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The chloroplast (cp) genome is useful in the study of phylogenomics, molecular dating,
and molecular evolution. Gentiana sect. Kudoa is a predominantly alpine flowering
plant that is valued for its contributions to medicine, ecology, and horticulture. Previous
evolutionary studies showed that the plastid gene loss pattern and intra-sectional
phylogenetics in sect. Kudoa are still unclear. In this study, we compared 11 Gentiana
plastomes, including 7 newly sequenced plastomes from sect. Kudoa, to represent its
three serious: ser. Ornatae, ser. Verticillatae, and ser. Monanthae. The cp genome sizes
of the seven species ranged from 137,278 to 147,156 bp. The plastome size variation
mainly occurred in the small single-copy and long single-copy regions rather than the
inverted repeat regions. Compared with sect. Cruciata, the plastomes in ser. Ornatae
and ser. Verticillatae had lost approximately 11 kb of sequences containing 11 ndh
genes. Conversely, far fewer losses were observed in ser. Monanthae. The phylogenetic
tree revealed that sect. Kudoa was not monophyletic and that ser. Monanthae was more
closely related to other sections rather than sect. Kudoa. The molecular dating analysis
indicated that ser. Monanthae and sect. Kudoa diverged around 8.23 Ma. In ser. Ornatae
and ser. Verticillatae, the divergence occurred at around 0.07–1.78 Ma. The nucleotide
diversity analysis indicated that the intergenic regions trnH-psbA, trnK-trnQ, ycf3-trnS
and rpl32-trnL constituted divergence hotspots in both sect. Kudoa and Gentiana, and
would be useful for future phylogenetic and population genetic studies.

Keywords: evolution, gene loss, Gentiana, sect. Kudoa, plastome

INTRODUCTION

Encompassing 15 sections and 362 species (Ho and Liu, 2001), Gentiana is the largest genus in
the family Gentianaceae (He, 1988). Gentiana is predominantly alpine and occurs in numerous
mountain systems of the world. Hosting c. 250 species (Ho and Pringle, 1995), the mountain
ranges surrounding the Qinghai-Tibetan Plateau (QTP) are the main diversity center of Gentiana.
Gentiana has been widely used in traditional Chinese and Tibetan medicines and acts as an
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edificator in the QTP alpine meadows (Ho and Liu, 2001). In light
of their chemical and horticultural value, several species have
already been cultured (Rybczyński et al., 2015). Section Kudoa
(Masamune) Satake & Toyokuni ex Toyokuni is characterized by
roots arising from a collar and stems branching monopodially.
This section contains three series and 28 species (Ho and Liu,
2001). Series Ornatae Marquand is the biggest series in sect.
Kudoa and contains 16 species. The species in ser. Ornatae have
showy flowers, and several of them have been domesticated for
horticultural gardening (Rybczyński et al., 2015). ser. Monanthae
(H. Smith) T. H. Ho and Series Verticillatae Marquand contain
four and eight species, respectively (Ho and Liu, 2001).

A comparative analysis of the chloroplast genomes between
sect. Kudoa and sect. Cruciata Gaudin indicated a loss of an
approximately 10 kb sequence that mainly comprised 11 ndh
genes in Gentiana lawrencei var. farreri, which belongs to ser.
Ornatae (Fu et al., 2016). Variable ndh gene loss has been
reported in other plant groups such as orchid (Barrett and
Davis, 2012; Yang et al., 2013; Lin et al., 2015; Niu et al.,
2017). To further assess whether the ndh gene has been lost in
sect. Kudoa, additional taxa should be sequenced and included
in the comparative analysis. In addition, the phylogenetic
relationships in sect. Kudoa are currently controversial. In
the latest classification system proposed by Ho and Liu
(2001), sect. Kudoa contained three series. A phylogenetic
study of the subtribe Gentianinae based on the intergenic
spacer (ITS) region and a plastid fragment included only four
taxa from sect. Kudoa, which clustered into a monophyletic
group (Favre et al., 2010). In another phylogenetic study
on Gentiana based on ITS and two plastid fragments, 18
taxa from sect. Kudoa were included and grouped into three
clades (Favre et al., 2016), indicating that sect. Kudoa was
not monophyletic, and that ser. Verticillatae was embedded in
ser. Ornatae. The molecular phylogenetic relationship is not
consistent with the classification system proposed by Ho and
Liu (2001). Whether the plastid ndh gene loss pattern in sect.
Kudoa is helpful to the intra-sectional phylogenetics is worth
exploring.

The cp genomes are circular DNA molecules in angiosperms
that range in size from 120 to 160 kb and contain 110–130 genes
(Palmer, 1985). In land plants, the cp genome typically contains a
pair of inverted repeats (IRs) that separate the remaining regions
into one large single-copy region (LSC) and one small single-
copy region (SSC) (Palmer, 1985; Jansen et al., 2005). The cp
genome is recognized as the “workhorse” in plant systematics
research due to its uniparental inheritance, haploid nature, highly
conserved structures, and slower evolutionary rate of change
compared to nuclear genomes (Wolfe et al., 1987; Shaw et al.,
2014). Plastid phylogenomics has been widely applied to reassess
classifications, for example, the reassessment of Alismatales (Ross
et al., 2015), Rosaceae (Zhang S.D. et al., 2017), Gaultheria
series Trichophyllae (Zhang M.Y. et al., 2017), and Leptaspis
and Streptochaeta in Poaceae (Burke et al., 2016). In addition
to phylogenetic classification, the cp genome is widely used
in studies of molecular identification, divergence dating, and
molecular evolution (Nikiforova et al., 2013; Carbonell-Caballero
et al., 2015). Comparative cp genome analysis can reveal insights

into the evolution of the cp genome, including sequence inversion
(Cho et al., 2015) and gene loss (Wakasugi et al., 1994; Millen
et al., 2001), and has been used in the identification of mutational
hotspots for the screening of the most informative regions (e.g.,
Ahmed et al., 2013; Niu et al., 2017).

Presently, only four complete cp genomes have been
sequenced in Gentiana, in which three belong to sect. Cruciata
(Ni et al., 2016a,b) and one belongs to sect. Kudoa (Fu
et al., 2016). The development of more genomic resources for
Gentiana should inform our understanding of the phylogenetic
relationships and evolutionary history of this large genus. In this
study, we focused on sect. Kudoa and sequenced the complete cp
genomes of seven species in this section. Based on a comparative
analysis of these seven species, as well as four species in sect.
Cruciata and sect. Kudoa with available genomes, the genome
structure, gene loss, phylogenetic relationships, divergence times
and mutational hotspots of sect. Kudoa were analyzed to discover
(1) gene loss pattern, particularly ndh, in sect. Kudoa, and (2)
plastome phylogenetic implication in sect. Kudoa. This study
also makes available sequence information for phylogenetic and
evolutionary studies of Gentiana.

MATERIALS AND METHODS

Sample Collection, Genome Sequencing,
and Assembly
A total of seven species were sampled in the QTP (Supplementary
Table S1) to represent all three series of sect. Kudoa. Five species
(G. veitchiorum Hemsley, G. ornata Grisebach, G. caelestis H.
Smith, G. obconica T. N. Ho, and G. oreodoxa H. Smith) belong
to ser. Ornatae, one (G. stipitata Edgeworth) belongs to ser.
Monanthae, and one (G. hexaphylla Maximowicz ex Kusnezow)
belongs to ser. Verticillatae. The species were identified by Dr.
Peng-Cheng Fu and Dr. Shi-Long Chen. Voucher specimens
were deposited in the herbarium of the College of Life Science,
Luoyang Normal University. The samples were collected from a
single plant of each species. Total genomic DNA isolation, DNA
fragmentation, and sequencing library construction followed the
process described in Fu et al. (2016). Based on the genome size of
some Gentiana taxa (Mishiba et al., 2009) and reported examples
of sequenced cp genomes (Fu et al., 2016), we expected to obtain
approximately 5 Gb raw data for each species. The fragmented
genomic DNA of the seven Gentiana species was sequenced using
the Illumina HiSeq 4000 platform (Novogene, Tianjing, China),
yielding 150-bp paired-end reads from a library of approximately
300-bp DNA fragments.

Reads corresponding to plastid DNA were identified using a
BLASTN (E-value: 10−6) search against the plastome sequences
of G. lawrencei var. farreri (GenBank accession no. KX096882).
The recovered reads were assembled using Velvet 1.2.10 (Zerbino
and Birney, 2008). Detailed information regarding the raw reads
for each taxon is presented in Supplementary Table S2. All
the genomic regions located at the junction between the two
assembled contigs were verified by Sanger sequencing. The
primers used were designed by PRIMER V. 5.0 software and
are listed in Supplementary Table S3. The plastome sequences
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of the seven species were deposited in GenBank (MG192304–
MG192310).

Genome Annotation
For each species, the protein coding genes (PCGs), rRNAs, and
tRNAs in the cp genome were predicted and annotated using
Dual Organellar GenoMe Annotator (DOGMA) using the default
parameters (Wyman et al., 2004). The positions of the start
and stop codons, or intron/exon junctions of the PCGs, were
manually corrected using a BLAST search against reported cp
genomes of other closely related species. The cp gene maps of
the seven species were drawn using OGDraw V. 1.2 (Lohse et al.,
2007).

Comparative Analysis
In addition to the seven newly sequenced species, the cp
genome sequences of G. lawrencei var. farreri (KX096882), which
belongs to ser. Ornata, and G. straminea (KJ657732), G. robusta
(KT159969), and G. crassicaulis (KJ676538), which belong to
sect. Cruciata, were obtained for comparative analysis from
the National Center for Biotechnology Information. Genome
comparisons were performed to identify the differences among
the 11 taxa using mVISTA (Frazer et al., 2004) and Geneious
Basic 5.6.4 (Kearse et al., 2012). To identify divergence hotspots,
nucleotide diversity (Pi) was determined using DnaSP V. 5.10
(Librado and Rozas, 2009).

Phylogenetic Analysis
To investigate the phylogenetic relationships of the genome
sequences of sect. Kudoa, an additional 14 available complete cp
genomes in the order Gentianales were retrieved from GenBank
(Supplementary Table S4). Forty-six PCGs (atpA, atpB, atpE,
atpH, atpI, cemA, matK, petA, petB, petD, petG, petL, petN, psaA,
psaB, psaI, psaJ, psbA, psbC, psbD, psbE, psbF, psbH, psbI, psbI,
psbK, psbL, psbM, psbN, psbT, rbcL, rpl14, rpl16, rpl20, rpl22,
rpl33, rpl36, rpoA, rps2, rps3, rps4, rps8, rps11, rps14, rps15,
and rps18) present in all of the species were extracted from
the selected cp genomes. Phylogenetic analyses were performed
using the concatenated nucleotide sequences and PhyML3.1
software (Guindon and Gascuel, 2003) using the maximum
likelihood (ML) method. Based upon the Akaike information
criterion in the software jModelTest 2.1.7 (Guindon and Gascuel,
2003; Posada, 2008), the selected best-fitting model of sequence
evolution was the GTR+I+G model with a p-inv of 0.404 and
gamma shape of 0.808. A bootstrap analysis was performed with
100 replications.

Molecular Dating
The PCG dataset was used to estimate divergence times using
the Bayesian method implemented in the program BEAST 1.7.5
(Drummond et al., 2012) under the GTR+I+G substitution
model, the Yule model, and an uncorrelated lognormal clock
model (Drummond et al., 2006). Due to the limited fossils
available for Gentiana, we constrained only one of the nodes
with a seed fossil of sect. Cruciata. For the seed fossil, we used
lognormal priors with an offset at 5.0 Ma, a mean of 0.7, and

a standard deviation of 1.0, as applied by Pirie et al. (2015)
and Favre et al. (2016). We did not use uniform priors for sect.
Cruciata, as they were rejected following comparison with the
lognormal priors provided by Favre et al. (2016). We ran three
independent Markov chain Monte Carlo analyses for 50 million
generations, sampling every 5,000th generation. We assessed the
convergence of the estimated parameters in Tracer 1.5 (Rambaut
and Drummond, 2010), ensuring that the effective sample size
values exceeded 200. Trees were summarized in TreeAnnotator
1.7.5 (Drummond et al., 2012) after setting the burn-in to 10%,
and then visualized in FigTree 1.4.01.

RESULTS

Features of the Seven Newly Sequenced
Plastomes
Complete plastome sequences of seven Gentiana species were
newly sequenced in this study and deposited in GenBank. The
seven plastid genomes constituted closed circular molecules
whose sizes ranged from 137,278 to 147,156 bp with an average
of 138,822 bp (Table 1). Each cp genome comprised a pair of
IR regions (IRa and IRb), one LSC region, and one SSC region.
They all possessed the overall typical quadripartite structure that
resembles the majority of land plant cp genomes (Shinozaki et al.,
1986). The IR regions of the 7 species ranged from 23,864 to
25,229 bp; the LSC regions ranged from 77,754 to 79,712 bp;
and the SSC regions ranged from 11,353 to 16,986 bp (Table 1).
Gentiana stipitata possessed the longest LSC, SSC, and IR regions
of the seven species. The average GC contents of the LSC, SSC,
and IR regions and the whole cp genome in the seven species were
35.7, 30.6, 43.8, and 36.8%, respectively, which corroborates other
reported Gentiana cp genomes (Fu et al., 2016; Ni et al., 2016a,b).
Furthermore, these plastid genomes were similar in structure and
gene arrangement to previously published Gentiana plastomes
(Fu et al., 2016; Ni et al., 2016a,b). All the plastome maps are
presented in Supplementary Figures S1–S7.

Comparison of cp Genomes
The comparative analysis indicated that the six species in
Gentiana ser. Ornatae possessed very similar plastomes, with
genome sizes ranging from 137,278 to 138,750 bp. The only
obvious difference was located at the boundary between IRb
and SSC (Figure 1A), in which four sequence patterns were
detected. The first pattern, which appeared in G. lawrencei var.
farreri, possessed almost all the sequences of ycf 1 and most of
the forward sequences of ndhF (Figure 1A). The second pattern,
appearing in G. caelestis and G. ornata, possessed the forward
416 bp of ycf 1, but had lost the forward sequence of ndhF
(Figure 1A). In comparison with the second pattern, the third
pattern only possessed the forward 181 bp of ycf 1 (Figure 1A).
The third pattern appeared in G. obconica, G. veitchiorum, and
G. oreodoxa. In sect. Kudoa, G. hexaphylla from ser. Verticillatae
also possessed the third pattern. However, G. stipitata from ser.
Monanthae possessed all of the whole sequences of ycf 1 and ndhF,

1http://tree.bio.ed.ac.uk/software/figtree/
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constituting the fourth pattern. This species differed from all the
other taxa in sect. Kudoa, but did not differ from the three taxa in
sect. Cruciata (Figure 1A).

The comparative analysis in Gentiana revealed that the
variation in plastid genome size in the 11 plastomes could mainly
be attributed to sequence loss in four locations. One of these
locations was the IRb-SSC boundary mentioned above. The
second was the region between ccsA to rps15, in which about 5 kb
had been lost in some taxa. The lost sequences mainly contained
a small section of ndhD, the majority of ndhE and ndhH, and
all of ndhG, ndhI, and ndhA (Figure 1B). These ndh genes are
shown in yellow in the Supplementary Figures S1–S7. The third
was the region between trnF-GAA and trnV-UAC, in which about
2.2 kb had been lost in some taxa. The lost sequences mainly
contained all of ndhJ, ndhK, and ndhC (Figure 1C). The fourth
was the region between trnL-CAA and rps7, in which about 1 kb
had been lost in some taxa. The lost sequences mainly contained
the whole exon 1 and part of the intron of ndhB (Figure 1D).
All the sequences that have been lost in the three regions were
missing in the species of ser. Ornatae and ser. Verticillatae, but
present in ser. Monanthae and sect. Cruciata.

Phylogenetic and Molecular Dating
Analyses
The ML phylogenetic tree constructed using the 46 PCGs clearly
identified the three families (Gentianaceae, Apocynaceae, and
Rubiaceae) as being monophyletic with high bootstrap support
(Figure 2). Two monophyletic groups were identified within the
Gentianaceae clade in these analyses. Taxa from ser. Ornatae and
ser. Verticillatae clustered into one monophyletic group whose
monophyletic sister group contained taxa from sect. Cruciata and
ser. Monanthae (Figure 2). The ML tree showed that G. stipitata
was more closely related to other sections rather than sect. Kudoa.

The molecular dating analysis of the PCG dataset (Figure 3)
estimated that the two lineages in the Gentiana tree diverged
approximately 8.23 Ma (95% highest posterior density [HPD]:
5.40–15.60 Ma). G. stipitata and sect. Cruciata diverged about
6.11 Ma (95% HPD: 5.06–9.25 Ma). The divergence in ser.
Ornatae and ser. Verticillatae occurred at around 0.07–1.78 Ma.

Divergence Hotspots in Gentiana
The coding genes, introns, and non-coding regions were
compared to detect divergence hotspots. We compared all 11
species mentioned above as well as the 8 species in sect. Kudoa.
A total of 114 regions (49 coding genes, 9 intron regions, and 55
intergenic regions) greater than 200 bp were generated in both
comparisons.

Among the 11 species in Gentiana, Pi ranged from 0.00163
(rpl2 gene) to 0.13984 (trnH-psbA region). The average Pi in
LSC, SSC, and IR was 0.02696, 0.02624, and 0.011, respectively.
Five regions (trnH-psbA, trnK-trnQ, accD-psaI, ycf3-trnS, and
psbK-psbI), all located in the LSC region, showed high levels of
variation (Figure 4A and Table 2).

The sequence divergence among the eight species in sect.
Kudoa ranged from 0.00100 (psbE gene) to 0.10232 (trnH-psbA
region). The average Pi in LSC, SSC, and IR was 0.01406, 0.01320,
and 0.00543, respectively. Five of these, trnH-psbA, psbE-petL,
ycf4-cemA, trnK-trnQ, and ycf3-trnS, constituted highly divergent
hotspots (Table 2). All of the five regions were located in the LSC
region (Figure 4B).

The sequence divergence among the seven species in sect.
Kudoa except ser. Monanthae is much lower than the sequence
divergence among sect. Kudoa and Gentiana (Figure 4C). The
average Pi in LSC, SSC, and IR was 0.00145, 0.00362, and 0.00067,
respectively. Five of these, trnH-psbA, rpl32-trnL, ycf15-trnL,
rpoB-trnC, and psbK-psbI, constituted highly divergent hotspots
(Table 2).

DISCUSSION

Loss of Plastid ndh Genes in Gentiana
sect. Kudoa
Variations in plastome length were detected in Gentiana.
Compared with sect. Cruciata, ser. Ornatae and ser. Verticillatae
lost approximately 11 kb of sequences, while ser. Monanthae
lost almost none. The plastomes of ser. Ornatae and ser.
Verticillatae were highly similar in size and structure. The
majority of length variation of the newly sequenced plastomes

TABLE 1 | Base composition of the chloroplast genomes in Gentiana.

Species Taxonomic treatment GenBank number LSC (bp) IR (bp) SSC (bp) Total (bp)

G. caelestis sect. Kudoa ser. Ornatae MG192304 77,870 24,113 11,548 137,644

G. obconica sect. Kudoa ser. Ornatae MG192306 77,754 23,865 11,794 137,278

G. oreodoxa sect. Kudoa ser. Ornatae MG192307 77,908 23,865 11,765 137,403

G. ornata sect. Kudoa ser. Ornatae MG192308 77,816 24,108 11,353 137,385

G. veitchiorum sect. Kudoa ser. Ornatae MG192310 77,932 23,864 11,807 137,467

G. lawrencei var. farreri sect. Kudoa ser. Ornatae KX096882 78,082 24,635 11,365 138,750

G. hexaphylla sect. Kudoa ser. Verticillatae MG192305 77,922 23,865 11,771 137,423

G. stipitata sect. Kudoa ser. Monanthae MG192309 79,712 25,229 16,986 147,156

G. crassicaulis sect. Cruciata KJ676538 81,164 25,271 17,070 148,776

G. robusta sect. Cruciata KT159969 81,164 25,333 17,081 148,991

G. straminea sect. Cruciata KJ657732 81,240 25,333 17,085 148,991

The chloroplast genomes of sect. Cruciata were downloaded from GenBank, while the remainder were sequenced in this study.
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FIGURE 1 | The sequence length variation of four regions across 11 Gentiana chloroplast genomes. (A) The region between ycf1 and rpl32; (B) the region between
ccsA and rps15; (C) the region between trnF-GAA and trnV-UAC; (D) the region between trnL-CAA and rps7.

of ser. Ornatae and ser. Verticillatae in this study mainly
occurred in the SSC and LSC regions, rather than the two
IR regions. The length variation pattern is similar to that
observed in G. lawrencei var. farreri (Fu et al., 2016), whose
genome size variation was not caused by deletions in the IR
regions, but by deletions in the SSC and LSC regions. An
explanation for the size variation pattern is that the junction
between the IR and LSC region is located within the rps19
gene, which is a coding gene, and thus contributes to the
more constant size of the IRs than the SSC and LSC region
in the great majority of angiosperms (Palmer, 1985; Fu et al.,
2016). As noted in G. lawrencei var. farreri (Fu et al., 2016),

the genome size variation led to the loss of plastid ndh
genes.

Plastid ndh genes have been retained in the majority of
higher plants (Martín and Sabater, 2010), and appear to have
been frequently lost in parasitic and epiphytic plants (e.g.,
Stefanović and Olmstead, 2005). Along with the publication of
numerous plastomes, the independent loss of ndh genes has
been detected in increasing numbers of higher plants including
orchids (Chang et al., 2006; Yang et al., 2013; Lin et al., 2015;
Niu et al., 2017), gnetophytes (Braukmann et al., 2009; Wu
et al., 2011), slender naiads (Peredo et al., 2013), and saguaros
(Sanderson et al., 2015). The independent ndh gene loss in
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FIGURE 2 | Maximum likelihood tree of Gentianales based on 46 PCGs of the chloroplast genomes. Numbers above the nodes indicate bootstrap support values.

FIGURE 3 | Majority-rule consensus phylogenetic tree of Gentianales based on 46 PCGs of the chloroplast genomes based on Bayesian inference. Numbers on the
branches indicate Bayesian posterior probabilities. Node age estimates are marked dextrally. Blue bars represent 95% HPDs.
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FIGURE 4 | Comparison of the nucleotide variability (Pi) values in (A) Gentiana, (B) sect. Kudoa, and (C) sect. Kudoa except ser. Monanthae. A total of 114 regions
(49 coding genes, 9 intron regions, and 55 intergenic regions) greater than 200 bp in size were generated in both comparisons.

various groups could be an example of convergent evolution
in plants. In Gentiana, the loss of ndh genes was previously
detected in G. lawrencei var. farreri, which belongs to sect.
Kudoa, but was not detected in the other three previously
sequenced plastomes (Fu et al., 2016; Ni et al., 2016a). Upon
analysis of the plastomes of sect. Kudoa, we discovered that
the loss of ndh genes was common in ser. Ornatae and ser.
Verticillatae. The 11 ndh genes in the plastome encode a
protein complex that catalyzes the transfer of electrons from
NADH to plastoquinone at photosystem I (Sazanov et al., 1998;
Martín and Sabater, 2010). However, the PGR5-dependent cyclic
electron transport pathway already exists in cells. Transgenic
plants defective in ndh genes showed impaired photosynthesis
rates, demonstrating that the NDH complex is required for
the optimization of photophosphorylation rates and might play
an important role in regulating CO2 assimilation under stress
conditions (Wang et al., 2006; Martín and Sabater, 2010).
However, no deleterious effects have been observed in ndh-
deficient mutants under favorable growing conditions (Ruhlman
et al., 2015). This suggests that the plastid ndh genes might be
dispensable in contemporary plants. A plastome study in orchids
proposed that the expansion/contraction of IR boundaries might
be associated with the loss of ndh genes, especially ndhF
(Kim et al., 2015; Niu et al., 2017). Previous studies have
shown that the expansion of IRs is common to ndh-absent
plastomes (Niu et al., 2017). In Gentiana, it is likely that
the expansion/contraction of IR boundaries is correlated with
the deletion of the ndh gene, particularly ndhF. However, the
contraction, rather than expansion, of IRs was observed in ndh-
deleted Gentiana plastomes. This suggests that the evolution of
ndh genes in plastomes may vary between different taxa, and thus
requires further exploration.

The loss of plastid ndh genes was common in sect. Kudoa, with
the exception of ser. Monanthae. Compared with sect. Cruciata,
ser. Monanthae did not exhibit significant size variation. As
observed in sect. Cruciata, G. stipitata in ser. Monanthae
maintained all 11 plastid ndh genes. This suggests that ser.
Monanthae might be evolutionarily more closely related to
other sections rather than sect. Kudoa (although cp genome
sequences from additional sections are necessary to confirm
this). Considering that gene loss in plastomes is an ongoing
process in evolution (Martin et al., 1998), ser. Ornatae and ser.
Verticillatae may have shorter evolutionary histories than ser.
Monanthae.

Phylogenetic Relationships and
Divergence Times
Plastid phylogenomics has been successfully applied in the
phylogenetic reassessment of several groups (Burke et al., 2016;
Zhang M.Y. et al., 2017; Zhang S.D. et al., 2017). In this
study, the phylogenetic relationships constructed using the 46
PCGs were consistent with previous studies whereby the three
families (namely Gentianaceae, Apocynaceae, and Rubiaceae)
were classified as three monophyletic clades, and also identified
Rubiaceae as the base group in Gentianales (Backlund et al.,
2000).

The delimitation of Gentiana sect. Kudoa has been
controversial. Ho (1985) and Ho and Pringle (1995) erected
four serious in sect. Kudoa: ser. Monanthae, ser. Ornatae, ser.
Verticillatae, and ser. Apteroideae (H. Smith) T. N. Ho. Based
on 61 informative characters from morphology, palynology,
and cytology, Ho et al. (1996) supported three series in sect.
Kudoa and treated ser. Apteroideae as sect. Monopodiae
(H. Smith) T. N. Ho. The treatment of three series in sect.

TABLE 2 | Five regions of highly variable sequences of Gentiana, sect. Kudoa and
sect. Kudoa except ser. Monanthae.

Nucleotide
diversity (Pi)

Total number of
mutation (Eta)

Gentiana

trnH-psbA 0.13984 92

trnK-trnQ 0.13947 168

accD-psaI 0.10200 62

ycf3-trnS 0.09391 59

psbK-psbI 0.08074 54

sect. Kudoa

trnH-psbA 0.10232 79

psbE-petL 0.06795 172

ycf4-cemA 0.05877 71

trnK-trnQ 0.05557 157

ycf3-trnS 0.04688 57

sect. Kudoa except ser. Monanthae

trnH-psbA 0.02693 25

rpl32-trnL 0.00991 22

ycf15-trnL 0.00773 5

rpoB-trnC 0.00647 21

psbK-psbI 0.00503 3
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Kudoa was accepted by Ho and Liu (2001), and was also
corroborated by the phylogenetic analysis of Favre et al. (2016)
based on atpB-rbcL, trnL–trnF, and ITS. The taxa from sect.
Monopodiae, namely Kudoa I in Favre et al. (2016), constituted
a monophyletic group and were paraphyletic with the other
sections (Favre et al., 2016). We therefore adopted the treatment
of three series in sect. Kudoa as the starting point of this
study.

Contrary to the classical classification, molecular phylogeny
shows that sect. Kudoa is paraphyletic. Although the phylogeny
of sect. Kudoa was not mainly discussed in Favre et al. (2016),
the phylogenetic trees in their study also indicated that the three
series are not a monophyletic group. Our plastid phylogenomic
relationships is in accord with this. The cp-based phylogenomic
tree suggested that ser. Monanthae was more closely related to
other sections rather than sect. Kudoa. The previous phylogenetic
trees reconstructed based on atpB-rbcL, trnL–trnF and ITS
data indicated that ser. Monanthae, sect. Isomeria and sect.
Microsperma clustered into one clade (Favre et al., 2016). The
instability of ser. Monanthae in the phylogenetic tree may
suggest a potential hybrid origin of this group, since they have
a partly sympatric distribution and nearly contemporaneous
flowering times to other groups like sect. Kudoa and sect.
Cruciata (Ho and Liu, 2001), and furthermore, hybridization is
an important means of speciation in the QTP (Li et al., 2007;
Liu et al., 2014; Wen et al., 2014). In terms of morphology, ser.
Verticillatae is characterized by whorled phyllotaxy. However,
our phylogenomic tree showed that ser. Verticillatae did not
constitute a monophyletic group, but was rather inlaid in ser.
Ornatae. This is also supported by the phylogenetic tree based
on atpB-rbcL, trnL–trnF, and ITS (Favre et al., 2016). The results
suggested that the present classification in sect. Kudoa based on
morphology is not consistent with the molecular phylogenetic
reconstruction. Therefore, the phylogenetic relationships in sect.
Kudoa require further evaluation.

Molecular dating analysis in this study showed that ser.
Monanthae and sect. Cruciata diverged around 6.11 Ma (95%
HPD: 5.06–9.25 Ma) when sect. Cruciata diverged from its sister
groups (Favre et al., 2016). The divergence of the ser. Verticillatae
and ser. Ornatae clade occurred at around 0.07–1.78 Ma, which
is much younger than 1.34–9.55 Ma estimated in Favre et al.
(2016). Since the ndh gene loss indicated that ser. Verticillatae
and ser. Ornatae were younger than ser. Monanthae, we believe
that the time of divergence between ser. Verticillatae and ser.
Ornatae found in this study may be true. We recommend that the
plastomes and ndh gene remain/loss patterns of more taxa that
are closely related to sect. Kudoa are included in future studies.

Mutational Hotspot
The comparative analysis indicated that the plastomes of ser.
Ornatae and ser. Verticillatae exhibited little variation. The
popular barcoding plastid markers such as matK and rbcL (Li
et al., 2015; Coissac et al., 2016) exhibited very poor sequence
variation in the two series. Some popular genetic markers
used in intra-species population genetics such as trnS-trnG,
rps15-ycf1, and rpl20-rps12 (e.g., Burnier et al., 2009; Takayama
et al., 2013; Khan et al., 2016) show very limited variation in

the populations of some species such as G. veitchiorum and
G. lawrencei var. farreri (Fu, Unpublished Data). Additionally,
trnQ-rps16 (Shepherd et al., 2017) was not detected as rps16
is a pseudogene in Gentiana (Ni et al., 2016a). Since the
plastome-wide comparisons could facilitate the screening of
mutational hotspots used for inter-species phylogenetics (Shaw
et al., 2014) and intra-species discrimination (Ahmed et al., 2013),
suitable molecular markers for phylogenetic and population
genetic studies could be identified in the mutational hotspots in
Gentiana, particularly in sect. Kudoa.

The identified sequence divergence hotspot regions in
Gentiana and sect. Kudoa in this study were trnH-psbA, trnK-
trnQ, accD-psaI, ycf3-trnS, psbK-psbI, psbE-petL, and ycf4-cemA.
Focusing on ser. Ornatae and ser. Verticillatae, the divergence
hotspot regions were trnH-psbA, rpl32-trnL, ycf15-trnL, rpoB-
trnC, and psbK-psbI. These findings should inform future studies
on the inter-species phylogenetics and intra-species population
genetics in Gentiana and sect. Kudoa.

CONCLUSION

The complete cp genome sequences of seven species from
Gentiana sect. Kudoa were reported in this study, and the
evolutionary characteristics of 11 Gentiana plastomes from two
sections were described. We discovered that the loss of plastid
ndh genes is common in ser. Ornatae and ser. Verticillatae,
but not in ser. Monanthae. The phylogenetic tree and deletion
patterns in the plastid ndh genes indicated that ser. Monanthae
is more closely related to other sections rather than sect. Kudoa,
which is not monophyletic. The sequence and divergence hotspot
information presented here could be useful in future studies
on the population genetics, phylogenetics, and evolution of
Gentiana.
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