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Organelle genomes of land plants are predominately inherited maternally but in some
cases can also be transmitted paternally or biparentally. Compared to seed plants
(>83% genera of angiosperms and >12% genera of gymnosperms), plastid genome
(plastome) inheritance has only been investigated in fewer than 2% of fern genera,
and mitochondrial genome (mitogenome) from only one fern genus. We developed
a new and efficient method to examine plastome and mitogenome inheritance in a
fern species—Deparia lancea (Athyriaceae, Aspleniineae, Polypodiales), and found that
plastid and mitochondrial DNAs were transmitted from only the maternal parentage
to a next generation. To further examine whether both organelle genomes have
the same manner of inheritance in other Deparia ferns, we sequenced both plastid
and mitochondrial DNA regions of inter-species hybrids, and performed phylogenetic
analyses to identify the origins of organellar DNA. Evidence from our experiments and
phylogenetic analyses support that both organelle genomes in Deparia are uniparentally
and maternally inherited. Most importantly, our study provides the first report of
mitogenome inheritance in eupolypod ferns, and the second one among all ferns.

Keywords: Deparia, eupolypod, fern, maternal inheritance, mitogenome, plastome, tissue-direct PCR

INTRODUCTION

Unlike the strict maternal inheritance of mitochondrial genomes in animals, organelle inheritance
in land plants are complex and variable. Plant plastid and mitochondrial genomes (plastome
and mitogenome, respectively) can be inherited maternally but also paternally or biparentally.
In angiosperms, maternal inheritance is believed to be predominant in both organelle genomes;
however, in around 20% of genera, plastomes were found to be putatively biparentally inherited
(Mogensen, 1996; Zhang and Sodmergen, 2010; Jansen and Ruhlman, 2012; Choubey and Rajam,
2015). In a few angiosperm taxa, cases of biparental inheritance of the mitogenome and paternal
inheritance of the plastome were confirmed (Zhang and Sodmergen, 2010; Li et al., 2013; Mccauley,
2013; Choubey and Rajam, 2015). In gymnosperms, both organelles are maternally inherited in
non-conifer lineages, including cycads, Ginkgo, and gnetophytes (Mogensen, 1996; Jansen and
Ruhlman, 2012). In contrast, for some conifers, paternal and biparental inheritance of the plastome,
and paternal inheritance of the mitogenome was identified (Mogensen, 1996; Jansen and Ruhlman,
2012; Worth et al., 2014).
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In seed-free land plants, such as ferns and bryophytes,
organelle genomes have been found to be only maternally
inherited (reviewed in Zhang and Sodmergen, 2010). However,
the variability of organelle genome inheritance for these plants
is likely to be underestimated due to a poor and disproportional
sampling. In ferns, while maternal inheritance is generally
assumed, genetic evidence is weak—only four cases were studied
for fern plastome inheritance, and only one was for that of
mitogenome (Gastony and Yatskievych, 1992; Vogel et al., 1997;
Guillon and Raquin, 2000; Adjie et al., 2007). The proportion
of examined fern genera is less than 2% (sensu PPG, 2016), and
is far smaller than that in either angiosperms or gymnosperms
(respectively estimated to be >83% and >12% of genera; Reboud
and Zeyl, 1994; Mogensen, 1996; Zhang et al., 2003; Worth et al.,
2014).

Cytologically, maternal inheritance of the organelle genomes
in some ferns is implicated by the anatomical ontology during
fertilization. Both plastids and mitochondria exist in fern egg
cells and functional sperms (Duckett, 1973; Raghavan, 1989
and references listed therein; Kotenko, 1990; Gori et al., 1997;
Muccifora et al., 2000; Renzaglia et al., 2001; Lopez-Smith
and Renzaglia, 2002, 2008; Sakaushi et al., 2003; Cao et al.,
2009, 2010; Wolniak et al., 2011; Cao, 2014), but plastids
from sperm are known to be excluded before immersion into
an egg (Bell and Duckett, 1976; Lopez-Smith and Renzaglia,
2002, 2008; Cao et al., 2010, 2016). In Osmunda, Pteridium,
and Ceratopteris, mitochondria from sperms are digested soon
after fertilization (Bell and Duckett, 1976; Lopez-Smith and
Renzaglia, 2008; Cao et al., 2010, 2016). However, in Lygodium,
paternal mitochondria are still retained after fertilization,
and it is unclear whether these mitochondria persist in
subsequent developmental stages (Lopez-Smith and Renzaglia,
2002).

This study aims to broaden the understanding of organelle
genome inheritance in ferns by exploring an additional and
uninvestigated lineage—Deparia (Athyriaceae, Aspleniineae,
Polypodiales). Most importantly, we provide the second
confirmed case of maternal inheritance of mitogenome in
ferns, and the first one for that in the eupolypods, the most
species-rich lineage in ferns (PPG, 2016). In addition, we
developed a new genetic experiment (Figures 1, 2) that can
greatly facilitate the investigations on organelle inheritance in
seed-free plants like ferns, which mostly produce small and
hermaphroditic gametophytes, and therefore, are difficult to
be manipulated in outcrossing experiments to trace organelle
genome transmissions. Given that ferns belong to the extant
lineage most closely related to seed plants, an improved
understanding of ferns should provide valuable insights into
the evolution of variable organelle genome inheritance in land
plants.

MATERIALS AND METHODS

Overview of Experimental Design
We developed a new genetic-based method to trace organelle
genome transmission in ferns (Figures 1, 2). First, we selected

two conspecific and sexual individuals (given names of
“A” and “B” in Figure 2) from different populations as
our parental sources. Next, we mixed their spores, and
cultivated their gametophytes together until F1 sporophyte
offspring were generated. At the same time, we applied
a genome skimming approach (Figure 1 blue part) to
seek single-nucleotide polymorphisms (SNPs) among their
plastomes and mitogenomes, and found a plastid (pt)DNA
marker and a mitochondrial (mt)DNA marker that can
distinguish the two parental individuals. We also screened
some candidate nuclear (n)DNA loci to find a diagnostic
region as a biparentally inherited nDNA marker. For
every individual of F1 sporophyte progenies, we then used
these genetic markers to determine (i) its maternity by
barcoding its attached gametophyte (i.e., the donor of egg)
and (ii) its paternity by the nDNA marker genotyping
(Figures 1, 2). Since we confirmed both parentages for
these individuals, we could identify the outcrossed ones
(i.e., crossing between gametophytes from the different
parental individuals; Figure 2), and select them for further
ptDNA and mtDNA genotyping. Compared with that of
the two parental individuals, these genotyping results could
further infer the parentage(s) that transmitted these organelle
genomes from a gametophyte generation to a next sporophyte
generation.

Sample Preparation
Two diploid individuals of Deparia lancea from two localities
in Taiwan were selected as parental sources: Kuo4046 from
Taichung City and Kuo4294 from Taoyuan City, which are
referred to as parents A and B, respectively. Their ploidies
were confirmed by flow cytometry following Kuo (2015).
Spores of the two parents were collected from living materials
cultivated in a greenhouse of the Taiwan Forestry Research
Institute. Their fertile leaves were wrapped in weighing paper,
and dried at room temperature for 2–3 days to allow spore
release. The collected spores were subsequently stored in
0.5 mL microcentrifuge tubes under 4◦C and used within
2 months.

Organelle Genome Assembly
DNA of both parents were extracted from their leaves by a
modified CTAB procedure (Kuo, 2015), and then fragmented into
an averages size of 500 bp using Covaris S2 (Covaris, Woburn,
MA, United States). We constructed the Illumina libraries using
NEBNext DNA Library Prep Master Mix Set (New England
Biolabs, Ipswich, MA, United States), which were sequenced
on Illumina MiSeq (2 × 300 bp paired-end) producing 0.4–
0.6 Gb per sample. We removed the adapter sequences using
Scythe (Buffalo, 2014) and trimmed reads to remove low quality
bases by Sickle (Joshi and Fass, 2011). To assemble the organelle
genomes, we input the reads into NOVOPlasty (Dierckxsens
et al., 2017). For the plastome, we used the Woodwardia
assembly (GenBank accession: NC_028543) as the seed. For the
mitogenome, we used the coding exon sequences from Salvinia
mitogenome (Li et al., unpublished data) as the seeds, and used
the Deparia plastome assemblies to exclude plastome reads (by
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FIGURE 1 | Experimental workflow of the current study.

FIGURE 2 | Procedures of tracing organelle genome transmission in the current study. The heart- and spoon-shaped icons respectively indicate gametophyte and
sporophyte juveniles of Deparia lancea. The white and black ones respectively indicate descendants from parent A or B, while the gray ones indicate outcrossed
sporophytes between parents A and B.

“Chloroplast sequence = ” setting). The assembled organelle
contigs were validated by read-mapping using bwa (Li and
Durbin, 2009), and annotated in Geneious (Kearse et al., 2012).

These raw reads were deposited in NCBI Short Read Archive
(SRP136489) and the NCBI accessions for organelle contigs are:
MH124207-35.
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SNP Identification
To identify SNPs in organelle genomes between the two parental
individuals, we re-mapped their Illumina reads to our plastome
and mitogenome assemblies using bwa (Li and Durbin, 2009),
and then inspected the mapping results in Geneious. We found
SNPs in the plastid ndhF (NADH-plastoquinone oxidoreductase
subunit five) and mitochondrial nad9 (NADH dehydrogenase
subunit nine) genes (Supplementary Figures S1, S2), which
were then respectively selected as the ptDNA marker and
the mtDNA marker. Primers were designed to target these
two regions (Table 1).To find a nDNA marker, we screened
the low-copy loci from Rothfels et al. (2013), and found a
diagnostic SNP at the 13th intron of IBR3 (IBA-response 3)
(Supplementary Figure S3). To verify the sequences of the two
IBR3 alleles in each parental individual, we used HiFi DNA
polymerase (Kapa Biosystems, Wilmington, DE, United States)
for PCR amplification, and cloned the PCR products into
the pJET1.2/blunt cloning vector (Thermo Fisher Scientific,
Waltham, MA, United States). Ligation, transformation, plating,
and selection of clones followed the manufacturer’s protocol.
All primer information is summarized in Table 1. All the
generated sequences were deposited in GenBank (Accession
Nos.: MG972633-40).

Culture for Gametophyte and
Sporophyte Progeny
Spores from both parental individuals were mixed and sowed
on the top of soil medium in a 7.5 × 9-cm plastic
box (PHYTATRAY IITM no. P5929; Sigma, St. Louis, MO,
United States) with a density of roughly 320∼350 spores/cm2.
The soil medium contained a mixture of vermiculite: peat:
perlite in a 2:2:1 volume ratio. After 3 months when the
number of sporophyte offspring seemed saturated and no newly
generated sporophyte individual was found, we transferred
the gametophyte-connected sporophytes into individual plots.
Both gametophytes and sporophytes were cultured under LED
white fluorescent illumination of 6.3 ± 0.3 µmole m−2 s−1

for 10 h d−1, and the daily temperature ranged 20∼28◦C.
The humidity was monitored to avoid desiccation of the
cultures.

Confirming Sexual Reproduction
We first checked the spore number per sporangium (S/S) of
both parental individuals to infer their reproductive modes. In
Deparia, 64 S/S and 32 S/S are respectively indicative of sexual
and apomictic individuals (Kato et al., 1992). In addition, we
conducted flow cytometric analyses of both the gametophyte and
sporophyte offspring to confirm their relative nuclear genome
size, as well as their reproductive mode (i.e., with sexual
reproduction, gametophytes should have a genome size half that
of sporophyte progeny). Twenty gametophyte individuals (each
around 0.5 cm2 in size) without a juvenile sporophyte were used
for the flow cytometric analysis to confirm the gametophyte
genome size; while leaf tissues of sporophyte juveniles were used
to confirm the sporophyte genome size. The flow cytometric
method followed Kuo (2015).

Determining Maternity of F1 Sporophyte
Progeny
To determine whether the gametophyte-attached sporophyte
progeny was derived from parent A or B, we used the partial
ndhF as the DNA marker and a PCR-RFLP (restriction fragment
length polymorphism) approach for identification. The ndhF
products of these gametophytes were first amplified using tissue-
direct PCR following Li et al. (2010). Then, 1 or 2 µL from
each of these PCR products was treated with 5 U of the
restriction enzyme of AciI (New England Biolabs, Ipswich, MA,
United States) at 37◦C for 60 min and then 65◦C for 20 min.
The AciI-treated ndhF products were subsequently examined by
electrophoresis using 1× TBE and a 1.5% agarose gel at 110 V
for 45 min. After electrophoresis, the gel was then stained in an
ethidium bromide solution for 10 min. The gametophytes from
parent A would have two DNA fragments on an electrophoresis
gel (at 130 and 156 bp; Supplementary Figure S1), while
those from parent B would have a single undigested 286 bp
band.

Identification of Sporophyte Progeny
Resulting From Outcrossing
After the sporophyte offspring became mature and they
were large enough to produce spores, their genomic DNAs
were extracted, using a modified CTAB procedure following
Kuo (2015). We amplified the IBR3 sequences from these
extracted DNAs. We performed a PCR in 15-µL volume
reactions, including 20 ng of genomic DNA, 1 × PCR
buffer 200 µM dNTP, 15 pmol of each primer, and 1 U
polymerase (ExPrime Taq DNA Polymerase; GENETBIO,
Daejeon, Korea). Because there is one SNP in the 13th
intron that can distinguish between parents A and B (at
position 248 in Figure S3), we directly sequenced these
IBR3 amplicons, and used the presence of a double-peak
signal to identify sporophyte individuals resulting from inter-
gametophytic outcrossing.

Tracing Organelle Genome Inheritance
Using ptDNA and mtDNA Markers
Genotyping of the ptDNA and mtDNA markers was conducted
only on those outcrossed sporophyte offspring, and the results
were compared to those of the parents to confirm their
organelle genome inheritance. The partial ndhF and the partial
nad9 (respectively as the ptDNA and mtDNA markers) were
amplified from genomic DNAs of these sporophyte offspring.
The PCRs were conducted as described in the previous
section. A single band from ndhF PCR-RFLP indicates that
ptDNA was derived from parent B (see the detailed method
in “Determining Maternity of F1 Sporophyte Progeny”). On
the other hand, when DNA fragments with the sizes of 130
and 156 bp were found, we additionally sequenced these
ndhF products to discern that if they contained sequences
from only parent A or from both parents. The nad9
genotypes of outcrossed sporophyte offspring were determined
by sequencing.
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TABLE 1 | Primer information.

Primer Target taxon Genetic Regiona 5′-3′ sequence Reference

Dl IBR3 fCSI Deparia lanceab IBR3 CAACAAACATTTCCTGCTCAATCAG This study

Dl IBR3 rPGR Deparia lanceab IBR3 CAATGGTGGAGTCTTCCTGG This study

AT IBR fPDV Athyriaceaec IBR3 GCAATGACTGAACCAGATGTG This study

AT IBR rAER Athyriaceaec IBR3 ATSTCTATCCCACGCTCAGC This study

De ndhF fCGK Deparia lanceab ndhF GGGGACTTAATTTGTGGAAAGG This study

Del ndhF rPSL Depariac ndhF CCATAAGGGATAAACTAAGCGAAG This study

Del nad9 fFAI Deparia lanceab nad9 ATGACTTGCAGTCCACTTGAATAATTTGCTATTG This study

Del ndh9 rPWR Deparia lanceab nad9 GGACGGCATTAGTCGCCAAGG This study

FernLr1 Depariac trnL-L-F GGCAGCCCCCAGATTCAGGGGAACC Li et al., 2011

f Plantsc trnL-L-F ATTTGAACTGGTGACACGAG Taberlet et al., 1991

FERpl2 fTFF Fernsc rpl2 intron CACCTTTTTCCGATGTCAC This study

De rpl2 rGGD Depariac rpl2 intron GGCGTAGTCTCCTCCAG This study

a IBR3, IBA-response 3; ndhF, NADH-plastoquinone oxidoreductase subunit five; nad9, NADH dehydrogenase subunit nine; trnL-L-F, tRNA-Leu intron + tRNA-Leu-to-
tRNA-Phe intergenic spacer; rpl2, ribosomal protein L2. bSpecific primer only for Deparia lancea. cUniversal primer.

Organelle Genome Inheritance in Other
Deparia Ferns
To reveal possible manners of organelle genome inheritance in
other Deparia ferns, we reconstructed both ptDNA and mtDNA
phylogenies for some hybrids between the AT and DE clades (i.e.,
D. × tomitaroana, D. × nakaikeana, and D. × lobatocreneta;
Kuo et al., 2018). By identifying the phylogenetic origins of their
ptDNA and mtDNA, we can confirm whether these DNAs came
from one or both parentages during hybridizations. trnL-L-F
(including trnL gene and trnL-F intergenic spacer) and rpl2
intron were selected to reconstruct their ptDNA and mtDNA
phylogenies, respectively. In total, ten D. × tomitaroana, one
D. × nakaikeana, one D. × lobatocreneta individual, and 11
additional Deparia species (three from DE clade, four from AT
clade, and one representative from each of the other clades;
sensu Kuo et al., 2018) were sampled. Woodwardia radicans and
Oceaniopteris gibba from Blechnaceae were selected as outgroups.
We followed Li et al. (2011) for amplification and sequencing
of trnL-L-F, and for rpl2 intron new primers were designed
(Table 1). The voucher information and GenBank accessions for
these samples are in Supplementary Table S1. The maximum
likelihood phylogenies of these genes were reconstructed using
IQ-TREE web server (Trifinopoulos et al., 2016) with 1000
ultrafast bootstrap replicates.

RESULTS

Confirmation of Sexual Reproduction
and Random Mating
In both parental individuals of Deparia lancea, we found that
only 64-spored sporangia were developed. Like other Deparia
ferns (Kato et al., 1992), 64-spored sporangia indicate sexual
reproduction, and produce spores that are half the ploidy
level. Flow cytometric results further confirmed that these
gametophytes had half the genome size compared to their
sporophyte offspring (Figure 3). No indication of apomixis was
found in the sampled individuals.

FIGURE 3 | Relative genome sizes of the gametophyte (G) and sporophyte (S)
of the diploid Deparia lancea examined by flow cytometry.

In total, we genotyped 65 pairs of gametophyte and F1
sporophyte offspring. Overall, the resulting sporophyte offspring
displayed a pattern of random mating, in which the observed
numbers of outcrossed and selfed individuals (Table 2) do not
significantly deviate from the expected numbers (Chi-squared
p > 0.90). Among the outcrossed individuals, 13 had A as the
maternal parent and 11 had B (Table 2); and this result revealed
no significant bias in maternal parentage (Chi-squared p > 0.60),
which further suggests that neither asymmetric mating nor
cytonuclear incompatibility likely occurred among infraspecific
and homoploidy crossings in Deparia lancea.

TABLE 2 | Genotyping results of sporophyte F1 offspring.

F1 offspringa Maternal
parentb

Offspring
ptDNA

Offspring
mtDNA

Number of
individuals

Outcrossed A Parent Ab Parent Ac 13

Outcrossed B Parent Bb,c Parent Bc 11

A selfed A – – 3

B selfed B – – 38

aConfirmed by IBR3 sequences. bConfirmed by ndhF PCR-RFLP. cConfirmed by
sequencing.
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Identification of Outcrossed Progeny and
ptDNA and mtDNA Genotype
The numbers of outcrossed and inbred progenies are summarized
in Table 2. In total, 37% of the sporophyte offspring were
identified as outcrossing between parents A and B. Among the
outcrossed offspring, 54 and 46% individuals had a maternal
parent of A and of B, respectively. All their ptDNA and mtDNA
genotypes are same as those of their maternal parents.

ptDNA and mtDNA Phylogenies
The alignment of plastid trnL-L-F contained 889 characters
with 25% of variable sites, and that of mitochondrial
rpl2 intron contained 1384 characters with 1.4% of
variable sites. The phylogenies inferred from these two
regions are shown in Figure 4. In both phylogenies, all
D. × tomitaroana individuals and D. × nakaikeana are
nested in the DE clade. For D. × lobatocreneta, it is nested
in the AT clade. In every of these hybrid individuals, we
found ptDNA and mtDNA were inherited uniparentally
from a same clade. In other words, ptDNA and mtDNA
have the same manner of inheritance in these Deparia
ferns.

DISCUSSION

Advantages and Limitations of the
Current Approach
To directly infer organelle genome inheritance in land plants,
artificial crosses and subsequent verification of the genomic
constitution in the progenies have been commonly used.
However, carrying out directional crosses with specific maternity
and paternity is very difficult in ferns. Unlike seed plants, ferns
are mostly homosporous (Haufler et al., 2016) and we cannot
easily manipulate the gametophyte sex to ensure that sperms
are coming from one gametophyte to the other. Moreover, it
is almost impossible to infer organelle genome transmission in
ferns by examining the organelle identity of germ line cells
(e.g., eggs or sperms). Generally, mitochondria and plastids
are present in both their sperms (or spermatocytes) and
eggs (Duckett, 1973; Raghavan, 1989 and references therein;
Kotenko, 1990; Gori et al., 1997; Muccifora et al., 2000;
Renzaglia et al., 2001; Lopez-Smith and Renzaglia, 2002, 2008;
Sakaushi et al., 2003; Cao et al., 2009, 2010; Wolniak et al.,
2011; Cao, 2014 and references therein), thus any manner of
organelle inheritance—maternal, paternal, and even biparental—
is possible.

To overcome the difficulty of ascertaining maternity and
paternity involved in a cross in fern species, two approaches were
previously adopted. One common approach is to manipulate
female and male gametophyte pairings for outcrossing (i.e., a
hybrid between gametophyte individuals from different parents).
In practice, such experiments need to first confirm the sex of the
gametophyte individuals based on a gametangium observation,
then separately select female and male individuals from sex-
mixed gametophyte cultures of identified sources, and pair them

for outcrossing (e.g., Lovis, 1968; Guillon and Raquin, 2000;
Yatabe et al., 2001). The genetic compositions of these
resulting hybrids are further confirmed by biparentally inherited
genetic markers (i.e., nuclear DNA markers) to exclude inbred
progeny from outcrossed ones, because cultured female or
male gametophytes might subsequently become bisexual. Such
a method was used to trace plastome inheritance in several
previous studies (Vogel et al., 1997; Guillon and Raquin, 2000;
Adjie et al., 2007; Table 3). In the other approach (Gastony
and Yatskievych, 1992), the paternal parentage of a fern hybrid
species was identified as the sperm donor because this parental
species was unable to produce functional eggs due to apomixis
(reviewed in Gastony and Windham, 1989). The inheritance
of organelle genomes in these hybrids were then revealed
by ptDNA and mtDNA markers. However, these approaches
mentioned above are labor-intensive for manipulating pairings
of gametophyte individuals, or, for the latter case, have additional
limitations requiring a cross between apomictic and sexual
taxa.

Here, we develop a new approach which can efficiently
confirm the maternity and paternity of an artificial cross/hybrid
in ferns while avoiding manual pairing of gametophytes for
outcrossing, and can be applied to most ferns and other
seed-free plants as well. Because a sporophyte is initiated
from a zygote inside an archegonium that is attached to its
maternal gametophyte, we can genotype a gametophyte and
the attached sporophyte in order to trace the maternal and
paternal parentages (Figure 2). In this study, we determined
the maternity of each sporophyte by barcoding its connected
gametophytes using a genetic marker (i.e., ndhF PCR-RFLP).
We then used nDNA marker (i.e., the SNP at 13th intron
of IBR3) to identify the paternity. One key feature of our
approach was the incorporation of tissue-direct PCR, which
requires only a >1 mm2 piece of tissue for a single PCR reaction
(Li et al., 2010). This methodology enabled us to accomplish
the DNA-based identification for gametophytes, thus verifying
the maternal donor of sporophyte offspring. In addition, we
adopted a genome skimming strategy to search SNPs throughout
organelle genomes. Such strategy is more efficient, and better
guarantees finding diagnostic regions for ptDNA and mtDNA
markers. Especially for mtDNA, because of the limited genetic
and genomic information for ferns (Guo et al., 2017) and slow
substitution rate in plant (Gualberto and Newton, 2017), a
strategy directly designing primers and seeking variable regions
is usually not cost-effective.

Like other genetic-based approaches, this current approach
requires the generation of outcrossed/hybridized F1 offspring
from parental sources with preexisting genetic variation.
Therefore, this approach is not applicable for plant species having
no or very limited genetic variation at the population level.
Another limitation of the current approach is that maternity
identification of sporophyte offspring relies on DNA-barcoding
the gametophyte which is attached on the sporophyte, and,
as a result, female or bisexual gametophytes (i.e., egg donors)
must generate with enough tissue amount for a barcoding
experiment. Such requirement is very hard to be satisfied for
the female gametophytes of heterosporous ferns and lycophytes
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FIGURE 4 | (A) ptDNA (trnL-L-F) and (B) mtDNA (rpl2 intron) maximum likelihood phylogenies of the AT × DE inter-clade hybrids in Deparia. The values on branches
are their bootstrap supports, and only the values larger than 50 are shown. The inter-clade hybrids are indicated with black names, and the other taxa are indicated
with gray names.

TABLE 3 | Organelle genome inheritance in ferns.

Genus (family) Order/suborder Organelle genome Inheritance Reference

Equisetum (Equisetaceae) Equisetales Plastome Maternal Guillon and Raquin, 2000

Ceratopteris (Pteridaceae) Polypodiales/Pteridineae Plastome Maternal Adjie et al., 2007

Pellaea (Pteridaceae) Polypodiales/Pteridineae Plastome and mitogenome Maternal Gastony and Yatskievych, 1992

Asplenium (Aspleniaceae) Polypodiales/Aspleniineae Plastome Maternal Vogel et al., 1997

Deparia (Athyriaceae) Polypodiales/Aspleniineae Plastome and mitogenome Maternal This study

because these gametophytes are usually endosporous, minute,
and composed of a limited number of cells (Raghavan, 1989).
Fortunately, because these seed-free plants are heterosporous,
their outcrossing can be easily manipulated by coculturing
microspores (i.e., only developing into male gametophytes) and
megaspores (i.e., only developing into female gametophytes)
from two different individuals—a similar way as done for that of
the seed plants.

Organelle Genomes Inheritance in
Deparia and Other Ferns
In this study, we confirmed that plastome and mitogenome
are inherited maternally in Deparia lancea (Table 2). After
sequencing the ptDNA in nearly a half of the outcrossed
individuals and mtDNA genotypes in all outcrossed individuals,
we found no signal indicating paternal transmission of these
genomes (Table 2). Based on our mtDNA and ptDNA
phylogenies, we further confirmed in the inter-clade Deparia
hybrids that their plastome and mitogenome inheritance are
both uniparental (Figure 4), and are most likely maternal. The
current study is the second to report mitogenome inheritance in

ferns, and the first one in the most diversified fern lineage—the
euploypods (Aspleniineae + Polypodiineae). For Aspleniineae
plastome, our result is second to Vogel et al. (1997) to support
maternal inheritance. In addition, our findings support one
of the most important assumptions in fern phylogeny and
genetics that ptDNA and mtDNA can only trace the maternal
lineage.

Despite the scant case studies, our results show the consistency
of maternal inheritance of the organelle genomes in ferns
(Table 3). In addition, based on Chang et al. (2009), both
plastome and mitogenome are likely maternally inherited in
Dryopteris ferns (including Acrorumohra; Dryopteridaceae,
Polypodiineae, Polypodiales). Given that apomictic fern
gametophytes can only produce sperm cells (Gastony and
Windham, 1989), Dryopteris diffracta, which produces 32-spored
sporangia and is indicated as an apomictic species, should be
the paternal parent of D. × subreflexipinna, while D. hasseltii
should be the maternal parent. In Chang et al. (2009), they found
all individuals of D. × subreflexipinna had identical ptDNA and
mtDNA sequences to those of D. hasseltii. Taken together, so
far, there is no known exception of maternal inheritance of the
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organelle genome in ferns as well as in seed-free land plants
(Table 3; Zhang and Sodmergen, 2010). For land plant organelle
genomes, biparental inheritance and RNA-editing are both
suggested as important mechanisms to rescue deleterious DNA
mutations or effects due to nucleocytoplasmic incompatibility
(Zhang and Sodmergen, 2010; Castandet and Araya, 2012). It
is worthwhile to further examine whether biparental inheritance
possibly evolved as an alternative rescue mechanism in the seed-
free plants known with no or relatively infrequent RNA-editing,
such as Osmundales and Marattiales ferns (Knie et al., 2016).
The results from these plants will better shed light on whether
paternal transmission or biparental inheritance is restricted in
seed plants.
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