 and
Supplementary Figure S1). Bibliography indicate that flavonoids
and anthocyanins are essential compounds to prevent and

protect the plants against different abiotic and biotic stress
(Dao et al., 2011; Zhang et al., 2012). Results showed that
dihydromyricetin (Figure 6A), key metabolite in flavonoid
biosynthesis pathway, continuously decreases its levels until
T3, to then begin its accumulation, reaching the control values
in R. On the contrary, flavonoids eujambolin and kandelin
A-1 (Figures 6B,C), showed the lowest accumulation in T5
and R. Eujambolin presented a decreasing tendency in shorter
treatments, showing a strong decrease in T5 and later in
R. Conversely, kandelin A-1 showed an increase in shorter
treatments in relation to control, displaying a strong decrease in
T5 and R.

Dihydromyricetin (along with dihydroquercetin and
dihydrokaempferol) is a dihydroflavonols implicated in the
synthesis of anthocyanidins (Falcone Ferreyra et al., 2012).
While, kandelin A-1 is a proanthocyanidin which are synthesized
as oligomeric or polymeric end products of one of several
branches of the flavonoid pathway, which shares the same
upstream pathway with anthocyanins (He et al., 2008).
Anthocyanins are usually accumulated during heat stress in
vegetative tissues (Wahid and Ghazanfar, 2006) in order to
decrease the transpirational losses caused by lower osmotic
potential of the leaf (Chalker-Scott, 2002). However, the
complexity of its metabolism and the high number of these
compounds makes their study difficult.

Gene expression of PAL (Figure 7A), two DESATURASE
(DES, Figures 7B,C) and a central gene involved in
anthocyanins and proanthocyanins biosynthesis pathways,
DIHYDROFLAVONOL 4-REDUCTASE (DFR, Figure 7D)
(Ayabe et al., 2010; Katsu et al., 2017) were analyzed in order
to confirm the possible role of these elements as biomarkers
and validate the relevance of L-phenylalanine, fatty acid and
flavonoid metabolism in the high-temperature response of
P. radiata.

These data showed that PAL (Figure 7A) increases its
expression in the first moments to stress (T1/2 and T1),
returning to the control values in T2 and T3. In T5 and R
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FIGURE 5 | Levels of key metabolites of unsaturated fatty acids metabolism across high-temperature treatments. C16: Saturated fatty acid (A) and their unsaturated
fatty acids C16:2 (B) and C16:3 (C). C18: Saturated fatty acid (D) and their unsaturated fatty acids C18:2 (E) and C18:3 (F). Box plot representation of LOG
transform data for the total content of each fatty acid C16 or C18, respectively. C, control; R, recovered; T1/2, 3 h after 40◦C on day 1; T1, 6-h heat exposure on
day 1; T2, day 2; T3, day 3; T5, day 5.

FIGURE 6 | Levels of key metabolites related to flavonoid biosynthesis across high-temperature treatments: Dihydromyricetin (A), eujambolin (B), and kandelin A-1
(C). Box plot representation of the LOG transform data (Supplementary Table S4). ID of the three metabolite, previously tentatively identified using public database,
was validated by the interpretation of their MS/MS spectra (Supplementary Data S1). C, control; R, recovered; T1/2, 3 h after 40◦C on day 1; T1, 6-h heat exposure
on day 1; T2, day 2; T3, day 3; T5, day 5.

its expression increases drastically, confirming the pattern of
decrease of L-phenylalanine (Figure 4A) in these treatments by
its consumption. In the case of DES (Figures 7B,C), both genes

showed a reduction of the expression in shorter-term treatments:
contig5799 presented the decrease in T1/2, T1 and T2, while
contig04128 only in T2. This reduction is consistent with the
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FIGURE 7 | Analysis of the relative quantity (RQ) measured by RT-qPCR of selected genes in highlight pathways related to high-temperature response of Pinus
radiata. (A) PHENYLALANINE AMMONIA LYASE (PAL) involved in phenylpropanoid biosynthesis; (B) DESATURASE (contig57599) and (C) DESATURASE
(contig04128) in unsaturated fatty acids metabolism; (D) DIHYDROFLAVONOL 4-REDUCTASE (DFR) in anthocyanins and proanthocyanins biosynthesis. Expression
levels are shown regarding the Control and were normalized using ACT and UBI as housekeeping genes. Error bars show the SE of normalized RQ for each gene
and each sample scaled to the control. Asterisks (∗) denote statistically different values compared to the corresponding control group (according to Student’s t-test,
p < 0.1). C, control; R, recovered; T1/2, 3 h after 40◦C on day 1; T1, 6-h heat exposure on day 1; T2, day 2; T3, day 3; T5, day 5.

increase of saturated fatty acids identified (C16:0 and C18:0,
Figures 5A,D). Finally, DFR (Figure 7D) showed an increase
of expression across of stress time, reaching a peak in T5 and
return to the control values in R. These results are according
dihydromyricetin levels quantified (Figure 6A), which seems
to be being consumed for the production of anthocyanins in
response to high-temperature stress.

DISCUSSION

Metabolome Characterization: Dynamic
of Metabolism Throughout
High-Temperature Stress
The plant metabolome responds to an unfavorable environment
in a dynamic way, being favored a characteristic type of
metabolic pathways at every moment of stress. Depending on
the timing, different compounds can be identified, as stress
signal transduction molecules, stress metabolism by-products,
or molecules that are part of the plant acclimation response
(Shulaev et al., 2008). According to this, the results of this work
showed that the response of P. radiata at high temperatures
activates the synthesis of specific metabolites at each time of
the stress (Figure 1) showing every sample-time a significant
number of unique metabolites. Additionally, these results seem
to reveal the beginning of the acclimation process in T5 that
showed the greatest number of unique metabolites but also the
greatest number of shared metabolites with the control plants
(106 metabolites, Supplementary Table S4).

In-depth analysis of metabolite accumulation in relation
to KEGG pathways (Figure 2 and Supplementary Figure S1)
allowed to confirm the high dynamism of the metabolome in
relation to high-temperature response (Escandón et al., 2017).
Although two main trends in the KEGG pathways have been
identified by heatmap-clustering (Figure 2 and Supplementary
Figure S1), each pathway seem to have a specific role in
a particular moment of the stress, seemingly following an
orchestrated succession, particularly, in the case of flavonoids

related pathways. Thus, phenylpropanoid biosynthesis seems to
be activated in the first contact with stress (T1/2-T1), while in
T2-T3 the most active route is flavone and flavonol biosynthesis,
to finally increase the activity of the general pathway of flavonoid
biosynthesis in T5 and R. The importance of the flavonoids
across the heat stress is evident. According to bibliography the
compounds in this group act as antioxidants, contributing to
the adaptation to environmental changes such as cold, high
temperatures or irradiation (Gould et al., 2002; Doerfler et al.,
2013, 2014; Meijón et al., 2016).

Fatty acids also play a fundamental role in the response
to stress in P. radiata. Biosynthesis of unsaturated fatty acids
is a very active pathway in the longer exposure treatments
(T2, T3 and T5), while saturated fatty acid biosynthesis is
more relevant in the first moments of exposure to heat (T1/2
and T1). A reduction of unsaturated fatty acid content and
increase in saturated fatty acids content has been positively
associated with heat tolerance as they counteract the increase in
membrane fluidity caused by high temperature (Grover et al.,
2000; Larkindale and Huang, 2004). However, this hypothesis has
not been fully confirmed since that unsaturated fatty acid are also
known to be key elements in heat stress signaling (Königshofer
et al., 2008) and to provide other essential characteristics to
lipid membrane (Falcone et al., 2004), showing an increase in its
accumulation at high temperatures.

In the case of P. radiata, biosynthesis of fatty acid is a key
mechanism to overcome the fluidization of the membrane until
T2 at the beginning of the stress, when the plants had overcome
this fluidization. The global increment in saturated fatty acid
would be consequence of the increase of the amount of a specific
saturated fatty acid (e.g., hexadecanoic acid) or the accumulation
of fatty acids with lower numbers of double bonds (the reduction
of C18:3 to C18:2 or C18:1; Wang et al., 2017). From T2, plants
activate the biosynthesis of unsaturated fatty acids which may
be necessary to stabilize photosynthesis (Gombos et al., 1994) or
activate signaling (e.g, lipid or calcium signaling) (Königshofer
et al., 2008). These observations support the idea of Falcone
et al. (2004) that the unsaturation level of lipid membranes also
plays an important role in the plant’s ability to tolerate high
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temperatures, although other characteristics of plants membrane
lipids are also likely to be important.

The study of the metabolome across heat stress and recovery,
has given the possibility to deepen in the different dynamics of the
metabolomic pathways in P. radiata, establishing the existence of
key pathways in different moments of the stress response.

Integrative Analysis of Physiological
Response and Metabolome Dynamic
This work revealed that high temperature has a complex
impact on cell function, suggesting that many and complex
processes are involved in heat-resistance processes. However,
the use of system-wide approach and integrative bioinformatics
tools have allowed the understanding of the molecular basis,
the identification of injury mediators, and the characterization
of associated biomarkers. Thus, CKs, fatty acid metabolism
and flavonoid and terpenoid biosynthesis were revealed as the
most relevant pathways related to shorter-term and longer-term
response clusters confirmed by multivariate analysis (Figure 3A),
being ZR and iPA the key hormones that coordinate the different
response processes (Figure 3B).

Some of the secondary metabolites with a higher loading in
the shorter-term and longer-term response cluster included
dihydrokaempferol, cis-1,2-dihydro-3-ethylcatechol and
dihydromyricetin, which are all crucial elements in flavonoid
metabolism. Flavonoids are a biologically and chemically diverse
group widely represented in plants. Their diversity and multi-
functionality demonstrate their importance in plants. Terpenoids
are the other significant group of secondary metabolites identified
in relation to the clusters, which are produced by a variety of
plants and particularly in conifers (Zulak and Bohlmann, 2010).
These volatile compounds are emitted by plants and play an
important role in the interaction with their environment (Tholl,
2015). The best known and most studied group of terpenoids
is the sesquiterpenoid plant hormone ABA, the central element
in the plant stress response (McCourt et al., 2005; Raghavendra
et al., 2010). Abscisic alcohol 11-glucoside, the glycosylated
form of ABA, was also positively correlated to ZR as a key
element in the network (Figure 3B). Both groups of secondary
metabolites, flavonoids and terpenoids, are important in plant
growth, development, and response against biotic and abiotic
stress (Alder et al., 2012), as well as in plant adaptation to
variable environmental conditions (Kliebenstein, 2004). Plasma
membrane fluidity has been described to be an important
temperature sensor in plants that appears to lie upstream of
the unfolded protein response (Wu et al., 2012). Increased
membrane fluidity appears to open calcium channels in the
plasma membrane and the resultant inflow of calcium triggers
signaling cascades, including an H2O2 burst (Königshofer et al.,
2008), which activates the heat-stress response. In fact, fatty acids
are the most prominent group of compounds revealed in the
heat-stress response network, after CKs.

Integrated physiological and metabolome analysis across
high-temperature treatments (Supplementary Movie S1) in
P. radiata emphasizes the complex dynamics of the metabolome
in response to heat stress and suggests the existence of a
turning point (T3) at which P. radiata plants changed from an

initial stress response (shorter-term response) to an acclimation
one (longer-term response). The video highlights how the
metabolites that are positively related to ZR increase drastically
its accumulation in T5 and R. This is regulated by a complex
interaction network that involves multiple pathways and groups
of compounds where possible biomarkers of thermotolerance
processes could be found.

Evaluation of Proposed Thermotolerance
Biomarkers in P. radiata
In plants, the concept of biomarker could be defined as “a
characteristic that is objectively measured or evaluated as a
predictor of plant performance” (Fernandez et al., 2016). The
use of biomarkers originated from the field of medicine, but
in plants in recent years, many authors have used metabolites
as indicators for estimating plant performance under stress
conditions (Quistian et al., 2011; Degenkolbe et al., 2013; Nam
et al., 2015; Obata et al., 2015). One of main goals in this
study is to find metabolic markers of high-temperature tolerance,
potentially useful for P. radiata breeding programs.

L-phenylalanine, hexadecanoic acid (C16:0), and
dihydromyricetin were confirmed as the three strongest
biomarkers between the proposed candidates related to the
results of this work. Their biological relevance, statistical
strength in integrative analysis, and accumulation profile
across the samples times analyzed validate their future use as
thermotolerance biomarkers in P. radiata.

L-phenylalanine seems to be one of the clearest candidates.
L-phenylalanine is crucial in numerous KEGG pathways
which changed significantly during stress, particularly in
shorter-term treatments (e.g., phenylalanine metabolism,
phenylpropanoid biosynthesis, phenylalanine, tyrosine and
tryptophan biosynthesis, glucosinolate biosynthesis, and
biosynthesis of plant hormones). In addition, integrative
analysis of metabolome and physiological measurements
showed its relevance as a key compound in the network related
to high-temperature response (Figure 3B). L-phenylalanine
showed a direct correlation with the CKs associated with
the trigger of response (negatively with ZR and positively
with iPA). Old studies (Dedio and Clark, 1971; Deikman and
Hammer, 1995) have already seen how the application of CKs
stimulated flavonoids pathways in which L-phenylalanine is
involved (flavonoids are synthesized by the phenylpropanoid
metabolic pathway), such as the production of isoflavone and
anthocyanins synthesis. More recently, Angelova et al. (2001)
and Ali and Abbas (2003) have debated the impact of CKs on the
accumulation of flavonol glycosides and Hamayun et al. (2015)
found out how kinetin modulates isoflavone contents under
salinity stress. Furthermore, PAL expression analysis (Figure 7A)
confirms the beginning of the acclimation process in T5 when
L-phenylalanine levels (Figure 4A) showed a significant decrease,
validating the high value of this metabolite as a biomarker.

The second candidate biomarker was chosen within saturated
fatty acids, given their importance in stabilizing membrane
fluidity during heat stress (Grover et al., 2000; Larkindale and
Huang, 2004; Wang et al., 2017). Hexadecanoic acid (also known
as palmitic acid or C16:0) increases its accumulation in shorter
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heat exposures, suffering a decrease in T5 and R, when the plant
can be already acclimatized to stress (Figure 5E). Moreover, the
low expression levels of both DES (Figures 7B,C) in shorter
treatments underline the importance of saturated fatty acids, such
as hexadecanoic acid, in the early response to high temperatures.
This saturated fatty acid has already been studied by other
authors such as Alfonso et al. (2001), Falcone et al. (2004), and
Larkindale and Huang (2004) in relation to high-temperatures
response. It has been even observed that the thermotolerance of
an Arabidopsis mutant deficient in palmitic acid unsaturation
is enhanced (Kunst et al., 1989). Furthermore, hexadecanoic is
showed as an important element by the performed integrative
analysis, appearing interconnected with the master regulator ZR
in the network.

The last strong biomarker proposed is dihydromyricetin, also
known as ampelopsin. Dihydromyricetin is a flavanonol included
in anthocyanin biosynthesis inside flavonoid biosynthesis
pathway. Flavonoids and anthocyanins have a photoprotective
and antioxidant role (Dao et al., 2011; Zhang et al., 2012).
Dihydromyricetin is consumed during anthocyanins synthesis,
reducing its accumulation in shorter treatments and reaching
the lowest levels in T3 (Figure 6A). This is validated by
the increased expression of DFR across the exposure to high
temperatures (Figure 7D), showing its maximum expression
in T5 when dihydromyricetin begins to be accumulated again.
Anthocyanins are produced under a variety of stresses such
as UV-B (Valledor et al., 2012), low temperatures (Krol et al.,
1995), or salinity (Wahid and Ghazanfar, 2006), although only
a few studies have dealt with the effect of high temperatures
on anthocyanin accumulation (Wahid and Close, 2007; Correia
et al., 2014; de Leonardis et al., 2015). Dihydromyricetin was
also prominent in multivariate and integrative analysis showing
a negative correlation with iPA and BK. Cytokinin increases
anthocyanin content and the transcript levels of PRODUCTION
OF ANTHOCYANIN PIGMENT 1 (Das et al., 2012) which
is according to the dropping levels of dihydromyricetin
(anthocyanin precursor) observed in the first impact of the heat
stress. Among many other biological functions, anthocyanins
are considered the first line of defense against oxidative stress
(Gould et al., 2002), scavenging oxygen radicals, and inhibiting
lipid peroxidation (Chalker-Scott, 2002; Ling et al., 2007).

CONCLUSION

This work shows that high temperatures induced a quick and
dynamic change in the metabolome of P. radiata, in order
to maintain homeostasis and facilitate survival. Integrative
study of metabolome across high-temperature exposure and
recovery plants allowed reaching a global view of molecular
mechanism behind high-temperature response in P. radiata,

revealing complex interaction networks that involve CKs, fatty
acid metabolism, and flavonoid and terpenoid biosynthesis being
ZR and iPA the master regulators that trigger the global response.
Additionally, novel potential thermotolerance biomarkers such
as L-phenylalanine, hexadecanoic acid and dihydromyricetin
have been proposed. However, these potential biomarkers need
to be validated in further studies in P. radiata and their possible
universality analyzed in other species.
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