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Hyperspectral remote sensing is a rapid non-destructive method for diagnosing nitrogen

status in wheat crops. In this study, a quantitative correlation was associated with

following parameters: leaf nitrogen accumulation (LNA), raw hyperspectral reflectance,

first-order differential hyperspectra, and hyperspectral characteristics of wheat. In

this study, integrated linear regression of LNA was obtained with raw hyperspectral

reflectance (measurement wavelength = 790.4 nm). Furthermore, an exponential

regression of LNA was obtained with first-order differential hyperspectra (measurement

wavelength = 831.7 nm). Coefficients (R2) were 0.813 and 0.847; root mean squared

errors (RMSE) were 2.02 g·m−2 and 1.72 g·m−2; and relative errors (RE) were 25.97%

and 20.85%, respectively. Both the techniques were considered as optimal in the

diagnoses of wheat LNA. Nevertheless, the better one was the new normalized variable

(SDr − SDb)/(SDr + SDb), which was based on vegetation indices of R2 = 0.935,

RMSE = 0.98, and RE = 11.25%. In addition, (SDr − SDb)/(SDr + SDb) was reliable

in the application of a different cultivar or even wheat grown elsewhere. This indicated a

superior fit and better performance for (SDr − SDb)/(SDr + SDb). For diagnosing LNA

in wheat, the newly normalized variable (SDr − SDb)/(SDr + SDb) was more effective

than the previously reported data of raw hyperspectral reflectance, first-order differential

hyperspectra, and red-edge parameters.

Keywords: wheat, leaf nitrogen accumulation, hyperspectral remote sensing, vegetation index, diagnostic model

INTRODUCTION

Nitrogen fertilizers are currently used to produce crops of high yield and good quality. Nitrogen
concentration is the focus of attention in plant nutrition, which is determined by the characteristics
of nitrogenous fertilizers. Nitrogen fertilizers are preferred as they are high permeable in soil.
Nitrogen fertilizers must be applied to the soil at regular intervals to provide nitrogen nutrition.
The basis of variable fertilization is based on the following principle: the dynamics of nitrogen
absorption, growth, and nutritional requirements of crops. It is necessary to accurately determine
the amount of nitrogen fertilizers, which is required for the growth and proliferation of plants.

Leaf nitrogen accumulation (LNA) is defined as the product of leaf nitrogen content (LNC) and
leaf dry weight. It not only reflects the individual information of LNC, but also includes group
characteristics of vegetation coverage. The level of LNA would improve crop nitrogen nutrition,
which increases LNC and vegetation coverage. Nitrogen fertilizers are theoretically significant
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for crop growth and nitrogen diagnosis. Moreover, it is essential
to investigate the quantitative relationship between LNA and
leaf spectrum. This reflects the integrated characteristics of crop
group and leaf spectrum. Chemical analysis of plant tissues must
be performed to diagnose LNA of wheat. It is a time-consuming
and laborious process. Remote sensing was performed accurately
and quickly with the following objectives: diagnosis of crop
nutrient status, monitoring of crop growth, and evaluation
of crop yield (Migdall et al., 2009; Piekarczyk et al., 2011;
Teke et al., 2013). Nitrogen status of crops was determined by
establishing a hyperspectral diagnostic model for the nitrogen
crop accumulation. Practically, this information was significant
for effective nitrogen fertilization (Jain et al., 2007; Mahajan
et al., 2014; Morier et al., 2015). Several studies have been
conducted on hyperspectral remote sensing and inversion of
crop components. Some simulation models, which are feasible
and widely applicable in various industries, have also been
established till date (Takahashi et al., 2000; Chanseok et al.,
2009; Shwetank et al., 2010; Onoyama et al., 2015; Marshall
et al., 2016). Currently, R780/R740 was considered as an optimal
ratio index that established the uptake of nitrogen in maize
above the ground (Mistele and Schmidhalter, 2008, 2010).
Moreover, R760/R730 was used to accurately predict aboveground
nitrogen accumulation in wheat (Erdle et al., 2012). Horler et al.
(1983) found a significant correlation between “red edge” and
vegetation chlorophyll concentration. This implies that it was
possible to calculate vegetation chlorophyll concentration with
red-edge parameters of remote sensing. This indicates that the
reflectivity of visible light increased due to nitrogen deficiency
in plants; however, reflectance was different in different plants.
Reflectance was negatively correlated with chlorophyll content
and carotenoid (Thomas et al., 1987). Red edge parameter
also reflects nitrogen status of crops. Tarpley et al. (2000)
proposed that a combination of red edge wavelengths must be
selected from very near infrared wavelengths to accurately and
precisely predict LNA in cotton. Visible and red-edge bands
were used to assess nitrogen changes in crops; these changes
were observed in accordance with hyperspectral features of
chlorophyll (Chen et al., 2010; Feng et al., 2014). Shibayama
et al. (1993) conducted a study on wheat crops and found
a good regression relationship between LNA per unit area
and a linear combination of hyperspectral reflectance at 620
and 760 nm. A linear combination of hyperspectral reflectance
was observed at 400 and 880 nm, respectively. Wessman et al.
(1988) investigated chemical composition of wheat crown with
first and second derivative of forest spectra. Optimal spectra
combination showed the strongest correlation with biomass.
Continuum removal analysis, stepwise multiple linear regression
(SMLR), and partial least squares (PLS) were the methods
used to obtain hyperspectral data, which was then used to
determine concentrations of biochemical constituents in plants
with hyperspectral data (Lacapra et al., 1996; Martin and Aber,
1997; Gupta et al., 2003; Hatfield et al., 2008; Ecarnot et al., 2013).
Many researchers focused on investigating the relationships
between vegetation indices and nitrogen accumulation of plants.
Zhu et al. (2008) found that in both wheat and rice, LNA could
be determined with common vegetation indices (VIs); moreover,

LNA can be monitored effectively with separate regression
equations. Moreover, RVI (870, 660) and RVI (810, 660) showed
a high correlation to LNA in both wheat and rice crops. In
addition, the relationship between VIs and LNA was far more
focused than the relationships between single wavebands and
LNA in both wheat and rice. Several studies have described how
the nutritional value of wheat can be monitored with remote
sensing; however, very few studies have described how remote
sensing parameters, such as raw hyperspectral reflectance, first-
order differential hyperspectra, and remote sensing vegetation
index, can be comprehensively used to investigate LNA of wheat.

In the present study, researchers investigated the relationship
between wheat LNA and various hyperspectral remote sensing
parameters. Furthermore, hyperspectral characteristics and
sensitive analysis were performed to identify LNA in wheat.
Moreover, researchers also determined the quantitative
relationships associated with LNA in wheat. The expected
results were used to provide a technical approach to non-
destructive monitoring and diagnosis of nitrogen status in
crops.

MATERIALS AND METHODS

Experimental Design
Experiments were conducted in the experimental field of
Agricultural College of Yangzhou University from 2015 to 2016

(119◦23′26
′′

E, 32◦23′53
′′

N), and in the experimental farming

of Yangzhou University in 2017 (119◦26′22
′′

E, 32◦25′34
′′

N).
Representative wheat cultivars were Yangmai 6, Yangmai 16, and
Ningmai 9 in 2015, 2016, and 2017, respectively. The former
crop was rice, while sandy loam was the soil texture. In the
soil layer of 0–30 cm, soil organic matter was 21.1 g.kg−1 and
available nitrogen was 104.2mg; moreover, available phosphorus
was 25.3mg and available potassium was 87.1mg. To investigate
differences in the growth and biochemical composition of wheat,
five nitrogen levels were defined in this experiment: N0 (no
nitrogen fertilizer), N1 (7.5 g N·m−2), N2 (15 g N·m−2), N3

(22.5 g N·m−2), and N4 (30 g N·m−2). Each level was subjected
to three repeats. The plot area was 15 × 10m; test crops were
distributed randomly in the field. Conventional methods of
cultivation were used in this experiment. The 2016 data was used
as a training set, while the 2015 and 2017 data was used as a test
set, respectively.

Determination of Hyperspectral
Reflectance
Hyperspectral reflectance was determined with Unispec
spectrometer (PPS Scientific Instruments, Inc., UK). The
instrument has a built-in light source (7.0W halogen bulb). A
50W halogen lamp was placed besides the instrument to provide
auxiliary lighting. A light source, which had an azimuthal
inclination of 70◦, was placed 45 cm away from the surface of
the sample. The working temperature of the instrument was
in the range 0–45◦C; wavelength range was 300–1,100 nm,
and viewing angle was set at 8◦. Hyperspectral resolution was
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less than 10 nm when the wavelength was in the range 300–
1,100 nm. Hyperspectral resolution was less than 7 nm in the
wavelength range of 400–730 nm. Hyperspectral resolutions were
determined with an accuracy of 0.3 nm and 0.2 nm, respectively.
The scan time was less than 0.5 s.

The five key growth stages of wheat were classified as follows:
seedling stage, jointing stage, heading stage, flowering stage and
grain filling stage. At each of the five stages of wheat cultivation,
samples were collected on a day when the weather was bright
and sunny. Between 10:00 a.m. and 12:00 p.m., three to five
plants were sampled to determine the growth level of wheat with
respect to nitrogen levels. To determine hyperspectral reflectance
of wheat leaves, samples were packed in plastic bags and kept
in the refrigerator of a laboratory. Hyperspectral reflectance was
determined approximately 2 cm above leaves and headed down
vertically. To eliminate the effect of shadow, leaves were covered
with black cloth that exhibited an almost zero reflectivity. Three
to five fully developed leaves were removed from the top, and
six representative points were selected from the surface of each
leaf. Each point was repeated ten times, and the average was
considered as hyperspectral reflectance. A BaSO4 reference plate
was used to account for corrections, immediately before and
after the determination of each point. Equation (1) was used to
determine hyperspectral reflectance:

Rmi =
DNmi

DNri
· Rri (1)

Here, Rmi was the reflectance of the sample at wavelength λi;
Rri was the reflectance of the diffuse reflectance reference plate
at wavelength λi; DNmi was the radiance value of the sample at
wavelength λi; DNri was the radiance value of diffuse reflectance
reference plate at wavelength λi. Among them, DNmi and DNri

were actual measured values, whereas Rri was a known calibrated
value for the reference plate.

Determination of Leaf Nitrogen
Accumulation
Twenty strains of wheat were taken at each sampling stage
to synchronize hyperspectral measurements. For three to five
plants in a plot, nitrogen accumulation of leaves was measured
at following stages: seedling stage, jointing stage, heading stage,
flowering stage, and grain filling stage of wheat. Fresh leaves of
wheat were incubated at 105◦C for 15min, and they were oven-
dried at 70◦C until a constant weight was reached. Dried leaf
samples were ground to pass through 1mm screen. They were
then stored in plastic bags for chemical analysis. Total nitrogen
concentration in leaf tissues was determined by micro-Keldjahl
method. Thereafter, LNC (%) was expressed on the basis of unit
dry weight. Finally, LNA (g·m−2) was calculated as the product
of LNC (%) and unit leaf dry weight (g·m−2).

Hyperspectral Characteristic Variables
Based on previous studies, A total of 18 hyperspectral
characteristic variables were considered (Table 1), which were
related to LNA. Hyperspectral characteristic variables of wheat
were determined in previous studies. The most common

hyperspectral characteristic variables of wheat were as follows:
characteristic variables extracted from raw hyperspectra and first-
order differential hyperspectra, and characteristic variables based
on hyperspectral positions, hyperspectral area and hyperspectral
vegetation indices.

Data Analysis
The means of all nitrogen treatments were compared to
determine changes in LNA and hyperspectra of different
organs. To develop regression models, data was collected
from 144 samples in 2016. To evaluate regression models,
data was obtained from field experiments of 150 samples in
2015 and 120 samples in 2017, respectively. To establish the
relationship between LNA and 18 hyperspectral characteristic
variables, of the following regression models were used:
linear, exponential, logarithmic, parabolic, power, and cubic.
Based on statistical significance (p < 0.05 or 0.01), models
were ranked as correlation coefficients (r in case of linear
models) and coefficients of determination (R2 in case of
non-linear models). Differential transformation of reflectance
spectrum was carried out to accommodate an over-fitting
phenomenon. The established model was verified with measured
sample value, and an over-fitting phenomenon was mitigated.
Linear and non-linear correlation analyses were performed
for the following parameters: raw hyperspectra, first-order
differential hyperspectra, and LNA. In the key spectrum, sensitive
hyperspectral variables were related to LNA. Using a self-
developed computer program based on MATLAB 7.0 software
(The MathWorks, Inc., Natick, MA, USA), 18 hyperspectral
characteristic variables (Table 1) were calculated from raw data
of hyperspectral reflectance. Then, linear, exponential, logarithm,
parabolic, or power correlation analyses were used to determine
18 hyperspectral characteristic variables and LNA. Thus, we
identified hyperspectral characteristic variables associated with
LNA. Then, the best-fit R2 model was determined from linear
or non-linear models. The relationship between LNA and
hyperspectral characteristic variables was determined using
SPSS18.0 software. A 1:1 scale was used to determine the
estimated and measured LNA values. To estimate LNA and
determine the performance of the model, we used following
parameters: R2, root mean squared error (RMSE), and relative
error (RE). Higher the value of R2, lower would be RMSE
and RE values and higher would be the accuracy of estimating
LNA. Equations (2, 3) were used to calculate RMSE and RE,
respectively:

RMSE =

√

√

√

√

1

n

n
∑

i=1

(

yi − ŷi
)2

(2)

RE(%) = (yi − ŷi)/yi×100 (3)

Here, yi and ŷi represented measured and predicted values of
wheat LNA, respectively; n denoted the number of samples.

Distribution of LNA
The data of 2016 was used as a training set, while the data
of 2015 was used as a test set. Table 2 showed that samples
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TABLE 1 | Definitions of hyperspectral remote sensing parameters used in the study.

Variable Definition Description References

Hyperspectral characteristic variables

based on red-edge position

Dr First-order maximal derivative inside

red edge

Red edge covers 680-780 nm; Dr is

the maximum of first-order differential

spectra within red edge

Gong et al.,

2002

λr Red edge position λr is the wavelength with respect to

Dr (nm)

Db First-order maximal derivative inside

blue edge

Blue edge covers 490–530 nm; Db is

the maximum of first-order differential

spectra within blue edge

λb Corresponding band length with Db λb is the wavelength with respect to

Db (nm)

Dy First-order maximal derivative inside

yellow edge

Yellow edge covers 550–582 nm; Dy

is the maximum of first-order

differential spectra within yellow edge

λy Corresponding band length with Dy λy is the wavelength with respect to

Dy (nm)

Rg Hyperspectral reflectance at the peak

of green band

Rg is the maximal reflectance for the

wavelength of 510–560 nm

λg Corresponding band length with Rg λg is the wavelength with respect to

Rg (nm)

Ro Hyperspectral reflectance at valley of

red band

Ro is the maximal reflectance for the

wavelength of 640-680 nm

Hyperspectral characteristic variables

based on red-edge area

SDr Summation of first-order derivatives

inside red edge

The sum of the values of first-order

differential spectra in the red edge

wavelength range

SDb Summation of first-order derivatives

inside blue edge

The sum of the values of first-order

differential spectra in the blue edge

wavelength range

SDy Summation of first-order derivatives

inside yellow edge

The sum of the values of first-order

differential spectra in the yellow edge

wavelength range

Hyperspectral characteristic variables

based on vegetation indices

SDr/SDb –

SDr/SDy –

Rg/Ro –

(SDr−SDb)/(SDr+SDb) –

(SDr−SDy)/(SDr+SDy) –

(Rg−Ro)/(Rg+Ro) –

of both training and test sets had similar values for following
parameters: amplitude, average, standard deviation, and standard
error. Moreover, training and test sets were independent of each
other. Thus, a reliable model was established and validated by
using these data sets.

Correlation Analysis and Diagnostic Model
of Wheat LNA With Raw Hyperspectral
Reflectance
As shown in Figure 1, regression relationships of LNA were
established with respect to raw hyperspectral reflectance in
wheat. In the visible light range of 420–600 nm, there was
no significant correlation between LNA and raw hyperspectral
reflectance. A significant correlation was observed between
other regions of visible light spectra; however, none of them

was ideal because of the number of samples and random
error. Moreover, this may be due to a strong absorption of
chlorophyll in the visible region. Furthermore, the interaction
between chlorophyll and internal structure of leaves was
investigated. Absolute values of r were always greater than
0.25 in the near-infrared region of the spectra. This indicates
that absolute values of r had significantly negative correlations
(P < 0.01). In the near-infrared region of the spectra,
hyperspectral reflectance dropped sharply with increasing LNA.
There was a maximum correlation between LNA and raw
hyperspectral reflectance at 790.4 nm (r = −0.874, Figure 1).
In this study, LNA was set as dependent variable whereas
hyperspectral reflectance was set as independent variable at a
wavelength of 790.4 nm. To explore the relationship between
LNA and hyperspectral reflectance, we established a model
by using linear and non-linear fitting equations (exponential,
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TABLE 2 | Distribution of LNA in training and test datasets.

Sample set Year Sample size Maximum value

(g m−2)

Minimum value

(g m−2)

Average value (g

m−2)

Standard

deviation

(g m−2)

Standard error

(g m−2)

Training set 2016 144 17.556 1.52 7.858 3.742 0.306

Test set 2015 150 18.835 0.312 8.024 4.617 0.378

FIGURE 1 | Correlation coefficient between raw hyperspectral reflectance and

wheat LNA (The correlation coefficient outside the two P0.05 lines was

significant at 0.05 level, while the correlation coefficient outside the two P0.01
lines was significant at 0.01 level).

logarithmic, parabolic, power, and cubic regressions). It can be
seen that linear model and parabolic model fitted better with
R2 values of 0.763 and 0.788, respectively. It was feasible to
diagnose wheat LNA with these models. Furthermore, diagnosis
accuracy needs to be evaluated. A simple linear model was
selected because the goodness of fit was close for these two
models.

Correlation Analysis and Diagnostic Model
of Wheat LNA With First-Order Differential
Hyperspectral Reflectance
Equation (4) was used to define first-order differential spectra:

ρ′(λ) =
dρ(λ)

dλ
(4)

Equation (5) was used to calculate discrete spectral data:

ρ′ (λ) = [ρ (λi+1) − ρ (λi−1)] / (λi+1 − λi−1) (5)

Herein, ρ(λ) and ρ′(λ) represented raw hyperspectral reflectance
and first-order differential hyperspectral reflectance at
wavelength λ, respectively.

Figure 2 illustrates that there was no significant difference
between correlation coefficients of LNA and first-order
differential hyperspectral reflectance of wheat. Correlation
coefficients were either completely significant or extremely
significant in most spectral ranges. This indicates that LNA had

FIGURE 2 | Correlation coefficient between first-order hyperspectral

reflectance and wheat LNA (The correlation coefficient outside the two P0.05
lines was significant at 0.05 level, while the correlation coefficient outside the

two P0.01 lines was significant at 0.01 level).

a strong correlation with first-order differential hyperspectral
reflectance. This was attributed to the strong absorption of
chlorophyll in the visible region of electromagnetic spectrum.
In the near infrared region of electromagnetic spectrum, it
was primarily due to the influence of high frequency noises
on differential spectra. Moreover, reflection and scattering
interactions were observed between chlorophyll and internal
structure of leaves. An extremely positive correlation was
observed at a wavelength of 831.7 nm; a maximal coefficient
of r = 0.864 (P < 0.01, Figure 2) was observed in this
study. In this study, LNA was set as the dependent variable
and first order differential hyperspectral reflectance [It was
observed at a wavelength of 831.7 nm (ρ′831.7)] was set as the
independent variable. The model was established by linear
and non-linear fitting, including exponential, logarithmic,
parabolic, power, and cubic regressions. We found that
linear and exponential models fitted better with R2 values of
0.792 and 0.824, respectively. This indicates that exponential
model was more suitable than linear model. By comparing
aforementioned models, it could be inferred that first-order
differential hyperspectral reflectance showed a better goodness
of fit at a wavelength of 831.7 nm. This was better than
that of raw hyperspectral reflectance at a wavelength of
790.4 nm (ρ790.4), regardless of linear or non-linear fitting.
This indicates that it would be better to diagnose LNA with
ρ′

831.7; however, its diagnosis accuracy had to be further
evaluated.
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Correlation Analysis Between Wheat LNA
and Various Hyperspectral Characteristic
Parameters
Table 3 shows that nine characteristic variables were based on
hyperspectral position, except for first-order maximal derivative
inside red edge (Db) and corresponding band length with Db

(λb) and wavelength with respect to Dy (λy). Table 3 also
shows that there was no significant correlation with wheat LNA.
The remaining six characteristic variables had a significant or
extremely significant correlation with wheat LNA. Among them,
the correlation between maximal first-order differential value
occurred within the red edge (Dr) and LNA was highest with
r = −0.893. The three characteristic variables were analyzed
from hyperspectral area. This indicates that the sum of first-
order differentials was not significantly correlated within yellow
edge (SDy) and nitrogen accumulation. An extremely significant
positive correlation was observed between the sum of first-order
differentials within the red edge (SDr) and LNA (r = 0.911,
P < 0.01). An extremely significant negative correlation was
observed between the maximum first-order differential spectra
for blue edge (SDb) and LNA (r = −0.821, P < 0.01). Among
the six variables related to vegetation indices, there was no
significant correlation between following parameters: Rg/Ro or
(Rg – Ro)/(Rg + Ro) and LNA. Moreover, a significant positive
correlation was observed between SDr/SDb or SDr/SDy and
LNA (P < 0.05). An extremely significant positive correlation
was observed between (SDr – SDy)/(SDr + SDy) or (SDr

− SDb)/(SDr + SDb) and LNA. The (SDr − SDb)/(SDr +

SDb), hereinafter referred to as the NREAI (Normalized Red
Edge Area Index), had the biggest correlation coefficient (r =

TABLE 3 | Correlation coefficients between hyperspectral characteristic variables

and wheat LNA (n = 144).

Hyperspectral characteristic variable r

Db −0.014

λb 0.031

Dr −0.893**

λr 0.820**

Dy 0.843**

λy −0.009

Rg −0.186*

λg −0.194*

Ro −0.143*

SDr 0.911**

SDb −0.821**

SDy −0.146

SDr/SDb −0.214*

SDr/SDy 0.201*

Rg/Ro 0.151

(SDr−SDb)/(SDr+SDb) 0.941**

(SDr−SDy)/(SDr+SDy) 0.856**

(Rg−Ro)/( Rg+Ro) −0.137

*P < 0.05, | r | > 0.174; **P < 0.01, | r | > 0.228. The same below.

0.941, P < 0.01). Hyperspectral characteristic variables were
identified for the diagnosis of wheat LNA. The optimal result was
NREAI.

Linear and Non-linear Fitting Models
To diagnose agronomic parameters more accurately,
hyperspectral characteristic variables were selected as
independent variables. These variables indicate that there
was an extremely significant correlation with LNA. Furthermore,
LNA was set as the dependent variable to analyze the correlation
between hyperspectral characteristic variables (x) and LNA
(y). Diagnostic models were constructed with following six
functions: (1) Linear function: y = a + bx; (2) Exponential
function: y = a × exp(bx); (3) Logarithm function: y = a
+ b × lnx; (4) Parabolic function: y = a + bx + cx2; (5)
Power function: y = a × xb; and (6) Cubic function: y =

a + bx + cx2 + dx3. Herein, y was the diagnostic value of
LNA; x was the characteristic variable; and a, b, c, and d
were the undetermined coefficients (constants) of diagnostic
models.

Table 3 shows that most of the 18 hyperspectral characteristic
variables had a significant or extremely significant correlation
with LNA. Hyperspectral characteristic variables had an
extremely significant correlation with LNA, so they were selected
as candidate parameters. Linear and non-linear regression
analysis was carried out. Then, fitting equations were established
to determine the parameters suitable for hyperspectral diagnostic
model of LNA (Table 4). It was observed that R2 values of the
exponential diagnostic models were based on Dr, λr, and Dy;
moreover, maximal values were used to diagnose wheat LNA.
Cubic diagnostic models were based on SDr and SDb, which
are defined as the highest R2-values. Furthermore, R2-values
of models was represented by the equation NREAI, which
was based on vegetation indices. All these values were higher
than other hyperspectral characteristic variables, which were
included in the same model types. The fitted results were
obtained by constructed linear model; these results were very
close to non-linear models. The mathematical expression
of linear model was very simple; therefore, hyperspectral
diagnostic model of LNA was used as the dependent variable
(y). Furthermore, NREAI was defined as the independent
variable (x). The relationship between these variables was
expressed as follows: y = 553.472+738.822x, with R2 =

0.886.

Predictive Test of Models
Rajendran et al. (2009) proposed that “over-fitting” phenomenon
was most likely to occur during model establishment stage.
In most cases, when the number of samples was less than
hyperspectral band number, hyperspectral reflectance could
have no relationships with some physical and chemical
components in crop, but noise must be related. A hyperspectral
model was constructed on various physical and chemical
parameters; the main objective was to construct a more
reliable model that controls and eliminates over-fitting
error.
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TABLE 4 | Linear and non-linear regression analysis between hyperspectral characteristic variables and wheat LNA (n = 144).

Hyperspectral characteristic variable Model Model parameter R2

a b c d

Dr Linear 23.346 −11.372 0.797**

Exponential 11.037 −19.836 0.846**

Logarithm 21.821 −88.931 0.803**

Parabolic 39.024 −1021.93 −1674.36 0.839**

Power 6.946 −12.877 0.816**

Cubic 1121.84 −3452.92 4481.62 −109.74 0.819**

λr Linear 4022.63 599.37 0.673**

Exponential 36.933 301.77 0.686**

Logarithm 3.936 9.758 0.611**

Parabolic 33.811 2.976 6.938 0.681**

Power 34.733 6.292 0.637**

Cubic 41.767 856.091 46.711 0.649**

Dy Linear 22.734 881.463 0.711**

Exponential 32.071 14.877 0.802**

Logarithm 73.791 263.88 0.643**

Parabolic 542.766 3671.65 3722.62 0.791**

Power 7.821 46.943 0.677**

Cubic 12.833 48.773 83.552 −101.72 0.756**

(SDr − SDb)/(SDr + SDb) Linear 553.472 738.822 0.886**

Exponential 2116.82 4231.63 0.862**

Logarithm 186.52 1863.81 0.872**

Parabolic 92.573 7.736 −37.282 0.891**

Power 291.778 101.627 0.862**

Cubic 57.116 1928.93 −311.261 97.246 0.898**

(SDr − SDy)/(SDr + SDy) Linear 43.623 13.383 0.733**

Exponential 61.782 21.822 0.636**

Logarithm 9.793 23.161 0.672**

Parabolic 4.683 21.981 −8.572 0.696**

Power 28.861 31.173 0.708**

Cubic 13.711 33.908 −18.167 9.678 0.684**

SDr Linear 11.127 42.657 0.829**

Exponential 12.658 17.267 0.841**

Logarithm 9.486 15.167 0.792**

Parabolic 12.386 34.232 −12.186 0.841**

Power 16.563 15.677 0.687**

Cubic 6.637 16.574 −11.232 3.761 0.846**

SDb Linear 13.346 −11.783 0.674**

Exponential 8.774 −23.063 0.472**

Logarithm 14.833 −6.843 0.562**

Parabolic 5.927 −12.126 −2.103 0.683**

Power 3.218 −9.253 0.617**

Cubic 9.145 −6.264 −7.691 3.588 0.737**

Linear function: y = a + bx; Exponential function: y = a × exp (bx); Logarithm function: y = a + b × lnx; Parabolic function: y = a + bx + cx2; Power function: y = a × b; Cubic function:

y = a + bx + cx2 + dx3 (y was the diagnostic value of LNA; x was the characteristic variable; and a, b, c and d were the undetermined coefficients (constants) of diagnostic models.).
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FIGURE 3 | Evaluating the diagnostic models for wheat LNA based on ρ790.4,

ρ′831.7 and (SDr − SDb)/(SDr + SDb) (model based on ρ790.4: y = 1.065x +

0.09, R2 = 0.813, RMSE (g·m−2) = 2.02, RE (%) = 25.97, n = 150; model

based on ρ′831.7: y = 1.069x – 0.501, R2 = 0.847, RMSE (g·m−2) =1.72, RE

(%) = 20.85, n = 150; model based on (SDr − SDb)/(SDr + SDb): y = 0.978x

+ 0.307, R2 = 0.935, RMSE (g·m−2 ) = 0.98, RE (%) = 11.25, n = 150).

FIGURE 4 | Evaluating the diagnostic model based on (SDr−SDb)/(SDr+SDb)

using a different cultivar or even wheat grown elsewhere: y = 1.179x - 0.974,

R2 = 0.902, RMSE (mg.g−1) = 1.46, RE(%) = 13.74, n = 120).

A novel regression equation of high significance was used to
construct an optimal diagnostic model. This diagnostic model
was a mathematical expression that minimized RMSE and RE.
Thus, a reliable model was constructed with 2015 data. Figure 3
illustrates that diagnostic models were used to determine wheat
LNA. The analysis was performed with respect to following
parameters: ρ790.4, ρ

′
831.7, and NREAI. The normalized variable

NREAI was considered as the independent variable to construct
hyperspectral model of LNA. In this case, the largest R2-values
were used along with the smallest RMSE and RE. The results
indicate that hyperspectral characteristic variable of NREAI was
the most appropriate diagnostic predictor of wheat LNA; R2,
RMSE, and RE values were 0.935, 0.98 g·m−2, and 11.25%,
respectively. Therefore, y = 553.472+738.822 NREAI was the
diagnostic model of wheat LNA. Compared to the diagnostic
model based on NREAI, the two diagnostic models based on
ρ790.4 and ρ′831.7 showed slightly poor performance as they
could not reach saturation levels. These diagnostic models
were used to diagnose higher LNA level. When diagnostic
model was used to process 2016 data, it was found that ρ790.4

and ρ′
831.7 were closely related to wheat LNA; however, their

diagnosis ability was increased to a higher level. Thus, the
two hyperspectral parameters of ρ790.4 and ρ′

831.7 were also
considered as potential indicators in the diagnosis of wheat
LNA.

The experimental data was further tested and evaluated in
different time and space conditions to display the reliability and
universality of diagnostic model. Here, we analyzed 120 samples
that were obtained in 2017 data. Thses samples were obtained
from a different cultivar or even wheat grown elsewhere. The
data was used to test LNA model, which was based on NREAI.
Figure 4 shows that the model was obtained with R2, RMSE,
and RE values of 0.902, 1.46 g·m−2, and 13.74%, respectively.
Therefore, it was not only feasible that the NREAI was selected to

Frontiers in Plant Science | www.frontiersin.org 8 May 2018 | Volume 9 | Article 674

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Tan et al. Diagnosing Wheat LNA With Hyperspectra

diagnose wheat LNA, but also was possible to be applied widely
in future.

DISCUSSION

Leaf is the key site for photosynthesis. Nitrogen concentration
depends on the formation of chlorophyll in leaves. Chlorophyll
plays an important role in the formation and transportation of
organic compounds. In this experiment, LNA, LNC, and unit leaf
dry weight was more effectively reflected by nitrogen status of
wheat. These parameters were used to characterize nutritional
status of wheat canopy, which indicated the potential of wheat
production.

Hyperspectral data has been extensively used to diagnose
LNC of crops (Daniela et al., 2009; Vigneau et al., 2011;
Knyazikhin et al., 2013). However, a generalized diagnostic
model was not used due to its numerous influencing factors
(Morón et al., 2007; Inoue et al., 2012; Miphokasap et al.,
2012). In previous studies, different varieties of wheat were
investigated with various hyperspectral parameters; however,
they still lacked transformation characteristics. We proposed
a normalized variable NREAI, which was based on vegetation
indices. This provided a basis for non-destructive monitoring
and accurate diagnosis of wheat LNA. Very few studies
have investigated different components of wheat with a
variety of hyperspectral parameters. There are very few
transformation forms. In this study, a normalized variable
NREAI, which was based on vegetation indices, was proposed
to sensitively diagnose wheat LNA. This provides a basis
for non-destructive monitoring and accurate diagnosis of
wheat LNA. Besides, we investigated the existing theory and
technology associated with hyperspectral diagnosis of wheat
LNA.

Scientists have conventionally performed a correlation
analysis between wheat LNA and raw hyperspectral reflectance
for determining nitrogen levels at different stages (Ryu
et al., 2011; Muharam et al., 2015). First-order differential
hyperspectra, hyperspectral characteristic variables, and all kinds
of vegetation indices have shown that nitrogen accumulated
mostly in leaves. In near infrared region of the spectra,
hyperspectral reflectance showed a positive correlation with
nitrogen accumulation; however, hyperspectral reflectance
showed a negative correlation with visible light spectra. The
results agreed completely with research results of maize, which
was determined in a previous study conducted by Alchanatis
et al. (2005). In a linear regression model, LNA was determined
in wheat by using ρ790.4 as an independent variable. In an
exponential model, LNA was diagnosed in wheat by using ρ′

831.7

as the independent variable. The results agreed completely with
the linear model. In fact, the exponential model produced much
better results than the linear model. Using six types of regression
functions, we discovered that wheat LNA could be diagnosed
with following hyperspectral parameters: hyperspectral position,
hyperspectral area, and vegetation indices. The normalized
variable NREAI was considered as an independent variable
for statistically determining three evaluation criteria. We

constructed hyperspectral diagnostic model of wheat LNA.
Wheat LNA was determined from the following expression: y =
553.472 + 738.822 NREAI. Furthermore, the LNA model based
on NREAI was useful in the application of a different cultivar or
even another growth region. However, the mechanisms of results
should be studied further to determine whether this model
was significantly affected by more wheat cultivars or growth
regions.

The goodness of LNA fit, which was obtained with respect to
ρ′

831.7 (whether linear or non-linear), was found to be higher
than that obtained with respect to ρ790.4. This agreed completely
with the results of a study conducted by Fitzgerald et al.
(2010) Nevertheless, this study did not consider hyperspectral
differences of several wheat varieties. Further studies were
conducted to determine whether significant differences in wheat
cultivars had an impact on this model and mechanisms of
results. The conclusions of our study were based on the data
collected from two sites in three years. In addition, there were
few cultivars, limited number of samples, and limited range of
measured wavelengths. Moreover, no intensive measurements
were performed during different growth periods. Therefore,
further studies must be conducted to determine whether optimal
hyperspectral parameters could be used to estimate the stability
and accuracy of predictive results with respect to wheat LNA.
In the near future, studies must also investigate whether the
proposed diagnostic model was suitable for determining LNA of
more wheat cultivars in large areas.

The present study investigated and evaluated the relationships
between following parameters: LNA and raw hyperspectral
reflectance, first-order differential hyperspectral reflectance, and
hyperspectral characteristics of wheat. Wheat LNA could also
be diagnosed with hyperspectral data. To diagnose wheat
LNA, raw hyperspectral reflectance (measurement wavelength=

790.4 nm) and first-order differential hyperspectral reflectance
(measurement wavelength = 831.7 nm) were considered as
optimal techniques. Nevertheless, the better one was the
normalized variable NREAI. This indicates a superior fit and
better performance. Moreover, NREAI was more effective in
diagnosing LNA than raw hyperspectral reflectance, first-order
hyperspectral reflectance, and red-edge parameters. It might also
explain why different hyperspectral variables must be used to
diagnose crop LNA. In totality, NREAI would be considered as
a new predictor of wheat LNA in future.
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