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Nectar composition varies between species, depending on flowering time and pollinator
type, among others. Various models of the biochemical and molecular mechanisms
underlying nectar production and secretion have been proposed. To gain insights into
these mechanisms, day- and night-flowering tobacco (Nicotiana) species with high or
low proportions of hexoses in the nectar were analyzed. Nectar and nectaries were
simultaneously collected, throughout the day and night. Soluble sugars and starch were
determined and the activity and expression level of cell wall invertase (CW-INVs) were
measured in nectaries. Nectaries and nectar of the five Nicotiana species contained
different amounts of sucrose, glucose, and fructose. CW-INV activity was detected
in the nectaries of all Nicotiana species and is probably involved in the hydrolysis of
sucrose in the nectary tissue and during nectar secretion. The larger differences in the
sucrose-to-hexose-ratio between nectaries and nectar in diurnal species compared to
nocturnal species can be explained by higher sucrose cleavage within the nectaries in
night-flowering species, and during secretion in day-flowering species. However, cell
wall invertase alone cannot be responsible for the differences in sugar concentrations.
Within the nectaries of the Nicotiana species, a portion of the sugars is transiently stored
as starch. In general, night-flowering species showed higher starch contents in the
nectaries compared to day-flowering species. Moreover, in night flowering species, the
starch content decreased during the first half of the dark period, when nectar production
peaks. The sucrose concentrations in the cytoplasm of nectarial cells were extrapolated
from nectary sucrose contents. In day-flowering species, the sucrose concentration in
the nectary cytoplasm was about twice as high as in nectar, whereas in night-flowering
species the situation was the opposite, which implies different secretion mechanisms.
The secreted nectar sugars remained stable for the complete flower opening period,
which indicates that post-secretory modification is unlikely. On the basis of these results,
we present an adapted model of the mechanisms underlying the secretion of nectar
sugars in day- and night-flowering Nicotiana.

Keywords: floral nectar, nectaries, cell wall invertase, tobacco, Nicotiana, sugar composition, diurnal/nocturnal

INTRODUCTION

Nectar is a sugar-rich solution which is produced by most angiosperm plants to fulfill extensive
functions, e.g., the attraction of pollinators and protection against herbivores (Brandenburg et al.,
2009; González-Teuber and Heil, 2009; Adler et al., 2012). Nectar is produced by and secreted from
nectaries, which are highly specialized glands, and the surrounding tissue. In Nicotiana, all floral
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nectaries are located at the basal side of the gynoecium
(Bernardello, 2007) and during nectary development, β-carotene
is expressed, which results in an orange coloring (Horner
et al., 2007). The synthesis and secretion of floral nectar has
been the subject of several studies, and different models on
the biochemical and molecular mechanisms underlying nectar
secretion have been proposed (Ge et al., 2000; Horner et al.,
2007; Kram et al., 2009; Mosti et al., 2013; Stpiczyńska et al.,
2014). But due to the enormous diversity of flowering plants,
there are still several variables that warrant further study (Roy
et al., 2017). A very basic theory of nectar secretion proposes
an apoplastic movement of metabolites from the phloem to
the nectary surface (Vassilyev, 2010). However, the metabolite
composition differs between the phloem sap and the nectar
(Lohaus and Schwerdtfeger, 2014), which does not support
the proposed apoplastic method of nectar secretion. Other
hypotheses propose that various enzymes and transport proteins
are involved in nectar production. For certain plant species, an
eccrine secretion mode has been proposed, wherein sucrose is
delivered from the phloem to the nectary parenchyma cells, and
there the sucrose is transiently converted to starch or exported
to the apoplast directly. A plasma membrane-localized sucrose
transporter SWEET9 is essential for this transport (Lin et al.,
2014). SWEET9 functions as a facilitated diffusion transporter
for sucrose, and mutants lacking SWEET9 do not produce
nectar, e.g., in Nicotiana attenuata (Lin et al., 2014). Once
sucrose is exported from the nectary, it is then hydrolysed by
an extracellular cell wall invertase (CW-INV) into glucose and
fructose (Ruhlmann et al., 2010). In a third proposed secretory
mechanism, nectar metabolites are transported symplastically
to the outer nectary cells and then packed into vesicles, which
are produced by the endoplasmic reticulum (ER) or the Golgi
complex, to fuse with the plasma membrane and release the
nectar metabolites to the nectary surface (Fahn, 1979a,b). These
three models for nectar secretion are not necessarily mutually
exclusive, and other modes of nectar secretion can occur in
different plant species.

In some plant species, starch accumulates in the nectaries
and peaks approximately 24 h before anthesis and then declines
rapidly, which is the basis for the hypothesis that starch is one
source of sugars for nectar production before and during nectar
secretion (Nepi et al., 1996; Horner et al., 2007; Ren et al.,
2007a,b). Genes encoding anabolic enzymes involved in starch
synthesis were found to be more highly expressed at the early
stages of nectary development, and genes encoding catabolic
enzymes were expressed at later stages (Ren et al., 2007a).
However, studies on lychee (Litchi chinensis) floral nectaries have
shown that the nectar sugar is composed of both phloem sap and
products of starch degradation in the nectaries (Ning et al., 2017).

Of the sugars found in nectar, the most prevalent are
sucrose and the hexoses glucose and fructose (Percival, 1961;
Baker and Baker, 1983; Tiedge and Lohaus, 2017). Given
that hexoses are typically not components of the phloem sap
(Lohaus and Schwerdtfeger, 2014), the proportion of hexoses in
nectar depends on the presence and activity of sucrose-cleaving
enzymes. Sucrose cleavage in plants can be catalyzed by at least
two types of enzymes: reversible sucrose cleavage is catalyzed

by sucrose synthase (SuS; EC 2.4.1.13), a glycosyltransferase;
and irreversible sucrose cleavage is catalyzed by invertases,
which catalyze hydrolysis (β-fructofuranosidases; EC 3.2.1.26).
Invertases exist in numerous isoforms with various subcellular
localizations and biochemical properties (Roitsch and González,
2004). These enzymes can be classified into three groups: vacuolar
invertases (V-INVs), extracellular invertases (CW-INVs), and
neutral invertases (N-INVs). Whereas N-INVs have an alkaline
pH-optimum, V-INVs and CW-INVs are so-called “acidic
invertases” because they work most efficiently between pH 4.5
and 5.0. Extracellular invertases are non-soluble proteins that
are ionically bound to the cell wall (Sturm, 1999). A separate
gene encodes for each of the isoforms, which have a high
identity and share common features, e.g., the pentapeptide
NDPNG (βF-motif) close to the N-terminus of the mature
protein, and WECXDF, an amino acid sequence closer to the
C-terminus (Sturm and Chrispeels, 1990; Roitsch and González,
2004).

For some plant species, e.g., carrot (Daucus carota) and tomato
(Solanum lycopersicum), different organ- and development-
stage-specific expression patterns of acid invertase were shown
(Sturm et al., 1995; Godt and Roitsch, 1997). Usually, invertase
expression is increased in rapidly growing tissues with a high
demand for hexoses (Weschke et al., 2003). Interestingly, for both
carrot and tomato, the mRNA expression of an acidic invertase
was found to be specific to flowers and flower buds (Lorenz et al.,
1995; Godt and Roitsch, 1997). It was assumed that this flower-
specific extracellular invertase is essential for male and female
organ development, e.g., to supply the anthers with carbohydrates
(Dorion et al., 1996; Godt and Roitsch, 1997). More recently,
it was shown that CW-INV is also crucial for nectar secretion
in Arabidopsis (Ruhlmann et al., 2010). AtCWINV4 expression
was found to be highly up regulated in nectaries of A. thaliana
compared to other tissues (Kram et al., 2009). Furthermore,
two independent cwinv4-mutant lines with greatly diminished
activity of total CW-INV in whole Arabidopsis flowers secreted no
nectar, although the nectary ultrastructure appeared to be similar
to that of wild-type plants (Ruhlmann et al., 2010).

The genus Nicotiana is highly diverse in terms of flower
morphology and pollination mode. In a study involving 20
Nicotiana species, the sugar concentration in the nectar of
several day- and night flowering species was measured (Tiedge
and Lohaus, 2017). The genus Nicotiana contains species with
sucrose-rich nectars as well as hexose-rich nectars, and the exact
nectar composition depends on the pollinator type, flowering
time, corolla length and other environmental factors (Tiedge and
Lohaus, 2017). The sucrose-to-hexose ratio ranged from 0.1 to 2.0
and was fairly consistent within a given species.

This finding raises the question of whether the sugar
composition in nectar is a result of the sugar composition in
the nectaries. Alternatively, a lower sucrose content in nectar
could reflect higher invertase activity in the nectaries and during
nectar secretion. Furthermore, we aimed to investigate potential
differences in invertase expression and activity over the course of
a day, in consideration of flower opening and nectar production
times. In addition to these pre-secretory and secretory processes,
post-secretory processes could also be responsible for varying
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sugar composition. In such a scenario, the nectar itself must
contain sugar cleaving enzymes.

To further investigate the mechanism underlying nectar
production and secretion, five tobacco species with varying
properties were examined. Two day-flowering species
(N. tabacum and N. africana) as well as two night-flowering
species (N. sylvestris and N. benthamiana) were included. Within
each category (day- or night-flowering), one species had a high
sucrose content and one species had a low sucrose content
(Figure 1). For reproduction, these species rely on pollination
either by diurnal birds (N. africana: sunbirds; N. tabacum:
hummingbirds), nocturnal moths (N. sylvestris), or otherwise
the species is primarily autogamous (N. benthamiana) (Tiedge
and Lohaus, 2017). Additionally, N. attenuata was chosen, which
opens its flowers at twilight both in the evening and in the
morning and is therefore less dependent on a specific pollinator
(Kessler and Baldwin, 2007). To investigate whether the nectar
sugar content primarily depends on pre-secretory processes,
the secretion process, or post-secretional modification, nectar
sugars were compared to nectary sugars at multiple time points
per day; additionally, the invertase activity and expression were
measured, and post-secretional activity was recorded.

MATERIALS AND METHODS

Plant Material
Nicotiana attenuata seeds were provided by the Max Planck
Institute for Chemical Ecology (Jena, Germany), N. benthamiana
seeds were provided by the University of Rostock (Germany),
N. africana and N. sylvestris seeds were provided by the Botanical
Garden of Ruhr University Bochum (Germany), and N. tabacum
seeds were provided by NiCoTa (Rheinstetten, Germany). Each
plant was potted in a single 5-L pot with compost soil and grown
in a greenhouse at the University of Wuppertal. Cultivation was
carried out with a 14-h-light/10-h-dark cycle, an irradiance of
approximately 300 µmol photons m−2 s−1 and a temperature
regime of 25◦C day/18◦C night.

Collection of Nectaries and Nectar
Each sample (∼100 mg) of nectary tissue comprised 20–50
nectaries, depending on the species. At each time point (2 p.m.,
8 p.m., 2 a.m., and 8 a.m.), three samples were taken. To collect
the nectaries, the gynoecia were extracted from the flowers, and
the nectary tissue was dissected with a scalpel and rinsed with
ultrapure water to remove external sugars. All samples were
immediately frozen in liquid nitrogen and stored at −80◦C until
further analysis. The weight of a single nectary was calculated as
follows:

Weight per floral nectary [mg] = 100 mg / number of nectaries

collected per sample

For each species, at least three nectar samples were
taken from three plants at all four time points. The nectar
samples were collected with micropipettes, assayed for microbial

FIGURE 1 | Nicotiana species arranged by flowering time and sucrose
content. The flower sizes are depicted to relative scale.

contamination according to Tiedge and Lohaus (2017) and stored
at −80◦C until further analysis. In addition, nectar samples were
also analyzed by light-microscopy to exclude contamination with
pollen. The nectar samples used for post-secretional experiments
were left at room temperature for 12, 24, and 48 h. The water
content of the nectaries and leaves was determined by drying and
weighing those tissues. The following calculation was used:

Water content = 1 − (dry weight [mg] / fresh weight [mg])

Analysis of Sugars and Starch in
Nectaries and Nectar
For the extraction of soluble metabolites from nectary tissue,
a chloroform-methanol-water extraction was performed
(Nadwodnik and Lohaus, 2008). The analysis of sugars in nectar,
nectaries and leaves via HPLC was conducted according to
Lohaus and Schwerdtfeger (2014). Nectar was filtered (0.2 µm
nitrocellulose; Schleicher and Schuell, Germany) before HPLC
measurements to exclude contamination with pollen. An ion
exchange column (CarbopacTM PA10 4 mm × 250mm; Dionex
Corp, Sunnyvale, CA, United States) was eluted isocratically with
80 mM NaOH (JT Baker Chemicals). Sugars were detected with
a pulse amperometric detector with a gold electrode (ESA Model
5200, Coulochem II, Bedford, MA, United States). The pulse
setting was 50, 700, and −800 mV for 400, 540 and 540 ms,
accordingly. For external calibration, sugar standards (Sigma-
Aldrich, Germany) were measured in parallel. The evaluation of
the chromatograms was performed with an integration program
(Peaknet version 5.1, Dionex). Starch content of nectaries was
determined according to a modified protocol from Riens et al.
(1994).

Expression of CWINV
RNA from approximately 50 mg of nectariferous tissue was
isolated using a modified protocol from Logemann et al. (1987),
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where cetyltrimethylammonium bromide (CTAB) is used to
inactivate RNase activity and to form a complex with RNA
without adding guanidine. Synthesis of cDNA was performed
using the RevertAidTM First Strand cDNA Synthesis Kit (Thermo
Fisher Scientific, Sankt Leon-Rot, Germany) with oligo(dT)18
primers. Degenerated primers were designed to amplify CW-
INV sequences of the different Nicotiana species. The obtained
sequences were cloned with the pGEM R©-T Easy Vector
System (Promega Corporation, Madison, IW, United States)
for sequencing, and suitable specific primers for quantitative
real-time polymerase-chain-reaction (qRT-PCR) were selected.
For verification of the obtained primers and sequences,
amplification with proof read polymerase (Phusion High-
Fidelity DNA-Polymerase, Thermo Fisher Scientific, Waltham,
MA, United States) and blasting with known sequences from
NCBI (National Center for Biotechnology Information, Bethesda,
MD, United States) was performed. QRT-PCR analyses were
performed using a Maxima SYBR Green qPCR Master Mix
(Thermo Fisher Scientific, Waltham, MA, United States) and a
Mx3005P qPCR System (Agilent Technologies Inc., Waldbronn,
Germany). Efficiencies of the PCRs were calculated with slopes of
standard curves of twofold dilutions. For each species two stable
reference genes were used for normalization (Vandesompele
et al., 2002; Schmidt and Delaney, 2010; Liu et al., 2012). The first
sample of each experiment was used as a calibrator, which was set
to one, and further samples are given as relative expression levels
to the calibrator. For each condition three biological replicates
with two technical replicates each were tested. A list of the
primers used for each species can be found in Supplementary
Table 1.

Enzyme Assay for CWINV, Soluble Acid
Invertase, and Neutral Invertase
Proteins were extracted from 25 mg nectary tissue each as
described by Wright et al. (1998). CW-INV activity was assayed
according to Heineke et al. (1992). An aliquot of the protein
extracts was added to 0.6 M sucrose and 0.125 M sodium acetate,
pH 5.0. Soluble acid invertase activity was measured with the
soluble protein fraction. An aliquot of the protein extracts was
added to 0.6 M sucrose and 0.125 M sodium acetate, pH 5.0.
Soluble neutral invertase activity was measured with the soluble
protein fraction, too. An aliquot of the protein extracts was added
to 0.6 M sucrose and 0.125 M sodium acetate, pH 7.5. After
10 min, the reaction was completely stopped by boiling and
subsequently, the amount of glucose released was determined by
coupled optical enzyme assay. All enzyme assays were conducted
from six biological replicates with two technical replicates each.
About 5 µL of nectar were also used to assay invertase activity.

RESULTS

Sugar Concentrations in Nectar and
Nectaries During the Light and Dark
Period
The sugar content in both nectar and nectaries was primarily
composed of glucose, fructose, and sucrose. Other sugars,

including maltose, were not found in any of the samples. The
total sugar concentration in nectar ranged from 1042 ± 86
to 3183 ± 186 mM, depending on the species and collection
time (Figure 2). The day-flowering species (N. africana and
N. tabacum) had the highest nectar sugar concentration during
the day, which decreased continuously at night. In the case
of night-flowering tobacco (N. benthamiana, N. sylvestris), the
lowest sugar concentration in nectar was also found in the first
half of the night period, but the concentration increased during
the second half of the night period. Day- and night-flowering
N. attenuata behaved like N. benthamiana (Figure 2).

By measuring the sugar content in the nectaries in micromole
per gram fresh weight and the water content of the nectaries,
it was also possible to determine the sugar concentration in the
nectaries. The total sugar concentration in the nectaries of all
species was lower than in the nectar, ranging from 72 ± 6 to
613 ± 34 mM (Figure 2). The mean sugar concentration in the
nectar was approximately three to fivefold higher than in the
nectaries of day flowering species, and approximately eight to
10-fold higher in night flowering species and in N. attenuata.
In the day-flowering plants, the highest sugar concentration in
nectaries occurred either in the middle or at the end of the
light period (2 or 8 p.m.). The same phenomenon applied to
the mixed-type N. attenuata. In both night-flowering plants, the
sugar concentration in nectaries increased sharply in the middle
of the night at 2 a.m.

The leaves of these tobacco species also contained primarily
sucrose, glucose, and fructose. Independent of the flowering
time, the sugar content in leaves was higher at the end of the
light period than at the end of the dark period (Supplementary
Figure 1). When compared to nectaries or nectar, leaves had
a significantly lower sugar concentration (10–60 mM). These
results were derived from the sugar content per gram fresh weight
and the corresponding water content (78–94%; data not shown).

Nectar samples have been tested for microbial contamination.
However, no contaminations with yeast or bacteria in the
different Nicotiana species were found and therefore externally
induced changes in the nectar sugar profile due to microbial
activity can be excluded.

Sugar Composition in Nectar and
Nectaries During the Light and Dark
Period
While the ratios of the three sugars within a species remained
relatively constant, even during different collection times, the
sugar ratio between species varied greatly in some cases
(Figure 3). This phenomenon was observed for both nectar
and nectaries. In the nectar of N. africana, the percentage
of sucrose ranged from 3–8%, depending on the time of
day. Other species with a low sucrose-to-hexoses ratio in
nectar were N. attenuata and N. benthamiana, for which the
proportion of sucrose ranged from 6–9 and 10–13%, respectively.
Higher proportions of sucrose were found in N. tabacum and
N. sylvestris (16–23 and 42–49%). In general, glucose and
fructose were found to occur in similar proportions within a
species.
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FIGURE 2 | Sugar concentrations in nectaries and nectar. Mean values from
all measurements taken at one time point (n = 3) and the respective SDs were
plotted; light and dark periods are indicated by white and black bars.
(A) N. africana, (B) N. tabacum, (C) N. attenuata, (D) N. benthamiana, and
(E) N. sylvestris.

In nectaries, the distribution of sugars was also similar within
a species during the light and dark period. In relation to
nectar, the percentage of sucrose was higher in nectaries of all
Nicotiana species, with the exception of N. sylvestris at 2 a.m.
The percentage of sucrose was relatively low in N. attenuata
and N. benthamiana (10–28%), medium in N. africana and
N. tabacum (26–43%), and high in N. sylvestris (26–56%).

FIGURE 3 | Sugar percentages in nectaries and nectar. All percentages were
calculated from mM; n = 3; light and dark periods are indicated by white and
black bars; one pair of bars indicates one time point of sampling, with the Left
bar representing nectar and the Right bar representing nectaries.
(A) N. africana, (B) N. tabacum, (C) N. attenuata, (D) N. benthamiana, and
(E) N. sylvestris.

To assess whether a percentage increase of a given sugar
in nectar was also reflected in the nectaries, the sugar
content in both compartments was correlated. For glucose,
no bivariate correlation was found (Pearson’s r = 0.191,
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TABLE 1 | Nectary- and Nectar-sugar-ratios (calc. from mM) Data were derived
from Figures 2, 3, the values of all measuring points were averaged.

Species Nectary-sugar-
ratio

[S/(G+F)]

Nectar-sugar-
ratio

[S/(G+F)]

Difference
between the

ratios

N. africana 0.54 0.05 0.48

N. tabacum 0.61 0.24 0.37

N. attenuata 0.33 0.08 0.25

N. benthamiana 0.28 0.13 0.15

N. sylvestris 0.94 0.89 0.05

p = 0.420), whereas the percentage of both fructose and
sucrose between the nectar and nectaries was correlated
either highly significantly or significantly (fructose: Pearson’s
r = 0.574, p = 0.008∗∗; sucrose: Pearson’s r = 0.481,
p = 0.032∗).

However, in all species, the mean sucrose-to-hexoses ratio
was higher in nectaries compared with nectar (Table 1). In
general, the difference between the sucrose-to-hexoses ratios in
nectaries and nectar was higher in light flowering species (1
0.37–1 0.48) compared with night flowering species (1 0.05–1
0.15).

Starch Content in Nectaries
The starch content measured in nectaries ranged from
0.9 ± 0.1 mg g−1 FW up to 20 ± 1.5 mg g−1 FW (measured
as glucose equivalent; Figure 4). The values were significantly
higher in night- than in day-flowering species (p = 0.025). The
lowest starch contents during the light and dark period were
found in the day-flowering species, as well as in N. attenuata.
Moreover, in these species, the starch content was lower during
the dark period and higher during the light period. In the
night-flowering Nicotiana species, the highest starch contents
were found both in the morning and in the evening (Figure 4).
At 2 a.m., the night flowering species showed the lowest starch
levels; thus, at the same time, the night-flowering species
presented the highest sugar concentration. Because starch in
plants is synthesized from glucose, it has been tested whether
there is a correlation between the glucose and starch content in
the nectaries, but no significant correlation was found between
glucose and starch content or between fructose or sucrose and
starch content.

Starch content in leaves ranged from 0.5 ± 0.1 to
40 ± 4.8 mg g−1 FW (measured as glucose equivalent;
Supplementary Figure 2). For all five species, the starch content
in the leaves was higher at the end of the light period
compared with the end of the dark period (Supplementary
Figure 2). The starch content of nectaries and leaves was not
correlated.

Invertase Activity in Nectaries
Cell wall invertases in nectaries were active during the light
as well as during the dark period. Measured activity ranged
from 0.003 ± 0.001 to 0.059 ± 0.004 U mg−1 FW (Figure 5).
Except for N. africana, the highest activity levels in all

species were found at the middle of the light period, and
then the activity decreased, regardless of when the plant
opens its flowers. The activity of CW-INV in nectaries did
not correlate with any of the sugars in the nectar or the
nectaries.

The CW-INV activity in the leaves ranged from 0.003± 0.001
to 0.033 ± 0.004 U mg−1 FW (Supplementary Figure 3).
Therefore, the activity levels were similar to those in the nectaries.
CW-INV activity in the leaves fluctuated only slightly between
the light and dark periods.

Soluble acid invertases in nectaries were also active
during the light as well as during the dark period, but the
mean activity was about threefold lower when compared
to the CW-INV activity. Measured activity ranged from
0.003 ± 0.001 to 0.013 ± 0.007 U mg−1 FW (Supplementary
Figure 4A). In the day-flowering species and in N. attenuata,
the highest activity levels were found at the middle of the
light period, whereas in the night-flowering species the
highest activity levels were found at the middle of the dark
period.

The activity of the soluble neutral invertase in the nectaries
of the different Nicotiana species was very low (Supplementary
Figure 4B). Measured activity ranged from 0.001 to 0.007 U mg−1

FW and no significant differences between the species or the
sampling points were found.

Expression Levels of CWINV
The expression level of CW-INVs in the nectaries of the
five Nicotiana species was also measured. Therefore, the
expressed sequence tag (EST) of the CW-INV of each species
was cloned. Specific primers were designed and used for
quantitative RT-PCR. In the day-flowering and hexose-rich
species, N. africana, the relative expression of CW-INV was
very stable throughout the light and dark periods. In the
other Nicotiana species, the expression level was slightly higher
during the light period compared to the dark period, regardless
of flowing time or the percentage of hexoses in the nectar
(Figure 6). In most Nicotiana species, the course of the expression
level was consistent with the invertase activity, especially for
N. tabacum and N. sylvestris (Figures 6B,E), but less for
N. benthamiana (Figure 6D). A comparison of the invertase
expression level with the nectary sugar concentration revealed
a non-homogeneous pattern: In N. attenuata, nectary sugars
correlated strongly but not significantly with expression level
(glucose: Pearson’s r = 0.913, p = 0.458; fructose: Pearson’s
r = 0.917, p = 0.456; sucrose: Pearson’s r = 0.917, p = 0.455),
whereas in N. benthamiana, this correlation was strongly
negative (glucose: Pearson’s r = −0.887, p = 0.469; fructose:
Pearson’s r = −0.822, p = 0.497; sucrose: Pearson’s r = −0.963,
p = 0.437). For the remaining species, the correlation was
generally lower.

Post-secretional Nectar Changes
To test for changes of the nectar sugar composition after
secretion, nectar of all species was measured immediately after
sampling, as well as 12, 24, and 48 h later. The results showed that
the sugar concentrations were not changed significantly during
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FIGURE 4 | Starch concentration in nectaries. Mean values from all measurements taken at one time point (n = 3) and the respective SDs were plotted.

FIGURE 5 | Cell wall invertase (CW-INV) activity in nectary tissue. Mean values from all measurements taken at one time point (n = 3) and the respective SD were
plotted.

this period (Figure 7). Minor fluctuations were likely caused
by the high dilution factor (1: 2000) used to measure nectar
with the HPLC. No invertase activity was found in any nectar
sample.

DISCUSSION

Floral nectar is synthesized and secreted by different types
of floral nectaries. Nectar composition varies between species,
possibly to reward different types of pollinators. Until now,
the plant-specific differences in nectar production and nectar
secretion that lead to different nectar composition have not been
fully understood.

Pre-secretory Modifications of Nectar
Sugars
The phloem supplies the nectaries with sucrose (Lohaus
and Schwerdtfeger, 2014). In contrast to phloem sap,
where no hexoses are found (Knop et al., 2001; Nadwodnik
and Lohaus, 2008), the nectar of the Nicotiana species
contains substantial amounts of glucose and fructose,
in addition to sucrose. Differences in the composition
of nectar and phloem may be due to either metabolic
processes in the nectaries during nectar secretion or
post-secretional modification. To clarify this question,
the sugar composition of the nectar and nectaries was
compared.
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FIGURE 6 | Invertase activity in comparison to expression level in the
nectaries of different Nicotiana species Activity and expression levels are given
relative to the calibrator (2 p.m.). Mean values from all measurements taken at
one time point (n = 6 for enzyme activity and n = 3 for expression levels) and
the respective SD were plotted; light and dark periods are indicated by white
and black bars. (A) N. africana, (B) N. tabacum, (C) N. attenuata,
(D) N. benthamiana, and (E) N. sylvestris.

In the case of night-flowering tobacco, the lowest sugar
concentration in nectar was observed in the first half of the
dark period (Figure 2). This could be due to the fact that the
nectar volume in these species is highest at this time (data not

shown), and, therefore, the high water content ensures dilution.
However, for day-flowering tobacco, the sugar concentration
was also found to be lower during the dark period compared
with the light period, even though the highest nectar volume
is during the day, which contradicts the previous assumption.
At night, phloem transport is reduced to approximately 40% of
the daily rate (Riens et al., 1994), which means that less sucrose
should arrive to the nectaries in darkness, and this could also
be a reason for the observed fluctuations in the nectar sugar
concentration. Therefore, it is generally easier for day-flowering
plants to supply their nectar with nutrients for their pollinators,
because they can process their metabolites directly from the
phloem sap; in contrast, night-flowering plants, at least partially,
have to store the metabolites (Figure 8). This finding corresponds
to the differences in the starch content observed in the nectaries
of day and night flowering species. In general, the night-
flowering species had a higher starch content in the nectaries
compared with the day-flowering species (Figure 4). Moreover,
in night flowering species, the starch content decreased during
the first half of the dark period, the time with high nectar
production.

Starch accumulation may function as a form of sugar storage
before anthesis (Weber et al., 1998), and starch degradation
has been observed to occur before flower opening to provide
additional sugar (Nepi et al., 1996; Horner et al., 2007; Ren
et al., 2007b). In potato tubers (Solanum tuberosum), starch
breakdown is triggered by decreased sucrose content (Hajirezaei
et al., 2003). In this study, no overall correlation between starch
and sucrose or hexoses in nectaries was observed, but in the
case of nocturnal species, where there is a severe decrease of
starch in the middle of the night, the sugar concentration was
found to be significantly increased. Apart from that, there was no
correlation between the starch content of the nectaries and leaves,
thus the starch metabolism in the nectaries appears to function
independently from the light-dependent starch metabolism of the
plant.

Total nectary sugar concentration is highest at the time of
flower opening, so sugar is likely provided for nectar production
(Figure 2). There is a high correlation between the proportion
of fructose and sucrose in nectaries and nectar. This suggests
that the nectar sugar composition is already partly determined
by the nectaries and is only partially adjusted during secretion.
For glucose, this correlation is much lower. This phenomenon
may be explained by the fact that some of the glucose is converted
into starch and stored in the nectaries until it is used (Ren et al.,
2007b).

Modulation During Nectar Secretion
The sugar concentration in nectar was three to 10-fold
higher than in the whole nectarial cells. An increase in
concentration due to evaporation can be neglected because
the analyzed species have very long and narrow flower tubes,
which protect the nectar from evaporation (Plowright, 1987;
Tiedge and Lohaus, 2017). This suggests that active sugar
transport is involved in nectar secretion, perhaps through
monosaccharide transporters (MSTs) and/or sucrose transporters
(SUTs). A monosaccharide/proton symporter (AtSTP1), which
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FIGURE 7 | Post-secretional changes in sugar content in the nectar All samples were analyzed immediately after collection, as well as 12, 24, and 48 h after
collection; n = 3.

FIGURE 8 | Comparison of nectar sugar secretion in day- and night-flowering tobacco. Day-flowering species (Left) store less starch in their nectaries and contain
more sucrose in the cytoplasm, which could be exported by SWEET-proteins along the concentration gradient. Night-flowering species store more starch in their
nectaries and sucrose probably cannot be exported by SWEETs, since the concentration of sucrose in the cytoplasm is lower than in the nectar. In night-flowering
species, sucrose cleavage within the nectaries accounts for a higher proportion of the hexose provision than cleavage during secretion, which is the opposite in
day-flowering species. MSTs, monosaccharide transporters; SUTs, sucrose transporters; CW-INV, cell wall invertases; INV, invertase; SWEETs, sucrose efflux
transporters; ?, unknown processes.

only transports glucose but not fructose, has been found in
Arabidopsis flowers (Sherson et al., 2003). SUTs have already
been found in tobacco, as well, e.g., NtSUT3 in tobacco
pollen (Lemoine et al., 1999), but, so far, their occurrence
and function in flowers and nectaries is not completely
understood.

A class of transporters that are clearly involved in nectar
secretion are so-called SWEET sucrose transporters. In
Arabidopsis and Nicotiana, SWEET9 functions as a facilitated
diffusion transporter for sucrose (Lin et al., 2014), and there is
evidence that this transporter is more responsible for sucrose
efflux from nectarial cells than for sucrose uptake. As previously
mentioned, the sugar concentration in nectar relative to nectary

cells was three to fivefold higher in diurnal species and eight to
10-fold higher in nocturnal species. Unfortunately, until now,
nothing has been reported about the subcellular distribution of
sugars in the parenchyma cells of nectaries. Assuming that the
subcellular distribution of sucrose in nectarial cells is similar
to the distribution in leaves (up to 50% sucrose in the cytosol;
Nadwodnik and Lohaus, 2008) and the cytosolic compartment
comprises about 20% of the nectarial cells (Wist and Davis, 2006;
Gaffal et al., 2007), the sucrose concentration in nectarial cells
can be extrapolated (Figures 2, 3). In day-flowering species,
the maximal sucrose concentration in the cytosol of nectarial
cells was approximately 300–400 mM, and the corresponding
concentration in nectar was approximately 100–300 mM. Similar
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results were obtained for N. attenuata. Therefore, it is possible
that facilitated diffusion transporters for sucrose mediate sucrose
efflux from nectarial cells (Figure 8). In night-flowering species,
the calculated concentration of sucrose in the cytosol of nectarial
cells was approximately 200 mM, whereas the corresponding
concentration in nectar was approximately 300–700 mM. In the
latter case, facilitated diffusion of sucrose from the nectarial cells
into the nectar is not possible. However, this does not exclude
the possibility that different cell types in the nectaries contain
different sugar concentrations and that facilitated diffusion of
sugars occurs only in certain nectarial cells, whereas in other
cells active sugar secretion may occur. This finding is in line
with findings in Arabidopsis, where SWEET9 was localized at the
basal part of the nectaries (Lin et al., 2014), and the conclusions
drawn from other research in this area, which propose a division
of nectary parenchyma into functional sub-domains (Roy et al.,
2017).

Besides sugar transporters, invertases also appear to be part
of the nectar metabolism. For this work, the expression of the
CW-INV was investigated exclusively in nectary tissue. Not
much is known about the regulation of CW-INV expression in
nectaries, but this enzyme has already been studied in other plant
organs. Invertase expression is regulated by multiple factors, for
example, by carbohydrates (Koch, 1996), phytohormones (Wu
et al., 1993), biotic and abiotic stress-related stimuli (Roitsch
et al., 2003), and proteinaceous inhibitors (Krausgrill et al.,
1996). So far, it has rarely been examined how nectar-related
invertase expression in nectaries is regulated. The invertase
found in N. attenuata is highly upregulated in parts of early
corollas, such as nectaries, ovaries and anthers. When the
flowering continues to ripen, the invertase expression decreases
(NaDH; Brockmöller et al., 2017). Most nectar is produced
during early flowering, while older flowers sometimes have
no nectar at all. This fact also suggests that invertase plays
a role in the production of nectar. For other Nicotiana
species, no organ-specific expression data about CW-INVs are
available yet. Sturm and Chrispeels (1990) found that carrot
cell suspension cultures grown on either glucose, fructose, or
sucrose have similar β-fructofuranosidase mRNA content, with
slightly higher levels of mRNA in cells grown on glucose
(Roitsch et al., 1995). In contrast, the expression of different
β-fructofuranosidase genes can be repressed by glucose (Kunst
et al., 1974; Sarokin and Carlson, 1984; Martin et al., 1987).
For tobacco, this phenomenon may only be applicable for
N. benthamiana, where there is a strong negative correlation
between the nectar sugars in general and invertase expression
levels. Furthermore, high expression levels resulting in high
CW-INV activity would have been expected. This seems to
be true especially for species with high sucrose content in
nectar (N. sylvestris and N. tabacum). Nevertheless, post-
transcriptional processes seem to be taking place, which
prevent the entire transcript from being converted into active
protein.

The activity of CW-INV in the nectaries of different Nicotiana
species (0.003–0.06 U mg−1 FW; Figure 5) was similar to
the activity of CW-INV measured in other hexose-rich tissues
of different plant species (Weschke et al., 2003). Moreover,

an increased invertase activity would be expected in plants
with a high hexose concentration in the nectar (Ruhlmann
et al., 2010). However, for tobacco, this assumption is not
confirmed by the data, regardless of whether the species is
hexose-rich or not. The same applies to changes in the vacuolar
invertase activities (Supplementary Figure 4A). In day-flowering
species the vacuolar invertase activity was slightly higher in
the light period and in night-flowering species in the dark
period, regardless of whether the species is hexose-rich or not.
Furthermore, due to the low activity, the neutral invertase seems
to have only a relatively small influence on the hexose production.
There might be other mechanisms that play a role in the sugar
composition, for example, the in planta regulation of the sucrose
cleavage enzymes. In addition to sucrose cleaving enzymes, sugar
synthesis enzymes could also be involved in nectar production.
It has been shown that sucrose phosphate synthase is highly
expressed in some nectaries and that its expression can be
essential for nectar production (Lin et al., 2014).

For all five Nicotiana species, the sucrose proportion of
the total sugar concentration was always lower in the nectar
compared with the nectaries (Figure 3), perhaps due to the
extracellular hydrolysis of sucrose by CW-INVs. Differences in
the sucrose-to-hexose-ratio between the nectaries and nectar
were more pronounced in diurnal species compared with
nocturnal species (1 0.37–0.48 vs. 1 0.05–0.15). Therefore, the
cleavage of sucrose during secretion must be stronger in diurnal
species (Figure 8). Due to the differences in sugar composition
between nectaries and nectar, especially in day-flowering species,
it can be assumed that the sugar composition is at least partly
modified during secretion, either by the selective transport of
sugars and/or the activities of sugar cleavage enzymes, like CW-
INVs.

Post-secretory Modifications
No changes in nectar sugar concentration were observed after
secretion in the tobacco species analyzed in this study and no
invertase activity was detectable in nectar. In acacia, a significant
post-secretional modification of extrafloral nectar by invertase
has been demonstrated (Heil et al., 2005). Invertase activity in the
nectar was also measured in Cucurbita pepo, but it was too low to
significantly change the sugar profile (Nepi et al., 2012). Although
other sugar-cleaving enzymes, such as glucosidase, have been
identified in the nectar of N. attenuata, no invertases have been
found in the tobacco nectar so far (Seo et al., 2013). This means
that the nectar sugar composition must be already determined
during the final stage of secretion, rather than undergoing post-
secretory modification.

CONCLUSION

Nectar sugar composition must be determined by metabolic
processes in nectaries as well as during secretion (Figure 8).
Sucrose is transported to the nectaries via the phloem. Within
the nectaries, sucrose is hydrolyzed into hexoses, and a portion
of the sugars is transiently stored as starch until anthesis,
especially in night-flowering species. At anthesis, starch is
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converted into sucrose and hexoses. Sugars are exported out
of the nectarial cells, likely by facilitated diffusion transporters
(day-flowering species) or active transporters (night-flowering
species). In the nectary tissue as well as during nectar secretion,
some of the sucrose is hydrolyzed into glucose and fructose by
the activity of CW-INVs, which explains the higher proportion
of hexoses in nectar in comparison to nectaries. Sucrose
cleavage is likely higher pre-secretional in night-flowering
(possibly by vacuolar invertases) and during secretion in day-
flowering species. Furthermore, post-secretional modification
of the sugar composition in nectar is not probable. However,
CW-INV alone cannot be responsible for the differences in
hexoses concentration, and, therefore, other enzymes seem
to play important roles in determining the nectar sugar
composition.
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