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An understanding of the interaction between rice and dark septate endophytic

(DSE) fungi, under green fertilization, may lead to sustainable agricultural practices.

Nevertheless, this interaction is still poorly understood. Therefore, in this study, we aimed

to evaluate the accumulation of macro- and micronutrients, dry matter, and protein and

N recovery efficiency from Canavalia ensiformis (L.)-15N in rice inoculated with DSE

fungi. An experiment under greenhouse conditions was conducted in a randomized

complete block design comprising split-plots, with five replicates of rice plants potted

in non-sterilized soil. Rice (Piauí variety) seedlings were inoculated with DSE fungi, A101

and A103, or left uninoculated (control) and transplanted into pots containing 12 kg of

soil, which had previously been supplemented with dry, finely ground shoot biomass of

C. ensiformis enriched with 2.15 atom % 15N. Two collections were performed in the

experiment: one at 54 days after transplanting (DAT) and one at 130 DAT (at maturation).

Growth indicators (at 54 DAT), grain yield, nutrient content, recovery efficiency, and the

amount of N derived from C. ensiformis were quantified. At 54 DAT, the N content,

chlorophyll content, and plant height of inoculated plants had increased significantly

compared with the control, and these plants were more proficient in the use of N derived

from C. ensiformis. At maturation, plants inoculated with A103 were distinguished by

the recovery efficiency and amount of N derived from C. ensiformis and N content in

the grain and shoot being equal to that in A101 inoculation and higher than that in the

control, resulting in a higher accumulation of crude protein and dry matter in the full grain

and panicle of DSE-rice interaction. In addition, Fe and Ni contents in the grains of rice

inoculated with these fungi doubled with respect to the control, and in A103 inoculation,

we observed Mn accumulation that was three times higher than in the other treatments.

Our results suggest that the inoculation of rice with DSE fungi represents a strategy to

improve green manure-N recovery, grain yield per plant, and grain quality in terms of

micronutrients contents in cropping systems with a low N input.
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INTRODUCTION

Rice, along with corn and wheat, is the most important cereal in
the world and is consumed by more than half of its population
(Fao, 2016) for its supply of starch and proteins (Fitzgerald et al.,
2009; Tian et al., 2009). However, rice production depends on
the intensive use of fertilizers, particularly nitrogenous fertilizers,
which generally have low recovery efficiency, with approximately
half being subject to loss (Lassaletta et al., 2014), thereby
generating environmental and economic problems (Chardon
et al., 2012; Sutton et al., 2013). In contrast, the use of green
fertilization combined with soil microorganisms, could be an
economically positive strategy for rice production, reduction of
nutrient losses, and improvement of soil fertility (Ambrosano
et al., 2011; Cavagnaro et al., 2015).

DSE fungi, a diverse group of cosmopolitan endophytes,
are conidial or sterile ascomycetes that generally have a
brown to dark mycelium and melanized septate hyphae. They
can colonize plant roots intercellularly and intracellularly,
eventually forming microsclerotia, and can promote host plant
growth without causing disease symptoms (Jumpponen and
Trappe, 1998; Thormann et al., 1999; Jumpponen, 2001;
Wilson et al., 2004; Diene et al., 2013; Knapp et al., 2015).
These fungi colonize approximately 600 plant species of 320
genera and 114 families (Jumpponen and Trappe, 1998). In
the Poaceae family, for example, DSE fungi isolated from
the healthy roots of wild rice (Oryza granulata Nees et
Arn. ex Watt. and Oryza glumaepatula Steud.) can colonize
commercial rice [Oryza sativa (L.)] and promote its growth,
without triggering any disease symptoms (Yuan et al., 2010;
Pereira et al., 2011; Santos et al., 2017; Vergara et al.,
2018).

The positive effects of inoculating plants with DSE fungi
are more evident in plants supplied with organic sources of
N and P than with inorganic sources (Newsham, 2011; Qin
et al., 2017; Surono and Narisawa, 2017; Vergara et al., 2017).
Organic compounds stimulate the saprophytic character of these
fungi, which secrete a series of enzymes, such as endoglucanases,
cellulases, amylases, pectinases, and laccases, and secondary
metabolites that break complex compounds of carbon (C),
nitrogen (N), and phosphorus (P), such as cellulose, starch,
protein, and phytate, and convert these into nutrients for host
plant absorption (Jumpponen and Trappe, 1998; Jumpponen
et al., 1998; Caldwell et al., 2000; Choi et al., 2005; Usuki
and Narisawa, 2007; Upson et al., 2009; Mandyam et al., 2010;
Doolotkeldieva and Bobusheva, 2011; Berthelot et al., 2016;
Adeoyo et al., 2017; Surono and Narisawa, 2017). Nevertheless,
although the literature indicates that DSE fungi can help the host
plant to acquire nutrients from organic sources of N, there are
still few studies that have evaluated the growth and development
of plants supplied with leguminous green manure as a single
source of N.

In earlier studies, two isolates of DSE fungi, A101 and
A103, isolated from wild rice (O. glumaepatula) were identified
through ITS phylogeny as belonging to the order Pleosporales
(suborderMassarineae) (A103) and to an unknown taxon (A101)
(Ribeiro, 2011; Vergara et al., 2018). These fungi colonize wild

(O. glumaepatula) and commercial (O. sativa [L.]) rice with no
disease symptoms (Ribeiro, 2011; Vergara et al., 2018). A103
increases content of N and of other nutrients in rice plants
cultivated under hydroponic conditions (Vergara et al., 2018),
the fungus A101 increases the recovery efficiency of 15N, P
and K and the content of macro and micronutrients of tomato
plants fertilized with C. ensifomis (Vergara et al., 2017); both
fungi increase growth of host plant. However, further studies
are needed, to evaluate whether the positive response of host
plant to inoculation with DSE fungi, observed under controlled
conditions, reproduces under conditions of non-sterilized soil
of greenhouse, as well as the effect of these fungi on plant
development and crop yield.

Our hypotheses are that (i) the DSE fungi improve the
recovery of N and other nutrients derived from the green manure
C. ensiformis in rice plants and (ii) these fungi promote the
growth of rice plants increasing the grain yield under condition
of non-sterilized soil. The objectives of this study were to evaluate
the accumulation of macro- and micronutrients, dry matter,
and protein, and the efficiency of nitrogen (N) recovery from
finely ground Canavalia ensiformis (L.)-15N in rice inoculated
with dark septate fungi. To this end, we inoculated rice plants
(Piauí variety) with the fungal isolates A101 and A103 and
supplied these plants with the finely ground shoot biomass of C.
ensiformis enriched with 15N. Under conditions of greenhouse
soil cultivation, we determined the accumulation of nutrients (N,
P, K, Ca, Mg, Fe, Mn, and Zn) and dry matter, the amount of N
derived from green manure C. ensiformis-15N, and the recovery
efficiency of N derived from green manure C. ensiformis-15N
in rice plants at 54 (aboveground tissues) and at 130 days
after transplanting (i.e., at plant maturation) (root, straw, and
grain).

MATERIALS AND METHODS

Liming and Fertilization of Soil for
Experiment
The soil was sampled at 0–20 cm depth in an Integrated
Agroecological Production System in Seropédica Municipality,
RJ, Brazil. The soil was classified as Haplic Planosol (according
to Brazilian Soil Taxonomy, or Planosol, under World Reference
Base-FAO). The soil analysis showed the following chemical
properties: pH = 5.47 in water; exchangeable Al3+ = 0.03 and
H + Al = 1.86 cmolc dm−3 (centimoles of charge per dm3

soil); Ca+2 = 1.21 and Mg+2 = 0.41 cmolc dm−3; available
P = 6.74, and K+ = 36.00mg L−1; total N = 0.05% and
C = 0.47%. The soil was classified as sandy soil (3% clay, 5%
silt, and 92% sandy). Pots with 14 L capacity, corresponding
to each experimental unit, were filled with 12 kg of a sieved
and homogenized soil sample. Two months after lime addition
(equivalent of 1.62 t ha−1; MineralCal) to correct for Ca+2 and
Mg+2 deficiencies, the soil was fertilized with the equivalent
of 27 kg P2O5 ha−1 (simple superphosphate), 13 kg K2O ha−1

(potassium sulfate), and 7 kg ha−1 micronutrient fertilizer as
F.T.E BR-12 (fritted trace elements), according to Freire et al.
(2013).

Frontiers in Plant Science | www.frontiersin.org 2 May 2018 | Volume 9 | Article 613

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Vergara et al. Dark Septate Fungi Beneficing Rice

Nitrogen Fertilization With 15N-Labeled
Green Manure
For green manure fertilization, dry, finely ground shoot biomass
ofC. ensiformis [L.] was used.C. ensiformis (L.) is a legume widely
used in tropical agriculture as a green manure for nutritional
enrichment of soils (Rodrigues et al., 2004), contributing
considerable amounts of N to the soil-plant system due to
its association with fixing bacteria of N2 (Perin et al., 2003).
C. ensiformis (L.) was prepared and applied according to Vergara
et al. (2017). Plants of C. ensiformis were previously cultivated
in 15N-enriched soil for use as green manure, and their dry
aerial parts (dry 72 h at 65 ◦C) enriched with 2.15 atom %
15N (C. ensiformis-15N) was sampled around 60–70 days after
germination (flowering period). The dry shoot of C. ensiformis
was finely ground and then sterilized by gamma irradiation (25
kGy). The concentrations of macro (g kg−1) and micronutrient
(mg kg−1) for C. ensiformis-15Nwere:N = 23.8; P= 2.0; K= 5.8;
Ca = 12.3; Mg = 3.2; S = 1.9; Cu = 10.0; Fe = 792.0; Zn = 39.0;
Mn= 50.0; B= 27.0; and C= 38.2% (Vergara et al., 2017). Each
pot filled with 12 kg soil receiving 5.04 g of finely dry ground
biomass of C. ensiformis, equivalent to 20 kg N ha−1, which was
applied at one time and carefully homogenized in the soil before
planting.

Inoculum Preparation and Inoculation of
the Endophytes
The isolates of DSE fungi investigated here were isolated from
O. glumaepatula and identified through the phylogeny of ITS
(Ribeiro, 2011; Vergara et al., 2018). These fungi are maintained
in the Centro de Recursos Biológicos Johanna Döbereiner (www.
embrapa.br/agrobiologia/crb-jd) culture collection (A101 and
A103). The ITS region sequences are maintained in GenBank
(KR817246 = A101 and KR817248 = A103). The inoculum was
prepared according to Andrade-Linares et al. (2011) and Vergara
et al. (2017). Each isolate was grown in a 300ml Erlenmeyer
flask containing 150ml of potato dextrose agar (PDA) medium
for 2 weeks at 28◦C under 80 rpm shaking. The fresh mycelium
was filtered and washed with autoclaved distilled water until the
liquid became clear to avoid carry-over of any material from
the PDA medium into the inoculum. Then, the mycelium was
weighed and part of it was mixed with autoclaved distilled water
for 1min at minimum speed using a mixer (Arno Optimix
Plus, model LN27, Brazil) driving at laminar flow to avoid
any kind of contamination. The viability of these fungi was
checked by plating the suspension of the mycelium in the PDA
medium, yielding 104 colony-forming units. For inoculation, the
suspensions were adjusted with autoclaved distilled water to a
concentration of 1% (w/v).

Experimental Design, Treatments, and
Growth Conditions
The experiment with rice seedlings was conducted in a
randomized complete block design comprising split-plots, under
greenhouse conditions at Embrapa Agrobiologia, in Seropédica
Municipality, RJ, Brazil. The experiment consisted of 30 plots:
rice (Oryza sativa [L.] Piauí variety) plants inoculated with DSE

fungi (isolates A101 and 103) or left uninoculated (control), two
collections (54 and 130 days after transplanting) and five replicate
blocks. Each plot was a pot with a 14 L capacity with one rice
plant. Fifteen plots were collected at 54 DAT (i.e., vegetative
state) and another 15 at 130 DAT (i.e., plant maturation), and
each treatment had five replicate blocks. All treatments received
C. ensiformis-15N as the sole N source. Piauí is a local landrace
variety from the state of Maranhão-Brazil that is used in cropping
systems with a low N input. Piauí has lower Michaelis-Menten
constant (or high affinity) to nitrate uptake (Santos et al., 2011),
especially when it is inoculated with a dark septate endophytic
(DSE) fungus, A103 (Vergara et al., 2018) and higher nitrogen
remobilization efficiency (Souza et al., 1998). Rice seeds were
washed with 70% alcohol for 3min and disinfected with 2.5%
sodium hypochlorite for 3min, followed by eight successive
washes in autoclaved distilled water. subsequently, seeds were
pre-germinated in water agar (8 g L−1) at 28◦C in order to select
homogenous plants for experiment (Vergara et al., 2017).

Rice seedlings were inoculated with DSE fungi by root dipping
in the mycelial suspension (1% w/v) at 6 days after germination,
while control plants only received autoclaved distilled water. The
soil (12 kg) of inoculation treatments was also moistened by the
500mL suspension (1% w/v) containing the inoculum, while the
control pots only received autoclaved distilled water (Vergara
et al., 2017). Pots were watered daily with 500mL distilled water
tomaintain soil moisture around the field capacity (Vergara et al.,
2017).

Observations of Disease Symptoms and
Colonization
To examined whether the DSE fungi colonized the inner
roots endophytically, the roots of rice plants inoculated
with DSE fungi, A101 and A103, or left uninoculated were
cleaned and fixed in 50% ethanol. After treatment with
2.5% potassium hydroxide overnight, roots were acidified with
1% hydrochloric acid overnight at room temperature and
staining with 0.002% (w/v) methyl blue [a mixture of 10:9:1
glycerol/distilled water/hydrochloric acid (Phillips and Hayman,
1970; Koske and Gemma, 1989; Grace and Stribley, 1991)].
Root segments (∼4 cm) were placed on slides with glycerin
and hyphal structures were observed with an Axioplan light
microscope (Carl Zeiss, Jena, 151 Germany) equipped with
an Axiocam MRC5 digital camera (Carl Zeiss). Thirty root
segments (McGonigle et al., 1990) were selected randomly for
quantification of DSE colonization in each replicate block, and
each treatment had five replicate blocks. In 100 microscopic
fields, microsclerotia and intraradical hyphae were counted
under 200 × magnification (Kohout et al., 2012). Disease
symptoms were evaluated on scale of 0–3 (0: no visible
symptoms; 1: light yellowing; 2: yellowing and late growth; 3:
wilting or death) at 54 DAT (Diene et al., 2013; Mahmoud and
Narisawa, 2013).

Measurements
Stem diameter, plant height, tillers, and leaf number, total leaf
area (LI-3100C areameter, LI-COR, Nebraska, USA), chlorophyll
level (SPAD-502meter, Konica-Minolta, Japan), shoot dry weight
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(65◦C), concentration of N, P, K, Ca, Mg, Zn, Fe, Mn, and
15N abundance were determined in aboveground dry matter
at 54 DAT. Root and straw dry weight, panicle weight, filled
grain weight adjusted to 13% moisture and protein content were
measure at 130 DAT (i.e., at plant maturation). Macronutrient
concentration was determined in the root, straw and grain and
micronutrient was only determined in the grain. Aboveground
dry biomass (at 54 DAT), root, straw and grain (at 130 DAT)
(dried at 65◦C, 72 h) were crushed in a Wiley-type laboratory
mill (<40 mesh) and their grain size were decreased by a
rolling mill (Smith and Um, 1990). Micronutrient concentrations
were determined in an aqua regia extract (ISO 12914, 2012)
by a plasma detector (PerkinElmer R© OptimaTM 8300), while
concentrations of macronutrient were obtained according to
Tedesco (1982). The crude protein content in the grains was
obtained by multiplying the grain N content by 5.95 (Juliano,
1985).

15N abundance was measured using continuous-flow isotope
ratio mass spectrometry (Finnigan DeltaPlus mass spectrometer
coupled to the output of a Carlo Erba EA 1108 total C and
N analyzer—Finnigan MAT, Bremen, Germany) (Boddey et al.,
1994). Contents of macro- (mg plant−1) and micronutrients (µg
plant−1) were estimated as follow:

Nutrient content =
%NC× DM

100

Where, NC is nutrient concentration (%) and DM is dry matter
(mg plant−1 or µg plant−1).

After obtained the atoms % 15N excess by the difference
between 15N abundance in plants and the 15N natural abundance
in the air (0.3663% atoms), the fraction of 15N in the plant derived
from finely groundC. ensiformis-15N (%fNdfGM), was calculated
as describe by the International Atomic Energy Agency (IAEA,
2001) as follows:

%fNdfGM = 100 ×

(

% 15N in excess in rice plant

% 15N in excess in green manure

)

With %fNdfGM value and the N content (mg plant−1) in plant
material, it was possible to calculate the amount of N in the plants
derived from C. ensiformis-15N (ANdfGM) as follows:

ANdfGM
(

mg plant−1
)

=
%fNdfGM×Nitrogen content

100

Finally, the recovery efficiency of 15N (%) by plants was calculate
by the ANdfGM and the amount of applied N as 15N-labeled
green manure (NGM) using to the following equation:

15N recovery efficiency (%) = 100

×

(

ANdfGM (mg plant−1)

NGM (mg pot−1)

)

Statistical Analysis
Data were submitted to analysis of variance (ANOVA), and the
means were compared using t-test (LSD) (p< 0.05). ANOVAwas
performed after determining the normality of errors (Shapiro-
Wilk) and the homogeneity of variance (Bartlett) of the data. The
software R-project version R 3.4.1 (R Development Core Team,
2017) with the package ExpDes (Ferreira et al., 2013) was used
for statistical analyses and data are presented as mean± standard
error.

RESULTS

Observations of Disease Symptoms and
Colonization
The two isolates (A101 and A103) colonized the root tissue
of rice plants abundantly with hyphae colonizing epidermis,
cortex, and forming microsclerotia, with no disease symptoms.
The fungi A101 and A103 formed 40 ± 0.6 and 33.3 ± 3.8%
intraradical hyphae and 39.3 ± 0.9 and 46.7 ± 1.9% intraradical
microsclerotia in roots of rice plants, leading to a total root
colonization of 79.3 ± 0.9 and 80.0 ± 2.0%, respectively.
Uninoculated plants (control) were poorly colonized by native
DSE fungi with a total root colonization of 2%.

Growth Indicators and Dry Matter
Accumulation
Regarding growth and dry matter accumulation indicators, the
DSE-rice interaction at 54 DAT showed a 16% increase in
chlorophyll content and an increase in plant height (Table 1).
However, no effect was observed in terms of the accumulation
of aboveground dry biomass, stem diameter, numbers of leaves
and tillers, or leaf area (Table 1). In contrast to plants at 54 DAT,
at 130 DAT (i.e., at plant maturation) there was a significantly
higher accumulation of dry matter of the full grain and panicle
in the DSE-rice interaction compared with that of the control.
In plants inoculated with A101, root dry matter accumulation
was higher than that in the other treatments, although there
were no differences between the treatments in terms of straw
accumulation (Table 2).

Recovery Efficiency of Finely Ground C.

ensiformis-15N
After determining the abundance of 15N in dry matter, the
recovery efficiency and amount of N derived from finely ground
C. ensiformis-15N in the aboveground tissues (at 54 DAT) and in
the root, straw, and grain (at 130 DAT) were determined in the
treatments without (control) and with DSE fungi inoculation. At
54 DAT, the inoculated plants were more efficient in the recovery
and use of N present in C. ensiformis-15N provided as the sole
source of N, relative to the control, with significant increases
of 23% for A101 and 43% for A103 in terms of the recovery
efficiency and amount of nitrogen derived fromC. ensiformis-15N
in the aboveground tissues (Figures 1A,B).

At 130 DAT, the recovery efficiency and amount of the N
derived from C. ensiformis-15N in the grain, but not in straw and
roots of rice inoculated with isolate A103 were comparable to
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TABLE 1 | Growth indicators of rice plants (Piauí variety) at 54 days after transplanting (i.e., vegetative state). Plants were either uninoculated (control) or inoculated with

dark septate endophytic fungi (A101 and A103) and fertilized with finely ground Canavalia ensiformis (L.)-15N as the sole organic N source.

Treatment Aboveground

biomass (g

plant−1)

Plant height

(cm plant−1)

Stem diameter

(mm plant−1)

Leaf number

(unit plant−1)

Tiller number

(unit plant−1)

Total leaf area

(cm2 plant−1)

Chlorophyll

level

Control 4.5 ± 0.25 87.2 ± 1.36b 11.5 ± 0.45 18.20 ± 0.77 4.2 ± 0.20 439.2 ± 31.9 34.8 ± 1.58b

A101 4.5 ± 0.20 96.2 ± 3.06a 12.5 ± 0.23 18.75 ± 0.67 4.0 ± 0.32 394.5 ± 46.3 40.2 ± 0.61a

A103 4.7 ± 0.23 94.5 ± 1.24a 12.5 ± 0.17 19.75 ± 1.02 4.8 ± 0.37 445.0 ± 41.7 40.4 ± 0.48a

CV (%) 11.04 4.99 5.69 9.20 15.76 21.00 5.91

Means± SE (n= 5) followed by the same lowercase letter in the same column do not differ significantly, as determined by the t-test (p< 0.05). Absence of a letter indicates no significant
difference, as determined by the F-test (p < 0.05). SE, standard error.

TABLE 2 | Root and straw dry weight, panicle weight, and filled grain dry weight with 13% moisture content at 130 DAT (i.e., plant maturation) of rice plants (Piauí variety)

uninoculated (control) or inoculated with dark septate endophytic fungi (A101 and A103) and fertilized with Canavalia ensiformis (L.)-15N green manure as the sole organic

N source.

Treatment Root dry weight

(g plant−1)

Straw dry weight

(g plant−1)

Panicle weight

(g plant−1)

Filled grain dry weight

(g plant−1)

Grain crude protein

(g grain−1)

A101 18.0 ± 0.7a 17.7 ± 0.9 10.7 ± 0.6a 7.51 ± 0.4a 0.79 ± 0.02ab

A103 13.9 ± 1.2b 16.3 ± 0.7 10.6 ± 0.6a 7.47 ± 0.4a 0.88 ± 0.03a

Control 14.3 ± 1.4b 16.6 ± 0.4 8.5 ± 0.3b 6.03 ± 0.3b 0.67 ± 0.02b

CV (%) 13.01 7.42 9.8 10.41 6.68

Means ± SE (n = 5) followed by the same lowercase letter in the same column do not differ significantly, as determined by the t-test (p < 0.05). The absence of letters indicates no
significant difference, as determined by the F-test (p < 0.05). SE, standard error.

those of plants inoculated with fungal isolate A101 and higher
than those of the control treatment; however, there were no
significant differences between these treatments in the recovery
efficiency and amount of N derived from C. ensiformis-15N in the
root and straw (Figures 2A,B).

Nutrient Accumulation
At 54 DAT, in the DSE-rice interaction there was a significantly
higher accumulation of N in the aboveground tissues compared
with the control (Figure 1C), which corroborates the observed
higher recovery efficiency of N derived from C. ensiformis-15N
(Figure 1A). Cu and Ni were not detected in the aboveground
tissues at 54 DAT. The accumulations of P, K, Ca, Mg, Zn, Fe,
and Mn were not affected by any of the inoculation treatments
(Figures 1D–J). A similar effect was observed at 130 DAT for the
accumulation of K, Ca, and Mg, in the straw, grain, and shoot
(Figures 2C–E), as well as for the accumulation of N in root
and straw (Figure 2F), and the accumulation of Cu and Zn in
the grain (Figures 2G,H). In plants inoculated with the fungal
isolate A103, the accumulation of N in the grain and in the
shoot was equal to that in plants inoculated with fungal isolate
A101 and greater than that of the control (Figure 2F), which
corroborates the higher recovery efficiency of nitrogen observed
in the grain and in the shoot of inoculated plants (Figure 2A).
In plants inoculated with fungal isolate A101, there was a
higher accumulation of P in the grain, which was significantly
higher than that in the other treatments, although the same
effect was not observed in the straw and shoot (Figure 2I).

Similarly, in the grains of inoculated plants there was a significant
accumulation of Fe and Ni, which was twice as high as that in
the control (Figures 2J,K), and in plants inoculated with A103,
Mn accumulation was three times higher than that of the other
treatments (Figure 2L).

DISCUSSION

The two DSE fungi tested here were isolated from wild rice
(O. glumaepatula) collected from the Amazon region and
determined by the ITS phylogeny as belonging to the order
Pleosporales (suborder Massarineae) (A103) and an unknown
taxon (A101) (Ribeiro, 2011; Vergara et al., 2018). The
intraradical melanized septate hyphae of these fungi, colonized
epidermis and cortex cells of the roots of rice plants, and formed
microsclerotia with no symptoms of disease as described by
Vergara et al. (2018), Qin et al. (2017) and Yuan et al. (2010).
Root colonization of rice plants by these two fungi was similar
(∼80%) in this study, in contrast to the findings of Vergara et al.
(2018) under hydroponic conditions, where the colonization of
roots by A101 and A103 isolates was 33 and 60%, respectively.
Uninoculated plants (control) were poorly colonized by native
DSE fungi with a total root colonization of 2%.

The cultivation of grasses (Newsham, 1999; Zijlstra et al., 2005;
Upson et al., 2009; Qin et al., 2017) and other plant species (Usuki
and Narisawa, 2007; Mahmoud and Narisawa, 2013; Surono and
Narisawa, 2017) inoculated with DSE fungi and supplemented
with organic sources of nutrients, under controlled conditions,
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suggest a higher nutrients recovery efficiency of inoculated plants
than those that were not inoculated. Consistently, in the present
study, we observed that inoculated plants, particularly those
inoculated with fungal isolate A103, showed a more efficient use
of N derived from a green manure of finely ground C. ensiformis-
15N than control plants. There was an increase in the recovery
efficiency and the amount of nitrogen derived fromC. ensiformis-
15N in the vegetative state (54 DAT) and at maturation (i.e.,
at 130 DAT), promoting a higher accumulation of N and
chlorophyll content and greater plant height in the vegetative
state. Furthermore, there was greater dry matter accumulation
in panicles and grains and grain crude protein (Table 2) at
maturation. These results indicate that inoculation with DSE
fungi improves the utilization of N present in green manure in
rice plants, although further studies are necessary to evaluate
different C. ensiformis-15N doses and monitor plant responses
to inoculation with DSE fungi during different periods of the
growth cycle. In an earlier study, conducted under controlled
hydroponic conditions, significant increases were also observed
in shoot N content and dry matter of rice seedlings inoculated
with DSE fungus A103, associated to a lower Michaelis-Menten
constant (or high affinity) to nitrate uptake (Vergara et al., 2018).

The capability of DSE fungi to promote growth and the
accumulation of N in rice plants supplied with onlyC. ensiformis-
15N as an N source also suggests that these fungi can degrade
organic compounds comprising C, N, and P and provide plant
nutrients. In this regard, it has been stated that DSE fungi can
degrade organic compounds such as cellulose, starch, protein,
lipids, amino acids, gelatin, urea, and pectin under in vitro
conditions (Caldwell et al., 2000; Menkis et al., 2004; Mandyam
et al., 2010; Surono and Narisawa, 2017), and also promote
the growth of grass (Newsham, 1999; Zijlstra et al., 2005;
Upson et al., 2009; Qin et al., 2017) and other plant species,
supplemented only with an organic N source or organic P
source (phytate) under in vitro conditions (Usuki and Narisawa,
2007; Diene et al., 2013; Mahmoud and Narisawa, 2013; Surono
and Narisawa, 2017). In addition, it has been shown that DSE
fungi can produce proteolytic enzymes that degrade organic N
compounds into N forms that are available to plants (Caldwell
et al., 2000; Bizabani and Dames, 2016). For example, three
isolates of Phialocephala fortinii have recently been shown to
promote the growth of Asparagus officinalis (L.) in agar medium
supplemented only with corn steep liquor (0.1%) or with corn
steep liquor amended with inorganic nutrients (Surono and
Narisawa, 2017). However, the mechanisms underlying increases
in the contents of N and other nutrients and the accumulation
of dry matter in plants inoculated with DSE fungi in relation
to uninoculated controls are not yet fully understood. This
fungus-plant association has been shown to be beneficial for the
inoculated plants since the fungus colonizes the host plant and
increases the contents of N and chlorophyll, plant height, and
yield of rice grains, and does not cause the appearance of disease
symptoms.

In addition to optimizing the use of N derived from
C. ensiformis-15N and promoting a greater accumulation of dry
matter, inoculation with DSE fungi A101 and A103 also increased
micronutrient contents in rice grain. DSE fungi can also facilitate

the uptake of micronutrients, such as iron, present in the soil
(Bartholdy et al., 2001; Haselwandter, 2009; Vergara et al., 2017).
In this study, in addition to inoculation with DSE fungi A101
and A103 doubling the Fe and Ni contents relative to the control,
inoculation with A103 also tripled the Mn content of grain.

Rice plants preferentially accumulate more Mn than Fe
(Mansfeldt, 2004), and can tolerate up to 5,000mg kg−1 of Mn
in the shoot without showing any symptoms of phytotoxicity,
whereas other plants such as barley show symptoms of
phytotoxicity at Mn concentrations of <150mg kg−1 (Vlamis
and Williams, 1964). Similarly, in this study, we observed
that control plants and plants inoculated with A103 fungus
accumulated more Mn than Fe.

The tripling of Mn content in plants inoculated with
fungus A103 and the doubling of Fe content in those plants
inoculated with both A101 and A103, compared with the control,
suggests that inoculation with these fungi may increase the
soil recovery efficiency of these nutrients or from fertilizer
(in FTE BR12) and/or C. ensiformis-15N. This would optimize
photosynthetic activity and other important processes for plant
growth and development, which depend on Fe and Mn for
correct functioning, contributing to higher grain quality and
yield. Mn is essential for plants (McHargue, 1922) and is required
in several processes, including photosynthesis, respiration,
protein synthesis, hormonal activation, the activity of more than
30 enzymes, cell division, and root apex elongation (Burnell,
1988; Shao et al., 2017). In photosynthesis, for example, Mn
catalyzes the photolysis reaction of water in photosystem II
(PSII) (Schmidt et al., 2016). Similarly, Fe, which may limit the
accumulation of grain dry matter in rice (O. sativa) (Takahashi
et al., 2001), is also essential for plants, including the continued
electron flow between PSII and photosystem I (PSI) (Eberhard
et al., 2008; Briat et al., 2015), allowing photosynthetic CO2

fixation. The efficiency, structures, and functionality of the
photosynthetic apparatus are all strongly dependent on Fe (Layer
et al., 2010; Yadavalli et al., 2012). Fe is accordingly found in three
of the largest complexes of the photosynthetic apparatus. Two
Fe atoms are present in PSII and 12 atoms in PSI. Cytochrome
b6f contains four Fe atoms and there are two atoms in Rieske-
type proteins. In addition, the two complex antennae, the
light-energy collectors associated with the two photosystems,
contain chlorophyll, the synthesis of which is dependent on iron
(Eberhard et al., 2008; Briat et al., 2015). This fact explains, in
part, the higher levels of chlorophyll observed in vegetative plants
inoculated with DSE fungi compared to the control.

Although details of the absorption and distribution of Fe
and Mn following establishment of the DSE-rice interaction still
remain obscure, the fact that inoculated plants have a tripled Mn
content (in plants inoculated with fungus A103) and doubled Fe
content in the grain suggests that these fungi may be potential
siderophore producers, which would favor the absorption of
these nutrients by inoculated plant. Indeed, the DSE P. fortinii
synthesizes the siderophore hydroxamate and increases Fe (III)
absorption in host plants (Bartholdy et al., 2001).

The increase in Ni content of grain observed in inoculated
plants relative to the control also suggests a higher efficiency of
recovery of this nutrient by inoculated rice plants. Although the
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FIGURE 1 | Recovery efficiency (GMRE) (A) and amount (ANdfGM) (B) of nitrogen derived from finely ground Canavalia ensiformis (L.)-15N; contents of N (C), P (D), K

(E), Ca (F), Mg (G), Fe (H), Mn (I), and Zn (J) at 54 days after transplanting of rice plants (Piauí variety). Plants were either uninoculated (control) or inoculated with

dark septate endophytic fungi (A101 and A103) and fertilized with finely ground Canavalia ensiformis (L.)-15N as the sole organic N source. Among the treatments,

values followed by the same lowercase letter do not differ significantly, as determined by the t-test (p < 0.05). The absence of letters indicates no significant difference

by the F-test (p < 0.05). Error bars represent the standard error of the mean (n = 5).
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FIGURE 2 | Recovery efficiency (GMRE) (A) and amount (ANdfGM) (B) of nitrogen derived from finely ground Canavalia ensiformis (L.)-15N; contents of K (C), Ca (D),

Mg (E), N (F), Cu (G), Zn (H), P (I), Fe (J), Ni (K), and Mn (L) at 130 DAT (i.e., at plant maturation) of rice plants (Piauí variety). Plants were either uninoculated (control)

or inoculated with dark septate endophytic fungi (A101 and A103) and fertilized with finely ground Canavalia ensiformis (L.)-15N as the sole organic N source. Among

the treatments, values followed by the same lowercase letter do not differ significantly, as determined by the t-test (p < 0.05). The absence of letters indicates no

significant difference by the F-test (p < 0.05). Error bars represent the standard error of the mean (n = 5).
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Ni concentration required by plant species is very low (0.05–
10mg kg−1 dry mass) (Nieminen et al., 2007), this nutrient is also
essential for plants (Eskew et al., 1983), being complementary to
Mn and Fe by acting in other diverse metabolic processes, such as
ureolysis and hydrogen metabolism. In this regard, Ni has been
identified as a component of many enzymes, including urease,
glyoxalases, peptide deformylase, methyl coenzyme M reductase,
and a few superoxide dismutases and hydrogenases (Ermler et al.,
1998; Küpper and Kroneck, 2007).

The quality of a rice grain is determined by the content and
bioavailability of nutrients (Welch et al., 2005; Fan et al., 2008;
Teklić et al., 2013; Briat et al., 2015) and by some post-harvest
processing such as grain polishing (Jiang et al., 2008; Hansen
et al., 2012; Briat et al., 2015)—a process that causes substantial
losses of nutrients in the grains. An increase in the content and
bioavailability of nutrients results in more vigorous plants (Briat
et al., 2015), thereby increasing the yield of grains and their
quality as staple food or as seeds (Juliano, 1993; Kranner and
Colville, 2011; Briat et al., 2015). In the present study, the Fe,
Zn, Cu, Ni, and Mn contents in rice grain of non-inoculated
(control) and inoculated plants were within the range of values
usually found in the literature (Chukwuma, 1995; Herawati et al.,
1998; Gregorio et al., 2000; Wang et al., 2009; Teklić et al., 2013;
Shraim, 2017). Additionally, symptoms of phytotoxicity were
not observed during the experiment. These results indicate that
inoculation of plants with dark septate fungi improved the quality
of rice grains, especially in terms of micronutrients contents.

Hence, the results of the present study indicate that DSE fungi
can help plants to acquire both macro- and micronutrients from
complex substrates and consequently there is an improvement
in physiological state, plant growth, and grain quality. An
improvement in the grain quality would serve to combat
micronutrient malnutrition, which affects more than three
billion people worldwide, especially in the developing nations
(Mahender et al., 2016).

CONCLUSION

Rice plants inoculated with DSE fungi, particularly the fungal
isolate A103, showed more efficient use of N derived from green
manure C. ensiformis-15N, accumulating this element in both the
vegetative state and in the full grain as crude protein. In addition,
inoculation with these fungi increased the contents of Fe, Mn,
and Ni in the grain, thereby improving grain quality and yield.
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