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Peanut (Arachis hypogaea L.), an important leguminous crop, is widely cultivated in

tropical and subtropical regions. Peanut is an allotetraploid, having A and B subgenomes

that maybe have originated in its diploid progenitors Arachis duranensis (A-genome) and

Arachis ipaensis (B-genome), respectively. We previously sequenced the former and here

present the draft genome of the latter, expanding our knowledge of the unique biology

of Arachis. The assembled genome of A. ipaensis is ∼1.39 Gb with 39,704 predicted

protein-encoding genes. A gene family analysis revealed that the FAR1 family may be

involved in regulating peanut special fruit development. Genomic evolutionary analyses

estimated that the two progenitors diverged ∼3.3 million years ago and suggested

that A. ipaensis experienced a whole-genome duplication event after the divergence

of Glycine max. We identified a set of disease resistance-related genes and candidate

genes for biological nitrogen fixation. In particular, two and four homologous genes that

may be involved in the regulation of nodule development were obtained from A. ipaensis

and A. duranensis, respectively. We outline a comprehensive network involved in drought

adaptation. Additionally, we analyzed the metabolic pathways involved in oil biosynthesis

and found genes related to fatty acid and triacylglycerol synthesis. Importantly, three

new FAD2 homologous genes were identified from A. ipaensis and one was completely

homologous at the amino acid level with FAD2 from A. hypogaea. The availability of the

A. ipaensis and A. duranensis genomic assemblies will advance our knowledge of the

peanut genome.
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INRODUCTION

Peanut (Arachis hypogaea L.) is a grain legume and oilseed crop that is an important source of
vegetable oil and protein. It is widely cultivated in tropical and subtropical regions. In Africa and
some Asia countries, peanut is more prevalent than any other leguminous crop, including soybean.
With an annual production of∼46 million tons and a remarkable 45–56% oil content, it plays a key
role in daily human nutrition. Moreover, peanut oil is important to human health owing to its rich
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nutritional elements, such as oleic acid, linoleic acid, resveratrol,
fiber, and vitamins (Parthasarathy et al., 1990).

The Arachis genus originated in South America and is
composed of about 80 diploid species that have been divided
taxonomically into nine sections (Krapovickas and Gregory,
1994). Arachis species have an unusual reproductive biology
in that all members have a geocarpic reproductive habit, with
unique growth characteristics of aerial flowers and subterranean
fruit (Smith, 1950), that allows them to adapt to particularly
harsh environments (Tan et al., 2010). A. hypogaea, cultivated
peanut or groundnut, is an allotetraploid (2n = 4x = 40), with
an AABB genomic constitution (Temsch and Greilhuber, 2000),
which was probably derived from a single recent hybridization of
two diploid progenitors (Kochert et al., 1991, 1996; Moretzsohn
et al., 2013). Molecular evidence indicates thatArachis duranensis
and Arachis ipaensis are the two most likely progenitors that
donated the A and B subgenomes, respectively (Kochert et al.,
1996; Ramos et al., 2006; Grabiele et al., 2012; Moretzsohn
et al., 2013). The genome sizes of the two species are ∼1.25
and ∼1.56 Gb, respectively (Samoluk et al., 2015), and their
sum is close to the total genome size of A. hypogaea (∼2.8 Gb)
(Temsch and Greilhuber, 2000), indicating that no large changes
that affected genome size have taken place since polyploidy.
Moreover, researches indicated that the genomes ofA. duranensis
and A. ipaensis are similar to cultivated peanut’s A and B
subgenomes (Kochert et al., 1996; Seijo et al., 2007; Robledo
et al., 2009; Robledo and Seijo, 2010; Moretzsohn et al., 2013).
The high-DNA identity between the A. ipaensis genome and
the B subgenome of cultivated peanut, along with biogeographic
evidence, indicates that A. ipaensis may be the direct descendant
of A. hypogaea that contributed the B subgenome (Bertioli et al.,
2016).

The large genome size of A. hypogaea (∼2.8 Gb) and highly
repetitive content (64%) makes the assembly of the peanut
genome sequence very challenging (Dhillon et al., 1980; Temsch
and Greilhuber, 2000; Bertioli et al., 2016). Therefore, sequencing
and analyzing the genomes of the two diploid ancestors to
uncover the genome of cultivated peanut was considered a
sensible initial strategy. Our previous sequencing of the peanut
A-genome progenitor, A. duranensis, provided new insights into
Arachis biology, evolution and genomic changes (Chen et al.,
2016). To gain insights into the genomic evolution, as well
as the divergence, of the peanut B subgenome and to provide
candidate genes to enable a better understanding of the biology
of leguminous species, we sequenced the suspected peanut
B-genome progenitor, A. ipaensis, and re-sequenced two A-
genome and three B-genome genotypes (Chen et al., 2016). The
A. ipaensis genome sequencing will facilitate future research on
the genome assembly of cultivated peanut and, has the potential
to accelerate the molecular breeding of peanut varieties.

RESULTS AND DISCUSSION

Genome Sequencing, Assembly, and
Annotation
The genome of the peanut B-genome progenitor, A. ipaensis
(ICG_8206), was sequenced using a shotgun approach on

the Illumina HiSeq2500 platform (Supplementary File 1:
Figure S1). We generated 250.40 Gb of high-quality reads,
representing 149.53 × genome coverage, with fragment
lengths ranging from 250 to 20Kb (Supplementary File 1:
Table S1). A total of ∼1,391.70Mb of the A. ipaensis genome
sequence was assembled using SOAPdenovo2 (Luo et al.,
2012) with a contig N50 of 8,067 bp and a scaffold N50 of
170,050 bp (Table 1; Supplementary File 1: Tables S2, S3).
An assessment of the draft genome assembly using the core
eukaryotic gene mapping approach method (Parra et al.,
2007) revealed that >98% of conserved genes were present
in the assembly (Supplementary File 1: Table S4). Over
98% of transcript sequences (>500 bp) were mapped to the
assembled genome (Supplementary File 1: Table S5). Based
on k-mer statistics, the A. ipaensis genome is estimated to be
∼1,475.83Mb, which is consistent with the total scaffold length
(Supplementary File 1: Table S6 and Figure S2). The average
GC content is 36.70% (Table 1; Supplementary File 1: Figure
S3), which is equivalent to that of the A. duranensis genome
(Chen et al., 2016), and its distribution is highly similar to
previously reported Arachis genomes (Bertioli et al., 2016;
Chen et al., 2016) but different from those of Glycine max,
Arabidopsis thaliana, and Oryza sativa (Supplementary File 1:
Figure S4).

We predicted 39,704 genes with average transcript and coding
sequence lengths of 3,741 and 1,246 bp, respectively (Table 1).
The whole-genome’s gene density is one gene per 35.05Kb
(Figure 1 and Table 1), and the mean exon and intron lengths
per gene are 250 and 625 bp (Table 1), respectively, which were
relatively longer than those in other leguminous species, such
as Cicerarietinum (Varshney et al., 2013) and G. max (Schmutz
et al., 2010). Compared with the gene sets of legumes, oilseeds,
and other plant species (Supplementary File 1: Table S7), the
distribution of the A. ipaensis gene features is most similar to
those of A. duranensis and legumes, such as C. arietinum and G.
max, but different from those of non-leguminous species, such
as A. thaliana and O. sativa (Supplementary File 1: Table S8 and
Figure S5). Moreover, the A. ipaensis gene number is comparable
to those of Lotus japonicus (39,366) and Zea mays (39,498),
greater than that of C. arietinum (24,819), and substantially lower
than those of G. max (54,174) and Medicago truncatula (50,444)
(Supplementary File 1: Table S9). Functions were tentatively
assigned to 39,645 genes but not to 59 genes that may be peanut-
specific (Table 1). Most of the A. ipaensis genes have homologous
gene models in the TrEMBL (99.82%) and Interpro (71.29%)
databases (Bairoch and Apweiler, 2000; Zdobnov and Apweiler,
2001), and ∼99.85% of the gene models matched entries in
publically available databases (Supplementary File 1: Table S10).
Conservative analyses indicated that the predicted proteins of
A. ipaensis were most similar to those of A. duranensis (88.10%),
followed by Cajanus cajan (67.4%), and least similar to those of
gramineous crops, such as Sorghum italica (33.53%) and S. bicolor
(34.51%) (Supplementary File 1: Table S8).

A total of 2,530 putative A. ipaensis transcription factor (TF)
genes were identified in 58 families, which was equal to or slightly
higher than of the numbers found in O. sativa and A. thaliana,
much higher than in L. japonicus but lower than in G. max and
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TABLE 1 | Genome assembly and annotation of the A. ipaensis.

Genome features Measures

ASSEMBLY FEATURES

Number of scaffolds 79,408

Total span 1,391,700,926 bp (∼1.39G)

N50 (scaffolds) 170,050 bp

Longest scaffold 1,172,168 bp

Number of contigs 1,008,989

N50 (contigs) 8,067 bp

Longest contig 81,804 bp

GC content 36.70%

GENE MODELS

Number of gene models 39,704

Mean transcript length 3,741 bp

Mean coding sequence length 1,246 bp

Mean number of exons per gene 4.99

Mean exon length 250 bp

Mean intron length 625 bp

Mean gene density 35.05Kb

Number of genes annotated 39,645

Number of genes unannotated 59

NON-PROTEIN CODING GENES/ELEMENTS

Number of pre-miRNA genes 71

Mean length of pre-miRNA genes 123 bp

Pre-miRNA genes share in genome 0.000590%

Number of pre-rRNA fragments 313

Mean length of pre-rRNA fragments 186 bp

Pre-rRNA fragments share in genome 0.003928%

Number of pre-tRNA genes 2,914

Mean length of pre-tRNA genes 75 bp

Pre-tRNA genes share in genome 0.014836%

Number of pre-snRNA genes 152

Mean length of pre-snRNA genes 111 bp

Pre-snRNA genes share in genome 0.001139%

Total transposable elements, bp (TEs) 1,125,924,736

Transposable element percent in genome 75.97%

Glycine soja (Supplementary File 1: Figure S6). The distribution
of the A. ipaensis TF genes among the families was highly similar
to those of A. duranensis and G. max (Supplementary File 1:
Figure S7). FAR1 was dominant in A. ipaensis (Figure 2A), as
in the A-genome progenitor, A. duranensis (Chen et al., 2016).
More importantly, the FAR1 TF families play pivotal roles in
modulating phyA-signaling homeostasis (Lin et al., 2007), and
phyA, together with phyB, regulate skotomorphogenesis and
photomorphogenesis in higher plants (Medzihradszky et al.,
2013). The FAR1 TF families identified in A. thaliana contained
several conservative motifs (Supplementary File 1: Figure S8),
and phyA and phyB were highly expressed in different tissues
(shoot, seed, leaf, flower, and root) at different growth stages
in A. thaliana (Supplementary File 1: Figure S9). In addition,
previous non-synonymous substitutions per non-synonymous
site (Ka)/synonymous substitutions per synonymous site (Ks)

analyses of phyB in A. duranensis and G. max showed evidence of
positive selection (Chen et al., 2016). These findings may enhance
our understanding of peanut’s unique fructification, having aerial
flowers but subterranean fruit, as well as providing evidence for
different regulators of biological functions in Arachis and other
plants.

We identified 71 Arachis pre-microRNAs (pre-miRNAs)
(Supplementary File 2: Data S1) with an average length of 123
bp, 2,914 pre-transfer RNAs (pre-tRNAs) with an average length
of 75 bp, 313 pre-ribosomal RNAs (pre-rRNAs) with an average
length of 186 bp including 5S (108), 5.8S (55), 18S (82), and
28S (68), and 152 pre-small nuclear RNAs (pre-snRNAs) with
an average length of 111 bp. These genes represent 0.000590,
0.014836, 0.003928, and 0.001139% of the A. ipaensis genome,
respectively (Table 1; Supplementary File 1: Table S11).

Approximately 75.97% of the A. ipaensis genome is composed
of transposable elements (Figure 1; Tables 1, 2), which was
higher than other legumes, such as G. max (59.00%) (Schmutz
et al., 2010), C. cajan (51.60%) (Varshney et al., 2011) and
M. truncatula (30.50%) (Young et al., 2011). Long-terminal
repeat (LTR) retrotransposons are the dominant transposable
elements, covering 64.15% of the nuclear genome (Table 2).
Sequence divergence analyses indicated that most of A.
ipaensis transposable elements had a ∼30% divergence rate
(Supplementary File 1: Figure S10).

The A. ipaensis genome contains 188,075 simple sequence
repeats (SSRs), for which 80,218 SSR primers were designed
(Supplementary File 1: Table S12; Supplementary File 3:
Data S2). Of these SSRs, the di-nucleotide repeats are the most
abundant, accounting for 48.38% of the total SSRs, followed
by tri- nucleotide repeats (28.06%) (Supplementary File 1:
Table S12). Among the di-nucleotide type, the AT/AT
motif type had the greatest frequency (∼21.9%). Among
the tri-nucleotide type, the AAT/ATT is dominant (∼11.4%)
(Supplementary File 1: Figure S11). Using two A-genome
genotypes (ICG_8123 and ICG_8138) and three B-genome
genotypes (ICG_8960, ICG_8209, and ICG_13160) that were
re-sequenced in our earlier study (Chen et al., 2016), we
identified 26,050,150 variations, including 24,688,277 single
nucleotide polymorphisms (SNPs) and 1,361,873 insertion-
deletions (InDels) (Supplementary File 1: Table S13 and Figure
S12). Among these variations, ∼4 million SNPs were present
in the two diploid A species (ICG_8123 and ICG_8138). By
contrast, ∼5 million SNPs were identified in the comparison
of the three diploid B species (ICG_8960, ICG_8209, and
ICG_13160) (Supplementary File 1: Table S13 and Figure
S12). Thus, the diploid B species Arachis magna and Arachis
batizocoi may have more abundant genetic diversity than
the diploid A species A. duranensis when compared with
the reference A. ipaensis (ICG_8206) genome assembly. The
geographical origin of Arachis indicated that the distribution
of A. duranensis is more extensive and also closer to that of
A. ipaensis which has only one known location of origin, than
A. magna (Bertioli et al., 2016). Another source of confusion
among the variations may result from the two A-genome
genotypes having fewer mapped reads than the three B-genome
genotypes.
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FIGURE 1 | A. ipaensis genome overview. From the outer edge inward, circles represent the 50 largest DNA sequence scaffolds (green), the genes on each scaffold

(purple), the non-coding RNA on each scaffolds (brown), GC content (red and blue), repeat density at 10Kb (yellow), and transposable element density at 10Kb (black).

Gene Family and Phylogenetic Analysis
A total of 16,791 orthologous gene groups were identified
among 18 species using OrthoMCL (Li et al., 2003;
Supplementary File 4: Data S3), including 959 A. ipaensis-
specific families containing 6,443 genes (Supplementary File 1:
Table S14). A gene ontology (GO) annotation suggested
differentially enriched functional categories in the peanut-
specific families, indicating that these gene families may be
closely related to the unique Arachis growth characteristics, such
as aerial flowers but subterranean fruit, and lipid biosynthesis
(Supplementary File 1: Figures S13–S15). Moreover, 1,624
of these orthologous groups were single-copy orthologs
(Supplementary File 1: Table S15 and Figure S16). In addition,
6,443 unique paralogs of A. ipaensis genes occurred in species-
specific homolog groups, indicating that these groups could arise
from genomic structural rearrangements that obscured simple
orthology, such as nonallelic recombination or gene conversion,
followed by duplication (Supplementary File 1: Table S15

and Figure S16; Varshney et al., 2013). We identified 12,017
orthologous groups common to all five leguminous species
(Figure 2B), 11,985 groups between A. ipaensis and Ricinus
communis (oilseed crop) (Supplementary File 1: Figure S17),
9,099 groups between A. ipaensis and Gramineae/Poaceae crops
(Supplementary File 1: Figure S18), and 10,501 orthologous
groups are common to A. ipaensis and other distantly related
plant species (Supplementary File 1: Figure S19). These results
provide an important molecular foundation for comparative
biology and for functional mechanistic inferences in A. ipaensis,
as well as other species, because simple orthologous family
genes often exhibit conserved molecular functions that were
maintained during evolution process.

A polygenetic tree based on single-copy orthologous genes
showed A. ipaensis and A. duranensis in the same clade,
which did not include any other leguminous species, indicating
their closer genetic distance and divergence time (Figure 2C).
Furthermore, a special phylogenetic tree estimated that the
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FIGURE 2 | Comparative genomic and evolutionary analysis. (A) Scatter plot of percentage of A. ipaensis transcription factors in relation to L. japonicas, C. arietinum,

C. cajan, G. max, A. thaliana and O. sativa. (B) Venn diagram showing distribution of gene families among A. ipaensis, G. max, M. truncatula, C. cajan and C.

arietinum. (C) Cluster tree for 17 plant species including common leguminous and gramineous crops based on single copy orthologous genes. (D) Phylogenetic tree

for 7 representative plant species. The numerical on each node represents the estimated differentiation time using the evolutionary time between A. thaliana and G.

max (∼108–114 Mya) as a correction. (E) Syntenic relationship between A. ipaensis scaffolds and G. max chromosomes. (F) Synonymous substitution rate (Ks) dating

of duplication blocks in A. ipaensis and different combinations of orthologs of A. duranensis, A. thaliana, C. arietinum, G. max, and O. sativa. Different colored lines

represent the distribution of Ks against orthologs gene pairs among different plant species. Inset shows the distribution of Ks between the gene pairs present in the

duplicated blocks within the A. ipaensis genome.

divergence of the two species occurred ∼2.9 million years ago
(Mya) (Figure 2D), which was fairly consistent with a previous
report (∼2.16 Mya) (Bertioli et al., 2016). Syntenic blocks
identified between A. ipaensis and other species was found to
be extensively conserved (Supplementary File 1: Table S16). The
largest number of syntenic blocks was identified between A.
ipaensis and G. max (Figure 2E). The longest syntenic block
(>10Kb) was observed between A. ipaensis and A. duranensis
(Supplementary File 1: Table S16). The numbers of syntenic
blocks identified within the respective A. ipaensis and A.
duranensis genomes were extremely lower than the number
between the two genomes (Supplementary File 1: Figure S20)
as well as the number between the A. ipaensis and G. max
genomes (Supplementary File 1: Figure S21; Bertioli et al.,
2016), indicating that few large-scale genome duplication events
occurred in the A. ipaensis genome’s evolution or that syntenic
blocks were lost after genome duplication events.

The Ks values between paralogous or orthologous genes
reveals a mechanism of molecular evolution (Lna, 1996).
Distributions of Ks distances between paralogs within A. ipaensis
and orthologs among A. ipaensis, leguminous crops and other
species were plotted (Figure 2F). TheA. ipaensis paralogs showed
a peak at ∼ 0.80, which is similar to those of M. truncatula
(∼0.80) and L. japonicus (∼0.73) (Cannon et al., 2006) but
lower than those of A. duranensis (∼0.9) and A. ipaensis (∼0.95)
(Chen et al., 2016). Thus, the whole-genome duplication events
of A. duranensis and A. ipaensis occurred around the time that
corresponds to a Ks value range of 0.8–0.95. In addition, A.
duranensis and A. ipaensis orthologs showed a prominent peak
at ∼0.04, which is consistent with a previous study (Bertioli
et al., 2016). Assuming a synonymous substitution rate per
synonymous site of 6.1 × 10−9 per year for eudicots (Lynch
and Conery, 2000), the two species were estimated to have
diverged∼3.28Mya, which is close to the estimation based on the
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TABLE 2 | Organization of repetitive sequences in A. ipaensis genome.

Repetitive elements Repeat number Length (bp) In total repeat (%) In genome (%)

Total retrotransposons 2,444,183 9,88,193,900 87.77 66.68

LINE retrotransposons 163,947 43,942,874 3.9 2.97

SINE retrotransposons 2,859 726,676 0.06 0.05

LTR retrotransposons 2,277,377 950,690,158 84.44 64.15

Gypsy 1,727,232 796,763,491 70.77 53.76

Copia 343,066 91,500,532 8.13 6.17

LTR 23,529 1,543,961 0.14 0.10

Other 183,550 98,476,493 8.75 6.64

Other retrotransposons 668 47,680 0 0.00

Total DNA transposons 364,250 98,441,246 8.74 6.64

Total unclassified elements 311,209 84,709,729 7.52 5.72

Total transposable elements 3,120,310 1,125,924,736 – 75.97

Redundant 1,171,344,875

Nonredundant 1,125,924,736

phylogenetic tree (Figure 2D). Furthermore, Ks dating suggested
the divergence of A. ipaensis and G. max (Ks = ∼0.54) at 44.3
Mya and that of A. ipaensis and C. arietinum (Ks = ∼0.64) at
52.5 Mya.

The graphic trend of the Ka/Ks (ω) and Ks between the
orthologs of A. duranensis and A. ipaensis formed three clusters,
such as Ks = 0–0.3, 0.5–1.5, and >1.5, and the ω values
decreased as the Ks values increased (Supplementary File 1:
Figure S22). The genes with Ks ≥ 1.5 are attributed to pan-
eudicot palaeoploidization, and the genes with lower ω ratios are
considered to be under neutral selection. Here, the 45 A. ipaensis
genes with ω ratios > 1 may be under positive selection pressure
(Supplementary File 1: Figure S23).

Peanut is an allotetraploid species that may have originated
from a single resent hybridization event between two
diploid species, followed by polyploidization. Cytogenetic,
phylogeographic and molecular evidence indicates that A.

duranensis and A. ipaensis are the most likely donors of the A
and B subgenomes, respectively (Kochert et al., 1996; Seijo et al.,
2007; Robledo et al., 2009; Robledo and Seijo, 2010; Moretzsohn
et al., 2013). A previous study estimated the divergence of
the two species at ∼2.88 Mya (Moretzsohn et al., 2013). The
estimation using a comparative genomics analyses between them
was ∼2.9 Mya, which was fairly consistent with our report.
Moreover, sequence comparisons with tetraploid cultivated
peanut estimated the divergence times of A. duranensis and
A. ipaensis from the A and B subgenomes of A. hypogaea as
∼247,000 and∼9,400 years, respectively (Bertioli et al., 2016).

Comparative genomics analyses of chromosomal structure
and synteny between A. duranensis and A. ipaensis indicated
that some chromosomes shared a conservative linear structure
that was partially in accordance with our other analyses
(Supplementary File 1: Figure S20). Other analyses showed
a large inversion in one or both arms of a chromosome
(Bertioli et al., 2016). In contrast, chromosomes 07 and 08 have
undergone complex rearrangements that were consistent with
cytogenetic observations (Seijo et al., 2007; Nielen et al., 2010).

Importantly, a genomic comparison showed a fundamentally
one-to-one correspondence between the diploid chromosomes
and cultivated peanut linkage groups. However, theA. duranensis
chromosomes were less similar to A. hypogaea sequences than
those of A. ipaensis (Bertioli et al., 2016). These results may help
to uncover potential mechanisms of hybridization events in the
future.

Disease Resistances and
Nucleotide-Binding Site
(NBS)-Leucine-Rich Repeat (LRR)
Encoding Genes
Plant NBS-LRR proteins encoded by resistance genes (R genes)
play key roles in the responses of plants to various pathogens.
The R genes can be classified into various subfamilies based
on the present of different domain, such as CC-NB-LRR, TIR-
NB-LRR, ser/thr-LRR, Kin-LRR, and others (e.g., Mol and Asc-
1; Sanseverino et al., 2010). The A. ipaensis genomic assembly
contains 1,437 putative disease R genes as assessed by a
screening of the PRG database (Supplementary File 1: Table
S17; Supplementary File 5: Data S4; Sanseverino et al., 2010).
Compared with other legumes, the A. ipaensis genome possesses
more R genes than the G. max and M. truncatula genomes but
less than the A. duranensis and C. cajan genomes. Moreover,
these R genes tend to cluster on different scaffolds. For example,
several large clusters containing 6–10 R genes are located on
six different scaffolds (Supplementary File 1: Figure S24). The
NL subfamily of genes, which confers resistance against pests
and diseases, is the second largest R gene-containing family,
and these genes can be clustered reasonably into different
individual clades in A. ipaensis, A. duranensis, and A. thaliana,
indicating that gene divergence occurred during the evolution
of the three species (Supplementary File 1: Figure S25). In
addition, we analyzed protein motifs in the most homology
of the top 20 R genes found in PRG database using MEME
(Bailey et al., 2009), and the results showed highly conserved LRR
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motifs (Supplementary File 1: Figure S26). However, further
investigation is required to determine the biological functions of
these R genes.

Identification of Genes Related to
Biological Nitrogen Fixation
Nitrogen is one of the most important plants require nutrients,
and in agriculture nitrogen availability influences both crop
yield and quality. Leguminous plants, such as peanut,
soybean, and Medicago, can transform molecular nitrogen
into available ammonia nitrogen through the leguminous-
root-nodule bacteria nitrogen-fixing system that results from
the symbiotic interactions between leguminous plants and
rhizobia (Figure 3A). In the A. ipaensis and A. duranensis
genomic assemblies, 16 and 38 root-nodule developmental
genes respectively, have been identified (Supplementary File 1:
Table S18; Supplementary File 6: Data S5). As expected, there
are greater numbers of nodulation-related genes present in
leguminous plants than in non-leguminous plants, such as A.
thaliana, O. sativa, and Z. mays (Supplementary File 1: Figure
S27).

Nitrogen-fixing root nodules are important symbiotic
organs that provide an epiphytic site for rhizobia to convert
atmospheric nitrogen to ammonia, and supply its host plant
with fixed nitrogen. In return, the rhizobia gain photosynthates
from the plant (Figure 3A). In leguminous plants, multiple
genes are involved in the formation and development of root
nodules, as well as in the autoregulation of the nodulation
(AON) process, which is a systemic feedback loop used to
avoid an excessive energy expenditure from “unwanted”
nodulation (Figure 3A; Supplementary File 7: Data S6). Here,
four homologous LRR receptor kinase genes were identified in A.
ipaensis (XP_004512550.1-D2 and XP_007158329.1-D2) and A.
duranensis (XP_015956675.1 and XP_015963325.1) (Figure 3B;
Supplementary File 1: Figure S28; Supplementary File 7:
Data S6). A phylogenetic tree showed that the four homologous
genes were clustered into an independent clade, together with
other LRR receptor kinase genes (Figure 3C). Interestingly,
these four genes contain multiple common motifs, including
a conserved LRR motif, indicating a similar biological
function (Figure 3D). The GO analyses suggested that the
four homologous genes are involved in ion binding and signal
transducer activity (Supplementary File 1: Figures S29–S32).
More importantly, the proteins encoded by the four genes
showed similar three-dimensional structures and localized on
the cell membrane (Supplementary File 1: Figures S29–S32).

We also identified two other nodule development-related
genes (XP_015934647.1 and XP_015939255.1) that are
homologous to the TF genes of the GRAS family inA. duranensis.
One gene is homologous with MtNSP2 and PsSYM7 (Kaló et al.,
2005), while the other is an ortholog of MtNSP1 (Imaizumi-
Anraku et al., 2005) (Figures 3A,B; Supplementary File 1:
Figure S33; Supplementary File 7: Data S6). The phylogenetic
tree indicated that the two homologs were classified into the
TF category but appeared in different branches (Figure 3C).
In addition, the GO enrichment indicated that the two genes

participate in the regulation of multiple biological processes,
such as nucleic acid-binding TF and signal transducer activities
(Supplementary File 1: Figures S34, S35). The three-dimensional
structures of the two proteins were completely dissimilarity, and
the two proteins localized in the nucleus (Supplementary File 1:
Figures S34, S35). These results could provide candidate genes
and basic bioinformation for further functional studies of nodule
formation in leguminous crops.

Genetic Mechanism of Drought Adaptation
Peanut (A. hypogaea L.) is a typical upland crop in tropical,
subtropical, and warm temperate climates. Drought adaptation
plays a central role in their growth and development.
During drought stress, TFs, such as MYB, MYB-related,
NAC, WRKY, bZIP, and ERF, are involved in numerous
physiological responses (Shinozaki and Yamaguchi-Shinozaki,
2000) (Supplementary File 1: Figure S36). Here, the total
number of TF genes identified in upland crops was greater
than that found in hygrophilous plants (Supplementary File 1:
Table S19 and Figure S37). Notably, in A. ipaensis we identified
185 MYB and 129 MYB-related TFs (Supplementary File 1:
Table S19), most of which contain a highly conserved DNA-
binding domain, and they are key factors in regulatory networks
controlling development, metabolism and responses to biotic and
abiotic stresses (Dubos et al., 2010). The second large number
of drought tolerance-related TFs, with 170 members, is the ERF
family (Supplementary File 1: Table S19). The ERF proteins,
sharing a conserved 58–59 amino-acid domain, are key regulators
linked to responses to plant stresses, such as cold, drought and
pathogen attack (Supplementary File 1: Figure S38; Singh et al.,
2002). In A. duranensis, A. ipaensis and A. hypogaea species,
sets of 51, 57 and 53 ERF TF family proteins, respectively,
were obtained from the Plant Transcription Factor Database (Jin
et al., 2015, 2017; Supplementary File 1: Figures S39–S41). These
TF proteins contained different DNA-binding domains and can
be categorized into different branches based on different motif
permutation structures, indicating the distinct functional and
evolutionary features of ERF TFs in different Arachis species
(Supplementary File 1: Figures S39–S41).

Heat-shock proteins (Hsps)/chaperones are important
defense mechanism members against abiotic stresses, such
as drought, salinity and extreme temperatures (Wang et al.,
2004; Supplementary File 1: Figure S42). Drought stress is a
common factors that induces Hsp expression (Kimpel et al.,
1990; Sun et al., 2002). To elucidate the cause of drought
tolerance, five major families of Hsps/chaperones were identified
in upland crops and hygrophilous plants (Supplementary File 1:
Table S20 and Figure S43). As expected, the total number of
Hsps/chaperones obtained in upland crops was much great
than in hygrophilous plants (Supplementary File 1: Figure
S43).In particular, A. ipaensis and G. soja had 118 and 34
Hsp70 subfamilies, respectively, compared with only 1 in
rice (Supplementary File 1: Table S20). The great number of
Hsps/chaperones detected in A. ipaensis and G. soja indicates the
nature of drought adaptation in upland crops.

The subtilisin-like protease (SDD1) gene family is involved in
the regulation of stomatal density and distribution to adjust for
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FIGURE 3 | Biological nitrogen fixation in leguminous plants. (A) Genes involved in nodule initiation, development and signal recognition pathway. (B) Protein

sequence alignment of Nod related genes identified in A. ipaensis and A. duranensis. (C) Phylogenetic tree of nodule development genes and their homologs from A.

ipaensis and A. duranensis. (D) Identification of high conserved domains of leucine-rich repeat (LRR) receptor kinases. Red dashed boxes represent LRR conserved

motif. (A) The rhizobium (blue) attach to the surface of root hair cell. After swelling, deformation, curling and infection thread, the bacteria are released into cells via

endocytosis then a vacuole-like structures (symbiosomes), in which the bacteria convert N2 to NH3, formed. But how is the Nod signal transmitted? Initially, the

rhizobia-derived signal is perceived by LysM-type protein receptor kinases, such as NRF1 and 5 (Radutoiu et al., 2003) and SYM10 (Schneider et al., 2002) identified

in L. japonicus and P. sativuml, followed by a downstream leucine-rich receptor kinase, for example SYMRK (Stracke et al., 2002 and Capoen et al., 2005), NORK

(Endre et al., 2002), DMI2 (Catoira et al., 2000), and SYM19 (Stracke et al., 2004) from L. japonicus, Sesbania rostrata, M. sativa, M. truncatula, and P. sativuml,

respectively. Then, the Nod factor (NF) signal is processed through a signal transduction cascade involving proteins including ion channels [MDI1(Ané et al., 2004),

CASTOR (Imaizumi-Anraku et al., 2005), POLLUX (Imaizumi-Anraku et al., 2005), and SYM8 (Edwards et al., 2007)], calcium-calmodulin-dependent kinase (CaCaDK)

(MDI3 and SYM9) (Lévy et al., 2004) and transcription factors [NSP1 (Smit et al., 2005), NSP2 (Kaló et al., 2005), SYM7 (Kaló et al., 2005), NIN (Schauser et al., 1999),

and SYM35 (Borisov et al., 2003)]. Finally, rhizobia infection occurred primarily through uncharacterized target genes that may be activated by these TFs.

drought stress by modulating the apertures of these pores flanked
by two guard cells (Berger and Altmann, 2000). In the expanded
gene families, 39 and 40 SDD1 genes were identified in A.
ipaensis and A. duranensis, respectively (Supplementary File 8:
Data S7). These gene families were divided into different clusters
according to their related functions but showed a pattern of
cross-distribution in each cluster based on their different genetic
relationships (Supplementary File 1: Figure S44).

Oil Synthesis
Because peanut is an important oilseed crop, 1,613 A. ipaensis
genes related to the biosynthesis of fatty acids and triacylglycerols
were identified, which was more than were identified in
the nonoilseed plant Arabidopsis (1,380) and rice (1,419)
(Supplementary File 1: Table S21). In addition, fatty acids and
triacylglycerols synthesis involves many key enzymes, such as
ACCase (Slabas and Fawcett, 1992), acyl-ACP thioesterase (A and

B) (Dörmann et al., 2000; Bonaventure et al., 2003; Serrano-
Vega et al., 2005), LACS (Zhao et al., 2010), DGAT (Yen et al.,
2008), and FAD (Pham et al., 2012) (Supplementary File 1:
Figure S45). When we manually investigated the homologous
genes in the storage lipid biosynthesis pathway using the
Arabidopsis Lipid Gene Database (Mekhedov) (http://lipids.
plantbiology.msu.edu/), 116 nonredundant homologs potentially
involve in lipid biosynthesis were obtained in A. ipaensis
(Supplementary File 9: Data S8). Consistent with the lipids
produced in peanut seeds, one, and nine homologous genes
encoding acyl-ACP thioesterase A and B (FATA and FATB),
respectively, the two key enzymes leading to the synthesis
of fatty acid, were identified. Moreover, multiple copies
or isoforms of some key genes, such as FAD2, LACS,
and KAS, involved in triacylglycerol synthesis were also
detected in the A. ipaensis genome (Supplementary File 9:
Data S8).
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FAD2, encoding δ-12 oleic acid desaturase, is the essential
gene that controls linoleic acid biosynthesis (López et al.,
2000). It converts oleic acid to linoleic acid by desaturating
the δ-12 carbon and determines the multi-polyunsaturated
fatty acid content and proportion in most oil seed plants
(Figure 4A). In this study, three new FAD2 homologous genes
(XP_004497897.1-D3, XP_007162321.1, and XP_007162321.1-
D2) were identified in A. ipaensis (Supplementary File 1: Figure
S46). The proteins of FAD2 and its homologs contain the
highly conserved feature of three enzyme-specific histidine
boxes (Figure 4B), which are considered to be essential
for desaturase activity because they act as potential ligands
for iron atoms (Sakai and Kajiwara, 2005). A phylogenetic
tree showed that FAD2 clustered into five groups based
on its genus, and the three homologous genes were more
closely related to the evolutionary kinship of oil seed plants,
especially A. hypogaea (Figure 4C). This result indicated that
FAD2 is an extremely conserved gene in the fatty acid
biosynthesis pathway. In addition, the GO terms revealed
that the three homologous genes having δ-12 oleic acid
dehydrogenase activities (ω-6 fatty acid desaturase activities)
were involved in the fatty acid biosynthesis process and that
the proteins encoded by the three genes were subcomponents
of the endoplasmic reticulum membrane. They had similarity
three-dimensional structures, which was supported by the
predicted protein subcellular localization (Supplementary File 1:
Figures S47–S49).

Pairwise comparisons of the amino acid sequences of
XP_007162321.1-D2 from A. ipaensis with FAD2 from A.
hypogaea revealed 100% sequence identities with no gaps
(Supplementary File 1: Figure S50), which confirmed the
ancestral origin of FAD2 as being the A. ipaensis genome. A
signal peptide analysis showed a low level S-score, indicating
a typical non-secretory protein with no leading peptide
(Figure 4D). This was supported by the predicted protein
subcellular localization (Supplementary File 1: Figure S47E).
Moreover, four transmembrane domains were predicted in
their amino acid sequence (Figure 4E). Importantly, the protein
hydrophobicity/hydrophilicity prediction revealed four strong
hydrophobic regions, which completely overlapped with the
transmembrane regions (Figure 4F). These results provide
information for exploring the origin of FAD2, and the
homologous gene will be of service to peanut improvement for
high oleic acid.

Among the key enzyme-encoding genes, 82 nonredundant
homologous genes had high distributions of non-synonymous
substitutions (Ka/Ks > 1.0) between A. ipaensis and A. thaliana
as assessed by the branch-site likelihood ratio test, indicating
positive selection during domestication (Supplementary File 1:
Figure S51; Supplementary File 10: Data S9). Coincidentally, 21
fatty acid biosynthesis genes located in multiple improvement-
selective sweeps regions were obtained through combined
genome selective sweeps and GWAS analyses in soybean (Zhou
et al., 2015). Thus, we hypothesize that these 82 genes, including
FAD2 (2), KASIII (2), and FATB (6) homologs with high
Ka/Ks values (Supplementary File 1: Figure S52) may also have
undergone domestication.

TFs that regulate seed development play crucial roles in seed
lipid accumulation. To date, the TFs regulating lipid metabolism
mainly belong to the following 6 super gene families, AP2/EREBP,
B3, NF-Y, Dof, MYB, and MYC (Song et al., 2016). The number
of the TF families identified in oilseed crops is much great
than in non-oilseed plants (Supplementary File 1: Figure S53).
Information related to these genes involved in fatty acid and
triacylglycerol metabolic pathways is important for modifying
the oil quality of peanut as well as other oilseed crops.

CONCLUSIONS

The draft genome sequence of A. ipaensis, together with those of
L. japonicus, M. truncatula, C. cajan, C. arietinum, and G. max,
will provide new biological information for an important branch
of the legume clade. The A. ipaensis genome sequence presented
here, combined with our previous sequence of A. duranensis,
will shed light on the genomic evolution and polyploidization
mechanisms of polyploid species. In addition, the biological
information of the A. ipaensis genome provides a fundamental
resource for understanding disease resistance, symbiotic nitrogen
fixation, environmental adaptation and oil biosynthesis in
peanut. Moreover, high-density molecular markers, such as SSRs
and SNPs, identified in the A. ipaensis draft genome can be used
to investigate the genetic diversity and make genetic changes to
improve important agronomic traits in peanut.

MATERIALS AND METHODS

Plant Material
The Arachis genus is composed mostly of diploid species (2n =

2x= 20). Peanut (A. hypogaea L.) is an allotetraploid (AABB-type
genome; 2n = 4x = 40), probably derived from a single recent
hybridization event between A. duranensis (AA subgenome, 2n
= 2x = 20) and A. ipaensis (BB subgenome, 2n = 2x = 20)
(Supplementary File 1: Figure S1; Koppolu et al., 2010; Chen
et al., 2016). In 2016, an accession of A. ipaensis K30076 has
already been sequenced (Bertioli et al., 2016). The accession
collected by A. Krapovickas, W.C. Gregory, D.J. Banks, J.R.
Pietrarelli, A. Schinini, and C.E. Simpson in 1977 was maintained
at Embrapa Genetic Resources and Biotechnology (Brasília,
Brazil), which probably originated form Villa Montes near
Camatindi or Tigüipa, Bolivia (https://www.peanutbase.org/;
Bertioli et al., 2016). In this study, the accession of A. ipaensis
ICG_8206maintained at International Centre for Research in the
Semi-Arid Tropics (India) then introduced to Crops Research
Institute-Guangdong Academy of Agricultural Sciences (China)
was used. Although cytogenetic, phylogeographic and molecular
evidence showed that the accession of A. ipaensis K30076 was
the most probable B-genome donor for A. hypogaea (Seijo et al.,
2007; Robledo and Seijo, 2010; Bertioli et al., 2016), genetic
relationship analyses indicated that the B-genome accession ICG
8206 (A. ipaensis) was the most closely related to A. hypogaea
(Koppolu et al., 2010).

Here, the A. ipaensis (ICG_8206) was sequenced by Illumina
HiSeq2500 platform. Total genomic DNA was isolated from the
etiolated unopened young leaves of 20-day-old plants cultivated
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FIGURE 4 | Homologous genes of δ-12 oleic acid desaturase (FAD2). (A) FAD2 catalyze oleate into linoleate. (B) Multiple alignment of amino acid sequence of

substrate binding motif of FAD2 in oil seed plants and its homologous genes in A. ipaensis. (C) Phylogenetic tree of FAD2 and its homologous genes from different

species. (D) Signal peptides analysis of FAD2 homologous gene (XP_007162321.1-D2) from A. ipaensis. (E) Tansmembrane region prediction of FAD2 homologous

gene, XP_007162321.1-D2. Red, blue, and pink boxes represent transmembrane, inside, and outside domains. (F) Hydrophobicity and hydrophilicity prediction for

the homologous gene XP_007162321.1-D2. Pink box represent protein hydrophobic region.

in dark chamber according to amodified CTAB procedure (Doyle
and Doyle, 1990). This work will also be of great importance
to guide cultivated peanut’s genome assembly as a necessary
complement in future.

Whole-Genome Shotgun Sequencing and
de Novo Assembly
Whole-genome shotgun sequencing was performed under the
HiSeq2500 Sequencing System with 11 paired-end sequencing
libraries, including 250, 500, 800 bp, 2, 5, 10, and 20Kb using the
standard protocol provided by Illumina (San Diego, USA).

SOAPdenovo2 (version 2.04.4) (Luo et al., 2012) was
employed with optimized parameters to construct contigs and
original scaffolds as previous described (Chen et al., 2016).

Subsequently, SSPACE (version 2.0) (Boetzer et al., 2011) was
used to link the scaffolds constructed by the SOAPdenovo2 as
previous described (Chen et al., 2016).

The genome size was estimated based on the 17 K-mer
distribution using the total length of sequence reads divided
by sequencing depth, and the frequency of each 17-mer were
calculated from the whole genome sequenced reads to evaluate
the sequencing depth. Subsequently, the A. ipaensis genome size
was calculated by following the algorithm: Genome size= K-mer
number/Peak depth (Bertioli et al., 2016).

The gene coverage of the assembled genome was
comprehensively evaluated using available public transcript
sequence tags or expressed sequence tags. Core eukaryotic genes
identified by CEGMA v.2.3 (Parra et al., 2007) were remapped
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to the A. ipaensis genome assembly by BLAT (Kent, 2002)
to evaluate the quality of the assembly. CEGMA data were
downloaded from the Korf Lab research group at the Genome
Center, UC Davis (http://korflab.ucdavis.edu/datasets/cegma/#
SCT6).

Gene Prediction and Function Annotation
To annotate the A. ipaensis genome, an automated genome
annotation pipeline MAKER was performed to produce de
novo gene prediction, infer 5′ and 3′ UTR, and integrate
these data to generate final downstream gene models with
quality control statistics (Cantarel et al., 2008). All predicted
genes were functionally annotated as previous described
(Chen et al., 2016). The annotation was conducted using the
BLAST+ (version 2.2.27) with 1e-5 as the E-value threshold
to against the SwissProt and TrEMBL databases (Bairoch
and Apweiler, 2000). To infer functions for the predicted
genes, InterProScan (version 4.7) (Zdobnov and Apweiler,
2001) was used to search the predicted genes against the
protein signature from InterPro with default parameters. All
genes were also aligned against to the Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway (Kanehisa et al.,
2004).

In order to evaluate the conservation of A. ipaensis ICG_8206
gene model, the BLASTP was used to query the A. ipaensis
ICG_8206 proteome against the proteomes of other plant species
(Supplementary File 1: Table S7) with an E value of 1e-10 as
cut-off (Supplementary File 1: Table S8).

Gene Family Analysis
All the predicted gene models were analyzed using OrthoMCL
(Li et al., 2003) to identify shared and specific gene families
among 17 species (Supplementary File 1: Table S7). In the first
step, inter and intra species BLASTP with an E-value cutoff of
1e-10 was performed to detect reciprocal best hit pairs between
species (putative orthologs), as well as sets of genes within
species (putative co-orthologs or in-paralogs). The reciprocal
best hit matrix served as the basis for ortholog definition using
OrthoMCL. Subsequently, orthologous groups were organized
into species-specific and higher taxonomic level groups by
requiring that at least one sequence from each clade under
comparison be present in the intersecting set. Finally, based
on fourfold degenerate sites of single-copy ortholog genes in
all species, a phylogenetic tree was constructed using MEGA
v6.0 (Tamura et al., 2013) and PhyML v3.0 (Guindon et al.,
2010).

To identify TFs in A. ipaensis, the PlantTFDB database was
used to search TFs in other plant species (http://planttfdb.cbi.
pku.edu.cn/). The predicted genes were used to BLAST search
against the PlantTFDB (E-value: 1e-10). The FAR1 motif was
predicted using the Multiple Expectation Maximization for
Motif Elicitation (MEME)/Motif Alignment and Search Tool
(MAST) system (http://meme-suite.org/) (Bailey et al., 2009)
and visualized using the TBtools (version 0.4999) (https://github.
com/CJ-Chen/TBtools).

Non-coding RNAs and Repetitive
Sequence Annotation
Non-coding RNAs were predicted by aligned A. ipaensis genome
assembly to against the Rfam databese (version 12.1) (Nawrocki
et al., 2015). The pre-tRNAs were identified using tRNAscan-
SE (Lowe and Eddy, 1997), pre-rRNAs were predicted using
RNAmmer (Lagesen et al., 2007), pre-snRNAs were annotated
using INFERNAL (Nawrocki et al., 2009) and others were also
obtained by BLAST search against the Rfam database.

The RepeatMasker (Chen, 2004), RepeatProteinMask
(http://repeatmasker.org/), Tendem Repeats Finder (TRF)
(Benson, 1999) and RepeatModeler (Smith and Hubley, 2014)
were performed to identify repetitive sequences through
homolog and de novo prediction. The RepeatMasker and
RepeatProteinMask were used to screen the A. ipaensis genome
against the RepBase database (http://www.girinst.org/). The
transposable elements (TEs) were classified as described without
consideration of the gaps in the genome assembly (Wicker et al.,
2007).

Identification of SSRs and SNPs
MIcroSAtellite (http://pgrc.ipk-gatersleben.de/misa/) was used
to mine SSRs in A. ipaensis genome, and primer 3 v3.0 was used
for primer design (Thiel et al., 2003; Untergasser et al., 2012). A
SSR was defined with at least 6 repeats for di-nucleotide motifs or
4 repeats for tri-, tetra-, penta-, and hexa-nucleotide motifs. The
maximum number of interrupting nucleotides in a compound
SSR was set as 100.

Reads from five re-sequenced genotypes including two A-
genome genotypes (ICG_8123 and ICG_8138) and three B-
genome genotypes (ICG_8960, ICG_8209, and ICG_13160) were
used to identify genome SNP and InDel variations (Chen
et al., 2016). Total of these sequenced reads were aligned to
the reference genome (ICG_8026) using the Burrows Wheeler
Aligner program (BWA) (Li and Durbin, 2009). Subsequently,
SNPs and InDels were identified using GATK v3.5 (http://www.
broadinstitute.org/gatk) with default parameters, respectively.

Evolutionary and Syntenic Block Analyses
The phylogenetic tree was constructed based on single-copy
orthologous genes shared in A. ipaensis and other 17 plants
(Supplementary File 1: Table S7) using MEGA v6.0 with the
maximum-liklihood algorithm (Tamura et al., 2013).

Syntenic blocks between the genomes of A. ipaensis and
other plants were identified using the MCScanX with default
parameters (Wang et al., 2012) and visualized on the genome
using Circos (Krzywinski et al., 2009). Genomic sequences were
first aligned annotated genes based on amino acid sequence using
Promer package of Mummer (version 3.22) (Delcher et al., 2002).
Whole genome dot plots were generated using Mummerplot
(Delcher et al., 2002) and Gunplot 5.0 (www.gnuplot.info/). Ks
values of the homologs within collinearity blocks were calculated
using the perl script, add_ka_and_ks_to_collinearity.pl included
in MCScanX package, and the median of Ks values was
considered to be a representative of the collinearity blocks.
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Genes Involved in Disease Resistance,
Symbiotic Nitrogen Fixation, Environmental
Adaptation, and Oil Synthesis
All the disease R genes were identified using the genome assembly
of A. ipaensis and other plant species as a TBLASTN query to
against the PRG datebase with an E-value of 1e-10 as cut-off.
Amino acid sequences of all NBS-LRR genes from A. ipaensis,
A. duranensis, and A. thaliana were aligned to construct
phylogenetic tree using MEGA v6.0 with automatic bootstrap
criteria (Maximum Likelihood) (Tamura et al., 2013). The
conserved motifs of top 20 homologies NBS-LRR were identified
using MEME suite (Bailey et al., 2009; Supplementary File 1:
Figure S26).

Nodulation regulatory and nodulin genes were identified
based on GO analyses. The GO IDs for each gene were
obtained through BLAST search against KEGGproteins (E-value:
1e-5). Genes involved in symbiotic nitrogen fixation associated
with nodule development and AON process were obtained by
comparison with orthologous genes in other legumes using
multiple protein sequence alignment in COBALT (https://www.
ncbi.nlm.nih.gov/tools/cobalt/). The PredictProtein was used to
perform GO terms, protein-protein and protein-DNA binding
sites and sub-cellular localization (Yachdav et al., 2014). The
SWISS-MODEL was used to predict protein tertiary structure
(Biasini et al., 2014).

Genes involved in oil biosynthesis for Arabidopsis were
obtained from the Arabidopsis Lipid Gene Database (Mekhedov)
(http://lipids.plantbiology.msu.edu/). All the Arabidopsis lipid
genes (81) in the database were used to TBLASTN search
against the A. ipaensis genome with a cutoff E-value of 1e-
50. Finally, a total of 116 non-redundant oil biosynthesis
genes were obtained in A. ipaensis. Multiple amino acid
sequence alignment of FAD2 homologs was performed using
the COBALT (https://www.ncbi.nlm.nih.gov/tools/cobalt/). The
PredictProtein and SWISS-MODEL was used to integrate GO
terms, protein binding sites, sub-cellular localization and protein
tertiary structure, respectively (Biasini et al., 2014; Yachdav et al.,
2014).

Signal peptide analysis of the XP_007162321.1-D2 was
predicted using SignalP 4.1 Server with default parameter
(Petersen et al., 2011). Prediction of transmembrane helices was
performed using TMHMM Server v. 2.0 (http://www.cbs.dtu.dk/
services/TMHMM/). Hydrophobicity and hydrophilicity regions
were predicted using ProtScale (Gasteiger et al., 2005).
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