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Remote sensing techniques can be efficient for non-destructive, rapid detection of wheat

nitrogen (N) nutrient status. In the paper, we examined the relationships of canopy

multi-angular data with aerial N uptake of winter wheat (Triticum aestivum L.) across

different growing seasons, locations, years, wheat varieties, and N application rates.

Seventeen vegetation indices (VIs) selected from the literature were measured for the

stability in estimating aerial N uptake of wheat under 13 view zenith angles (VZAs)

in the solar principal plane (SPP). In total, the back-scatter angles showed better VI

behavior than the forward-scatter angles. The correlation coefficient of VIs with aerial

N uptake increased with decreasing VZAs. The best linear relationship was integrated

with the optimized common indices DIDA and DDn to examine dynamic changes in

aerial N uptake; this led to coefficients of determination (R2) of 0.769 and 0.760 at

the −10◦ viewing angle. Our novel area index, designed the modified right-side peak

area index (mRPA), was developed in accordance with exploration of the spectral

area calculation and red-edge feature using the equation: mRPA = (R760/R600)
1/2 ×

(R760-R718). Investigating the predictive accuracy of mRPA for aerial N uptake across

VZAs demonstrated that the best performance was at −10◦ [R2 = 0.804, p < 0.001,

root mean square error (RMSE)= 3.615] and that the effect was relatively similar between

−20◦ to +10◦ (R2 = 0.782, p < 0.001, RMSE = 3.805). This leads us to construct

a simple model under wide-angle combinations so as to improve the field operation

simplicity and applicability. Fitting independent datasets to the models resulted in relative

error (RE, %) values of 12.6, 14.1, and 14.9% between estimated and measured aerial N

uptake for mRPA, DIDA, and DDn across the range of−20◦ to+10◦, respectively, further

confirming the superior test performance of the mRPA index. These results illustrate that

the novel index mRPA represents a more accurate assessment of plant N status, which

is beneficial for guiding N management in winter wheat.
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INTRODUCTION

Nitrogen (N) is a vital element for higher photosynthetic
functioning; N resource management is a major factor that can
enhance plant growth and influence the quality of plant crops
(Woodard and Bly, 1998; Smil, 2002). To ensure productivity,
crop producers commonly supply plants in the field with N
fertilizers. N supply generally appreciably surpasses plant N
uptake, leading to the loss of nitrate through soil leaching,
increased greenhouse gas (N2O) emission, and ground water
pollution (Sehy et al., 2003; Ju et al., 2006). To minimize
potential N losses, N fertilizer should be applied at the correct
time and according to the requirements of the crops. The
development, therefore, of techniques which insure higher
yield and good product while reducing ecological environment
pollution attributed to unsuitable N application is essential.

In currently, remote sensing technique is among the most
promising approach that has been shown to rapidly predict the
spatial-temporal variability of crops and monitor crop growth
status (Hansen and Schjoerring, 2003; Ecarnot et al., 2013).
Many indices have been constructed by extracting characteristic
spectral information for evaluating biochemical properties in
crop plants (Hatfield et al., 2008; Ecarnot et al., 2013). Several
researchers have demonstrated a close relationship between
NDVI- and RVI-like spectral indices and aboveground N uptake
(Mistele and Schmidhalter, 2008; Li et al., 2013), chlorophylls
and carotenoids (Blackburn, 1998), canopy leaf biomass (Le
Maire et al., 2008). An additional group of vegetation indices
are constructed by the forms of three band combination. For
instance, Wang et al. (2012) added the 2×R423 band to the
NDVI (R703, R924) and effectively improved the sensitivity of leaf
nitrogen concentration (LNC) estimation in rice and wheat. Feng
et al. (2015) showed that the three-band spectral index (R759-
1.8 × R419)/(R742-1.8 × R419) was a good indicator of above
ground N uptake in wheat. A third group vegetation indices were
developed by area-based algorithm. These include the triangle
vegetation index (TVI) and modified TVI for green leaf area
index (LAI) (Broge and Leblanc, 2000; Haboudane et al., 2004);
the red-edge reflectance curve area for green biomass (Ren et al.,
2011); and the adjusted TVI for aerial N uptake (Li et al., 2013).
Additionally, remote sensing technology was also applied in the

Abbreviations: ASD, Analytical Spectral Devices; CARI, Chlorophyll absorption

ratio index; Chl a, Chlorphyll a; CIred-edge3, Red-edge chlorophyll index-3;

DDn, New double difference index; DIDA, Double-peak areas; DVI, Difference

vegetation index; EVI, Enhanced Vegetation Index; LAI, Leaf area index; LNC,

Leaf N concentration; LSDR, Left-side peak area; MCARI-1, Modified chlorophyll

absorption in reflectance index; mRER, Modified red-edge ratio; mRPA, Modified

right-side peak area index; MSR, Modified simple ratio; mSR705, Modified red-

edge ratio; MTVI1, Modified triangular vegetation index; N, Nitrogen; NAOC,

Normalized area over reflectance curve index; NDDA, Normalized difference

of the double-peak areas; NDRE, Normalized difference red-edge index; NDVI,

Normalized Difference Vegetation Index; NIR, Near infrared region; PSSRb,

Pigment specific simple ratio chlorophyll b; R2, Coefficients of determination;

RDVI, Re-normalized difference vegetation index; RE, Relative error; REFCA, Red

edge reflectance curve area; RMSE, Root mean square error; RSDR, Right-side

peak area; SAVI, Soil-adjusted vegetation index; SPAD, Soil and Plant Analyzer

Development; SPP, Solar principal plane; TCI, Triangular chlorophyll index; TVI,

Triangle vegetation index; UAV, Unmanned Aerial Vehicle; VI, Vegetation index;

VIopt, Optimal vegetation index; VZA, View zenith angle.

field of phenotype. Rothamsted Research reported that the data
collecting from Unmanned Aerial Vehicle (UAV) based remote
sensing could rapidly and accurately measure the wheat plant
height and growth rate (Holman et al., 2016). Andradesanchez
et al. (2014) investigated that the tractor-based phenotyping
system could acquire and record data for canopy temperature,
height and reflectance of cotton plants at much higher rates.
However, the canopy spectral reflectance was sampled only from
the vertical observation angle in prior researches, and the nadir
observation were difficult to extract spatial structure from the
middle and lower layers of plants (Thenkabail et al., 2000; Erdle
et al., 2011).

Compared with the nadir observations, multi-angle
observations contain more detailed and reliable canopy
structure information that permits effective monitoring of crop
N status in the middle and lower layers and provides a novel
approach for quantitative remote sensing (Pocewicz et al., 2007;
Huang et al., 2011). To date, many studies have shown that
multi-angle measurements could improve the performance of
indices when estimating the structural characteristics of ground
objects (Shibayama and Wiegand, 1985; Diner et al., 1999).
For instance, Galvão et al. (2009) showed that the varieties
of soybean could be distinguished with the best predictive
ability in the backward scattering direction. Gemmell and
McDonald (2000) showed that the performance of indices under
off-nadir angle can effectively discriminate forest cover and LAI.
Furthermore, some studies have used to multi-angular datasets
to assess plant variables, particularly biochemical components
(Hasegawa et al., 2010; Huang et al., 2011). The effect of indices
in estimating agronomic parameters and yields changes with
the LAI and VZAs (Gemmell and McDonald, 2000; Inoue et al.,
2008). Stagakis et al. (2010) focused on using satellite spectral
data to estimate chlorphyll a (chl a), chl b, and carotenoids
of semi-deciduous shrubs by utilizing different viewing angles
and narrow-band indices. He et al. (2016) developed a multi-
angular VI to enhance the estimation stability and accuracy of
leaf nitrogen concentrations. No matter what the understory
vegetation was (green or senesced) the relationships between
canopy or total LAI and NDVI or Enhanced Vegetation Index
(EVI) varied little across VZAs in pine forests (Pocewicz et al.,
2007). However, only a few researches systematically tested the
ability of multi-angle spectral data for predicting aerialN uptake
of wheat. Taken together, these studies report the construction of
a range of novel indices that use multi-angle datasets to enhance
the precision and robustness of prediction indices for plant
biophysical traits.

The specific aims of the paper were: to (1) study the
performance of ground-based spectra and common indices to
detect the aerial N uptake of winter wheat under different VZAs;
(2) construct an improved, novelVI for aerialNuptakeprediction;
(3) compare the aerial N uptake predictive ability of the novel
model with published VIs; and (4) establish the best observation
angle and the best estimation model for aerial N uptake. The
results of this study provide technical knowledge and a theoretical
basis for monitoring N status by remote sensing technology; the
information obtained from these techniques can then be used to
help guide appropriate N fertilization application of wheat.
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MATERIALS AND METHODS

Experimental Fields
The field experiments were designed over a 4-year period in
Zhengzhou and Shangshui city, China. The different locations,
N fertilizer rates, wheat cultivars, and growth seasons were used
(Table 1). Urea as N sources was divided into two equal doses,
one administered before seeding and the rest at jointing period.
Before seeding, 150 kg ha−1 P2O5 [as Ca(H2PO4)2] and 90 kg
ha−1 K2O (as KCl) were used to all treatments. The N treatments
with triplicates were assigned as completely random blocks in
the experiment. The density of the seedlings was 3.0 × 106

plants ha−1.

Data Acquisition
Measurement of Canopy Multi-Angular Hyperspectral

Reflectance
Canopy reflectance spectra were obtained in a 1 m2 area in
each plot under sunny and windless conditions between11:00 to
13:00 using an ASD (Analytical Spectral Devices Inc., Boulder,
CO, USA) FieldSpec Handheld spectrometer. This spectrum
instrument was equipped with 25◦-field-of-view optics fiber,
sampling interval of 1.6 nm and spectral resolution of 3.5 nm
from 325 to 1,075 nm. The multi-angle data are obtained with

a Field Goniometer System, which was designed based on
the system developed by Sandmeier and Itten (1999). The
goniometer is a device used to position a sensor at these different
angles and azimuths (Figure 1). The observed azimuth was fixed
relative to the direction of the sun, and the measured plane was
defined as the SPP (Myneni et al., 1995). The VZA was divided
into backward direction (the observation direction same to the
sun, −) and the forward direction (the observation direction
against to the sun, +); the nadir position was defined as 0◦. The
VZA from backward to forward direction is−60,−50,−40,−30,
−20,−10, 0, 10, 20, 30, 40, 50, 60◦. The VZA become larger from
0◦ to ±60◦, regardless of the backward and forward direction.
The 10 sites were averaged to a single spectral sample of each
plot. The black and base-line reflectance was calculated by a 40
× 40 cm BaSO4.

Plant Measurements
The areas of 0.20 m2 of plant samplings were randomly uprooted
from each test area almost simultaneously with the canopy
spectral acquisition. The plant samples were weighed after
desiccation in an oven at 70◦C to a constant weight. The
ovendried plants were grinded into powder (1mm) for N content
analysis in laboratory. The aerial nitrogen concentration was

TABLE 1 | The experimental conditions, N fertilizer levels, and measured stages.

Exp. No. Season and site Cultivar Soil characteristics Treatments Stages

Exp. 1 2012–2013

Zhengzhou city

Yumai 49–198

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 17.47 kg−1,

Soil pH (CaCl2): 7.9, Total N: 0.84 g kg−1,

NO3-N: 8.1mg kg−1, Available N:78.4mg kg−1,

Available P: 18.83mg kg−1,

Available K: 252.56mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2(240), N3(360),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Heading

Anthesis

Exp. 2 2013–2014

Zhengzhou city

Yumai 49–198

Zhengmai 9694

Type: fluvo-aquic soil, Organic-M: 16.8 g kg−1,

Soil pH (CaCl2): 7.8, Total N: 0.89 g kg−1,

NO3-N: 9.3mg kg−1,Available N:113.0mg kg−1,

Available P: 19.20mg kg−1,

Available K: 252.30mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2(240), N3(360),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Heading

Anthesis

Exp. 3 2013–2014

Shangshui city

Zhoumai 27 Type: lime concretion black soil,

Organic-M: 20.8 g kg−1, Soil pH (CaCl2): 7.1,

Total N: 1.36 g kg−1, NO3-N:14.1mg kg−1,

Available N: 93.2mg kg−1,

Available P: 4.92mg kg−1,

Available K: 176.1mg kg−1

N rate (kg ha−1): N0(0),

N1(180), N2 (240), N3(300),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Anthesis

Exp. 4 2014–2015

Zhengzhou city

Yumai 49–198

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 9.7 g kg−1,

Soil pH (CaCl2): 8.01, Total N: 0.71 g kg−1

NO3-N: 7.2mg kg−1, Available N: 64.6mg kg−1,

Available P: 28.8mg kg−1,

Available K: 101.7mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2 (240), N3(360),

N4(450), and 50% prior to

seeding and 50% at jointing

Jointing

Booting

Heading

Anthesis

Exp. 5 2014–2015

Shangshui city

Yumai 49–198 Type: lime concretion black soil, Organic-M: 21.7 g

kg−1, Soil pH (CaCl2): 8.06, Total N: 1.13 g kg−1,

NO3-N: 10.6mg kg−1, Available N: 85.7mg kg−1,

Available P: 13.1mg kg−1,

Available K: 111.3mg kg−1

N rate (kg ha−1): N0(0), N1

(120), N2 (240), N3(360),

and 50% prior to seeding

and 50% at jointing

Jointing

Booting

Anthesis

Exp. 6 2011–2012

Zhengzhou city

Yumai 49–198

Zhengmai9694

Type: fluvo-aquic soil, Organic-M: 10.6 g kg−1,

Soil pH (CaCl2): 7.9, Total N: 0.91 g kg−1,

NO3-N: 8.4mg kg−1, Available N: 82.0mg kg−1,

Available P: 25.6mg kg−1,

Available K: 124.5mg kg−1

N rate (kg ha−1): N0(0),

N1(120), N2 (240), N3(360),

and 50% prior to seeding

and 50% at jointing

Booting

Heading

Anthesis

Initial-

fillingMid-

filling
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FIGURE 1 | Dimensions and design of Field Goniometer System.

determined in line with the micro-Kjeldahl method (Isaac and
Johnson, 1976).

Construction of the New VI
The red edge is a region of steep variations in spectral reflectance,
and this value may provide some useful information on crop
growth and N status (Figure 2) (Sims and Gamon, 2002; Cho and
Skidmore, 2006; Hatfield et al., 2008; Feng et al., 2015). To date,
few area-based optimized indices have been constructed using
red-edge information for non-destructive, rapid assessment of
plant N status. Our preliminary research found that the double-
peak area parameters constructed based on analysis of the red-
edge double-peak characteristics could be effective for assessing
Leaf N concentration (LNC) (Feng et al., 2014). There are
several techniques to divide the red edge double-peak area
into the right-side peak area (RSDR) and the left-side peak
area (LSDR) (Figure 3). In this study, the datasets obtained
using a 0◦ observation angle in Exp. 1–5 were used to analyze
the relationship between LSDR, RSDR(from different splitting
methods), and aerial N uptake. The results showed that RSDR
(R760-R718) divided by characteristic wavelength method had
the best performance (R2 = 0.740, p < 0.001; Figure 4), which
suggested RSDR as potential indicator for estimating aerial N
uptake. The previous research showed that the ratios of two
or more bands (such as R801/R670, R801/R550) could increase
sensitivity to crop physiological traits and reduce variation
because of external influencial factors (Daughtry et al., 2000).
Haboudane et al. (2008) inserted the (R700/R670)

1/2 into the
TVI formula to decrease the combined impacts of the soil
background reflectance. We, therefore, inserted a coefficient [in
the form of (λ1/λ2)

1/2] into RSDR (R760-R718) to construct a
novel VI called the mRPA. The spectral region of the above λ1

and λ2 were located within 400 and 900 nm. Figure 5 gave a
comprehensive overview of the correlation coefficients for any
two band combinations (λ1, λ2), and this is valid for selecting
the sensitive bands of aerial N uptake. The wavebands λ1 and λ2

ranged between 750–900 and 550–650 nm, respectively. This area

FIGURE 2 | Schematic representation of red edge reflectance curve.

FIGURE 3 | The division of the whole red-edge double-peak area into left and

right single peak areas.

had the highest precision, with R2 values above 0.78, especially R2

performed best when λ1 = 760 nm, λ2 = 600 nm. Therefore, the
final formula of mRPA was:

mRPA = (R760/R600)
1/2

×(R760 − R718) (1)

Model Calibration and Validation
The datasets from Exp. 1–5 were used to construct the evaluating
models, and the dataset from Exp. 6 were used to validate these
aerial N uptake evaluating models. The correlation of aerial N
uptake and VIs was examined by MATLAB 7.0. In this study, 18
VIs were selected and summarized in Table 2. The quantitative
relationship between the optimal VI and aerial N uptake could
be established based on the highest R2. The model’s behavior was
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FIGURE 4 | The relationships of aerial N uptake to RSDR (A) and LSDR (B) at 0◦view zenith angle.

FIGURE 5 | Contour maps of coefficients of determination between aerial N uptake and the mRPA with formula (Rλ1/Rλ2)
1/2 × (R760-R718) (n = 155, p0.001 =

0.262).

evaluated by employing the R2, RMSE, and RE (%). Among the
indices, those with the highest R2 and the lowest RMSE and RE
were considered as the best. RMSE and RE were calculated from
actual and predicted values of samples according to Equations (2)
and (3), respectively:

RMSE =

√

√

√

√

1

n
×

n
∑

i=1

(Pi− Oi)2 (2)

RE(%) =

√

√

√

√

1

n
×

n
∑

i=1

(
Pi− Oi

Oi
)
2

× 100% (3)

Here, Pi, and Oi represented the estimated and measured values,
respectively, and n represented the sampling number. The
prediction was considered to be excellent if RE < 10%, good if
RE = 10–20%, fair if RE = 20–30%, and poor if RE > 30% (Feng
et al., 2014).
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TABLE 2 | Summary of selected vegetation indices published in the literature.

Spectral index Definition or equation Reference

TWO BANDS

Optimal vegetation index (VIopt) (1+0.45)×[(R800)
2+1)/(R670+0.45)] Reyniers et al., 2006

Difference vegetation index (DVI) R810− R560 Richardson and Wiegand, 1977

Re-normalized difference vegetation index (RDVI) (R800-R670)/(R800+R670 )
1/2 Roujean and Breon, 1995

Pigment specific simple ratio chlorophyll b (PSSRb) R800/R635 Blackburn, 1998

Modified simple ratio (MSR) [R800/R670-1]/[(R800/R670)
1/2 +1] Chen, 2014

Normalized difference red-edge index (NDRE) (R790-R720)/(R790+R720 ) Fitzgerald et al., 2006

Soil adjusted vegetation index (SAVI) (1-0.08)×(R825-R735)/(R825+ R735-0.08) Huete, 1988

Red-edge chlorophyll index-3 (CIred-edge3) R790/R720−1 Gitelson et al., 2005

THREE BANDS

Difference index of the double-peak areas (DIDA) (R755+R680-2×R718)/(R755-R680) Feng et al., 2014

New double difference index (DDn) 2×R710-R660-R760 Le Maire et al., 2008

Modified chlorophyll absorption in reflectance index (MCARI-1) 1.2×[(2.5×(R800-R670)−1.3×(R800-R550)] Haboudane et al., 2004

Modified triangular vegetation index (MTVI1) 1.2×[1.2×(R800-R550)−2.5×(R670-R550)] Haboudane et al., 2004

Modified red-edge ratio (mRER) (R759−1.8 × R419)/(R742−1.8 × R419) Feng et al., 2015

Modified red-edge ratio (mSR705) (R750-R455)/(R705-R445) Sims and Gamon, 2002

Modified right-side peak area index (mRPA) (R760/R600)
1/2×(R760-R718) This study

OVER THREE BANDS

SDr-SDb
∫ 760
680

dRλ
dλ

dλ −
∫ 530
490

dRλ
dλ

dλ Feng et al., 2008

Triangle vegetation index (TVI-3) 60 × (Rnir-Rgreen)−100×(Rred-Rgreen) Broge and Leblanc, 2000

Red-edge reflectance curve area (REFCA) SUM(Ri/R780) i = 680–780 Ren et al., 2011

R is the reflectance at a given wavelength. R800, R670, R635,...and R680 are the spectral reflectance values at 800, 670, 635..., and 680 nm, respectively. Rλ is the spectral reflectance

at wavelength λ.

RESULTS

Variability of Wheat Aerial N Uptake Under
Different Growth Stages
The datasets from Exp. 1 are shown in Figure 6 to illustrate
the general distribution of aerial N uptake. The aerial N uptake
of the two wheat cultivars increased in the vegetative period
because of increasing biomass. Across the different applied N
rates, the aerial N uptake of Yumai 49–198 ranged from 6.0–
23.5, 7.7–28.6, 8.1–32.2, and 8.9–35.1 g kg−1 in the jointing,
booting, heading, and anthesis stage, respectively. The aerial N
uptake of Zhengmai 9694 varied from 6.9–24.3, 9.3–25.1, 10.6–
27.1, and 13.4–31.2 g kg−1, respectively, in these stages. With
the progression of the growth stages, coefficients of variation for
aerial N uptake increased. Thus, it can be seen that the aerial
N uptake was significantly influenced by the different wheat
cultivars and growth period.

Relationship Between Canopy Reflectance
and Aerial N Uptake at Different VZAs
We plotted the correlation between canopy reflectance and aerial
N uptake under different VZAs with the data from Exp. 1–5
(Figure 7). In the 13 VZAs, a negative relationship was detected
between aerial N uptake and the reflectance in the 400–720 nm.
The minimum correlation coefficient was under 560–710 nm
(r<−0.57), caused by red valley and chlorophyll absorption.
The highest r-value was presented in the near infrared region
(NIR), and increased with decreasing VZA both in backward

and forward scattering. No matter in the backward and forward
scattering, the r sharply changed in the red band region (690–
760 nm), and it tended to 0 near 720 nm; this indicates that r from
this region was not sensitive to the VZA.

Relationship Between the Aerial N Uptake
and Spectral Indices at Different VZAs
Canopy spectral data of different VZAs were influenced by
numerous comprehensive factors including soil background,
meteorological conditions, leaves, stems, and spectral noise. In
this study, 18 spectral indices, including the new index and 17
published indices are presented in Table 2. Among them, the
common indices were chose in accordance with a comprehensive
literature investigation of red edge characteristics. To further
describe the ability of the spectral indices in assessing aerial N
uptake, we used the datasets from Exp. 1–5 to compare the
predictive ability. As shown in Table 3 the r from backward
scattering directions were higher than forward scattering
directions for most two-band indices (except for DVI and RDVI).
To the performance of 13 single VZAs, the relatively high
correlation coefficient within −40◦ to +30◦ was present. For
the well-performance VIs, the mRPA, DIDA, and DDn were
advantageous at a viewing angle of −10◦, with r scores of 0.896,
−0.877, and −0.872, respectively;CIred−edge3 and mSR705 were
most sensitive at the −20◦ viewing angle, with r scores of 0.776
and 0.771, respectively; PSSRb and MSR demonstrated the best
performance at the 0◦ viewing angle, with r scores of 0.808
and 0.789, respectively; SDr-SDb and TVI-3 had the higher
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FIGURE 6 | Variation in plant N uptake over jointing-anthesis growth stages in wheat cultivars of Yumai 49-198 (A) and Zhengmai 9694 (B).

FIGURE 7 | The correlation coefficient (r) between reflectance (Rx ) and aerial N uptake at 13 viewing zenith angles (A: backward scattering, B: forward scattering) (n =

155, p0.001 = 0.262).

correlations at the+10◦ viewing angle, with r scores of 0.814 and
0.809, respectively. Notably, eight of 18 indices produced the best
correlations at the −10◦ viewing angle. These results illustrate
that the around −10◦ VZA may be the most suitable for aerial
N uptake estimation.

The four indices [mRPA, the two best-performing common
indices (DIDA and DDn, and average (corresponding average
value of 18 VIs at different VZAs, shown as average)] based
on the R2 values of the correlations between VIs and aerial
N uptake were plotted in Figure 8. The results demonstrated
that R2 increased with decreasing VZA in both backward and
forward scattering directions, and the highest R2 were obtained
under −20◦ to +10◦ VZAs. DIDA, DDn, and mRPA had strong
correlations (R2 > 0.72) to aerial N uptake in this region.
Nevertheless, the average did not show any strong correlations
with aerial N uptake (R2 < 0.66). Compared with the average
from−20◦ to+10◦ VZAs, the R2 of mRPA, DIDA, and DDn was
increased by 21.3–23.9, 15.3–18.8, and 14.4–17.6%, respectively.

Suitable Combined Angles for Aerial N
Uptake Assessment Using VIs
To ascertain the suitable range of VIs to the mRPA, R2 and
RMSE were selected to compare different angle combinations.
As showed in Figure 9, the performance of the R2 and RMSE
in the back scattering direction (R2 = 0.426–0.804, p < 0.001)
were superior to those in the forward view angles (R2 = 0.337–
0.775, p < 0.001). Among the 13 VZAs, −20◦ to +10◦ VZAs
showed significantly higher predictive ability (high R2 and small
RMSE), and the most significant viewing angle was found to be
−10◦, with an R2 and RMSE of 0.804 and 3.615, respectively.
Figure 10 revealed that these combinations including large VZAs
combinations generated relatively poor correlations. There was
a dominant region in range of −10◦ to 0◦ (R2 = 0.796), and
the predictive ability of mRPA in −20◦ to +10◦ combination
was also relatively high (R2 = 0.782). When the VZA was out
of −40◦ to +20◦, the predictive accuracy was relatively low (R2

< 0.740). A comparison of VIs (Figure 11) demonstrated that

Frontiers in Plant Science | www.frontiersin.org 7 May 2018 | Volume 9 | Article 675

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Guo et al. mRPA for N Uptake Estimation

TABLE 3 | The correlation coefficient (r) for the relationships of vegetation indices with aerial N uptake at different viewing zenith angles (n = 155, p0.001 = 0.262).

−60◦
−50◦

−40◦
−30◦

−20◦
−10◦ 0◦ 10◦ 20◦ 30◦ 40◦ 50◦ 60◦

TWO BANDS

VIopt 0.560 0.644 0.732 0.795 0.831 0.858 0.855 0.829 0.764 0.712 0.643 0.531 0.390

DVI (810,560) 0.548 0.627 0.711 0.779 0.806 0.832 0.828 0.823 0.811 0.791 0.719 0.624 0.493

RDVI (800,670) 0.535 0.591 0.672 0.743 0.781 0.827 0.825 0.808 0.803 0.763 0.694 0.599 0.475

PSSRb 0.490 0.641 0.715 0.765 0.795 0.802 0.808 0.753 0.710 0.679 0.624 0.539 0.412

MSR 0.460 0.571 0.655 0.718 0.761 0.787 0.789 0.752 0.685 0.627 0.540 0.423 0.306

NDRE 0.602 0.683 0.732 0.759 0.774 0.778 0.779 0.760 0.738 0.715 0.689 0.646 0.583

SAVI (825,735) 0.565 0.660 0.706 0.742 0.765 0.764 0.758 0.749 0.734 0.715 0.687 0.643 0.587

CIred-edge3 0.558 0.670 0.726 0.758 0.776 0.766 0.753 0.748 0.728 0.702 0.674 0.626 0.552

THREE BANDS

DIDA −0.699 −0.736 −0.792 −0.828 −0.853 −0.877 −0.871 −0.869 −0.842 −0.818 −0.789 −0.752 −0.672

DDn −0.656 −0.715 −0.786 −0.827 −0.850 −0.872 −0.867 −0.865 −0.838 −0.812 −0.784 −0.724 −0.614

MTVI1 0.411 0.484 0.577 0.671 0.722 0.756 0.781 0.785 0.771 0.724 0.635 0.519 0.387

mRER 0.592 0.601 0.603 0.632 0.705 0.780 0.777 0.775 0.712 0.679 0.674 0.616 0.558

mSR705 0.504 0.643 0.719 0.753 0.771 0.769 0.749 0.713 0.674 0.653 0.612 0.534 0.407

mRPA 0.653 0.738 0.816 0.857 0.879 0.896 0.893 0.880 0.853 0.823 0.783 0.711 0.578

OVER 3 BANDS

DD 0.656 0.689 0.759 0.807 0.835 0.868 0.862 0.857 0.847 0.821 0.772 0.701 0.588

SDr-SDb 0.486 0.573 0.661 0.740 0.775 0.787 0.798 0.814 0.802 0.762 0.678 0.570 0.434

TVI-3 0.457 0.546 0.637 0.723 0.761 0.789 0.808 0.809 0.800 0.761 0.676 0.565 0.426

REFCA −0.609 −0.655 −0.703 −0.736 −0.754 −0.750 −0.748 −0.741 −0.704 −0.695 −0.661 −0.621 −0.566

FIGURE 8 | Relationship between aerial N uptake and DIDA, DDn, mRPA, and

average (corresponding average value of 18 VIs at different VZAs, shown as

average) at different VZAs (n = 155, p0.001 = 0.262).

the mRPA (R2 = 0.782 and 0.734) at −20◦ to +10◦ and −30◦

to+20◦ VZAs were more sensitive than the two best-performing
published index DIDA (R2 = 0.740 and 0.712) and DDn (R2 =
0.726 and 0.701). Figure 12 showed the quantitative relationship

FIGURE 9 | Comparison of the prediction power of mRPA at 13 VZAs in terms

of aerial N uptake (n = 155, p0.001 = 0.262).

between aerial N uptake and mRPA. The R2 increased from 0.734
(from −30◦ to +20◦ combination) to 0.782 (from −20◦ to +10◦

combination). Compared to the −10◦ VZA having the highest
R2 value, mRPA in−20◦ to+10◦ combination only had a slightly
decreased R2 (2.7%) and an increased RMSE (5.2%). As a result,
the novel mRPA model is the most forceful index for assessing
aerial N uptake because of its insensitivity to VZAs of −20◦ to
+10◦, increasing the practicality of mRPA in actual production
process.
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FIGURE 10 | Comparison of the predictive ability (R2) of the indices within different view zenith angles combinations in terms of aerial N uptake.

Testing Aerial N Uptake Estimation Models
The relationship between aerial N uptake and the spectral
indices (across −20◦ to +10◦ VZAs) discussed above were
measured utilizing data from Exp. 6 using R2, RMSE, and RE
to evaluate the accuracy and applicability between observed
and predicted values. Data analysis was carried out on
the common best-performing VIs DIDA and DDn, and on
the novel index mRPA (Figure 13). The DIDA and DDn
showed acceptable performance in the tests, with R2 of 0.804,
RE of 14.1%, and a RMSE of 2.464 for DIDA and R2

of 0.792, RE of 14.9%, and a RMSE of 2.554 for DDn;
this also indicates that DIDA is a better indicator than
DDn. Compared with these two common indices, the mRPA
demonstrated the superior predictive ability of aerial N uptake,
with R2 of 0.825, RE of 12.1% and RMSE of 2.190. In
summary, mRPA seems to be the best index for predicting
aerial N uptake of winter wheat under different management
conditions.

DISCUSSION

Remote sensing technology is widely used in agricultural
production. It mainly includes the following aspects: crop growth
measuring (e.g., biomass, N content, and yield), agricultural
disaster monitoring (e.g., plant diseases and insect pests,
droughts and floods) and crop phenotyping (e.g., crop height,
leaf size, shape, and canopy longevity), and so on (Le Maire
et al., 2008; Cao et al., 2015; He et al., 2016; Holman et al.,
2016; Virlet et al., 2017), which could provide technical support
for production management. However, spectral reflectance has
previously been shown to be significantly affected by canopy
structure, planting density, the wind, the angle of the sun,
and various other factors (Rondeaux et al., 1996). To extract
exact information for different characteristics and improve the
detection precision, area calculations have been introduced to
reduce the background effects (Broge and Leblanc, 2000; Ren
et al., 2011; Li et al., 2013). Delegido et al. (2010) developed
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FIGURE 11 | Comparison of the predictive ability of the indices within five kinds of view zenith angles combinations in terms of aerial N uptake.

FIGURE 12 | Comparison of the prediction power of mRPA at different VZA combinations in terms of aerial N uptake. (A) −30◦ to +20◦ and (B) −20◦ to +10◦.

the normalized area over reflectance curve index (NAOC) and
this index showed a linear relation with chlorophyll content.
The normalized difference of the double-peak areas (NDDA)
was calculated and discovered to correlate strongly with LNC
(Feng et al., 2014). Broge and Leblanc (2000) found that the
TVI (constructed by the area under the concave curve of red
light absorption) could effectively assess the chlorophyll content
and LAI. The chlorophyll absorption integral infers chlorophyll
concentration through calculating the surrounding area between
a connecting line of 600 and 735 nm and the red edge (Oppelt
and Mauser, 2004). In this study, five of 17 VIs have previously
been constructed using the area-based algorithm. Among them,

DIDA, SDr-SDb, and TVI had significant correlations with
aerial N uptake, with r-values of −0.877, 0.814, and 0.809,
respectively, at their advantageous viewing angles (−10, 10, and
10◦, respectively). The best-performing common index DIDA
had strong correlations (R2 > 0.74) to aerial N uptake within
−20◦ to +10◦ VZAs. In addition, DIDA showed acceptable
performance in the tests, with R2 of 0.804, RE of 14.1% and
a RMSE of 2.464. The above results showed that the VIs
constructed by area algorithm could potentially be used to
precisely predict aerial N uptake.

Many vegetation indices have been also constructed, including
those NDVI-, RVI-, and DVI-like spectral indices, or other
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FIGURE 13 | Comparison between estimated and measured aerial N uptake based on DIDA (A), DDn (B), and mRPA (C) for −20◦ to +10◦ combinations (n = 252, p

< 0.001).

derived functions to enhance accuracy of estimating models
(Huete, 1988; Wang et al., 2012). Baret and Guyot (1991)
and Rondeaux et al. (1996) constructed the transformed soil-
adjusted vegetation index (TSAVI) and optimized SAVI (OSAVI)
by adding soil line parameters into NDVI to decrease the
sensitivity of the soil background reflectance at low LAI.
In order to reduce the combined influences of the canopy
non-photosynthetic materials and increase the sensitivity of
chlorophyll concentration determination, Daughtry et al. (2000)
added the R700/R670 to the chlorophyll absorption ratio index
(CARI) to obtain modified CARI. Haboudane et al. (2008)
brought the (R700/R670)

1/2 into the TVI to construct the
triangular chlorophyll index (TCI) to increase its sensitivity of
chlorophyll changes. These studies inspired us to develop a
novel index by adding a coefficient. We attempted to derive the
coefficient by combining different bands in a square root form.
Finally, R760 and R600 were selected from different combinations
of bands and changed into the form of (R760/R600)

1/2. This was
integrated with RSDR (760,718) to construct the mRPA, and
this novel VI had a high correlation coefficient within −20◦ to
+10◦ VZAs (R2 = 0.782).The mRPA makes the best of area
algorithms and red-edge information, and effectively improves
the monitoring accuracy of aerial N uptake.

The vegetation indices displayed anisotropy depending on the
canopy structural development, shadowing, the view angles of
the sensors, the inherent viewing geometry of sensors, and in
some respects the underlying soil (Kimes et al., 1985). Vegetation
indices merging into multiple VZAs had the potency to further
enhance anisotropy estimation. Pocewicz et al. (2007) took full
advantage of the hotspot effect in the backscatter direction to
improve quantitative estimation of LAI. Galvão et al. (2009)
highlighted that the back-scattering direction was suited to
predict the yield of soybean. He et al. (2016) showed that
the novel VI constructed by a four-band VI from two angles
(−20◦ and +10◦) was sensitive to the change of the LNC in
wheat. In this study, the back scattering direction improved
indices performance for aerial N uptake compared with the
forward scattering direction. The main reason may be that
back scattering observations contain more signals from sunlit

branches or leaves with higher reflectance values, while forward-
scatter observations derive mostly from shady branches/leaves
with lower reflectance values (Stagakis et al., 2010). In addition,
our results showed that the R2 increased with decreasing view
zenith angles in back and forward-scatter direction. This was
mainly because that the spectral data obtained at small angles
mainly includes the total plant characteristics (lower, middle, and
upper) of wheat. In general, sampling involving upper, middle,
and lower wheat leaf layers could determine the aerial N uptake
of the target region. In summary, further survey analysis on the
variations of relationships between canopy attributes and remote
sensing observations and on the availability off-nadir in fetching
information is recommended.

Multi-angular remote sensing is able to obtain three-
dimensional vegetation structure information, and thus it is
better than vertical measurement for monitoring the canopy
structural properties and the biochemical component of ground
objects (Pocewicz et al., 2007). Rautiainen et al. (2008)
demonstrated that high VZAs are the best fit for detecting
over-story LAI values because of the quite limited influence
of bottom layer on the whole signal. The value of canopy
chlorophyll inversion index(CCII) at ±50 and ±60◦, ±30 and
±40◦, and nadir,±20 and±30◦, VZAs were selected for inverting
the chlorophyll at the upright upper, middle and bottom layer
(Huang et al., 2011). Song et al. (2016) showed that −40◦ VZA
was suitable to effectively monitor the LNC of wheat. This study
showed that the R2 of mRPA changed strongly with VZAs,
which the highest R2 value was found at −10◦ VZA (R2 =

0.804). The mRPA within −10◦ could improve the monitoring
accuracy of aerial N uptake. However, it is not convenient to
accurately control measuring angle under off-nadir conditions in
the field operation. Our research found that mRPA was relatively
insensitive between−20◦ and+10◦ VZAs region for R2 changes.
A comparison among spectral parameters demonstrated that
performance of mRPA in −20◦ to +10◦ combined dataset was
superior to the two better published indices, with R2 of 0.782
for mRPA, 0.750 for DIDA, and 0.736 for DDn, respectively.
Compared to themost sensitive VZA (−10◦), mRPAwithin−20◦

to+10◦ VZAs only had a slightly reducedR2 (2.7%). This allowed
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us to construct a unified model in variable VZAs range to assess
aerial N uptake in wheat, which decrease the influence of the
VZAs and increase the field operation simplicity and applicability
in a wide-angle region using portable monitors. Therefore, it is
vital to select appropriate VI formulas and VZAs, which could
reduce the variance due to soil background and crop canopy
structure. In summary, the novel index plays an important role in
predicting aerial N uptake of wheat and could be utilized to more
precisely regulate N fertilization rate for different cultivation sites
and plant types.

In this study, the novel index mRPA had the higher predictive
ability with range of −20◦ to +10◦. This can not only provide
optimized parameters for the development of the portable
monitor, but also offer dynamic information for guiding precise
N budgeting. In order to obtain higher yield and avoid wasting
resources, it is important to consider crop-N demand as well
as soil-N supply to optimum N fertilizer strategy (Ju et al.,
2009; Hartmann et al., 2015). The N fertilizer requirement was
calculated using the following formula: Nreq = (Ntarget –Nuptake –
Nsoil)/fNUE, where Ntarget is the total crop-N demand for a target
yield and grain protein, calculated according to Angus (2001),
Nuptake is the aerial N uptake, Nsoil is the potential soil-N supply
for the rest of the growing period, and fNUE is the fertilizer-N
use efficiency. The mRPA model developed in this study could
effectively estimate Nuptake, which will contribute to managing
the N application in winter wheat. The prediction power of VIs
was affected by cultivation factors. Only if the VI was seldom
influenced by the factors of cultivation, the applicability of the
model was strong. We synthesized dataset from the vegetative
growth stages to develop a unified model that could be easily
used to assess the N status. However, this research was designed
only on winter wheat in Henan province, the dependability and
adaptability of this novel model ought to be tested in other crops
and areas.

CONCLUSIONS

Timely assessment of aerial N uptake is important to
diagnose crop N status, maximizing yields and minimizing
disadvantageous environmental impacts. In this study, we
compared the use of 18 VIs, including 17 common VIs and
a novel index constructed in this study, to estimate aerial N
uptake of wheat. The results demonstrated that back scattering

observation angles improved the ability to predict aerial N
uptake compared with forward-scatter viewing angles VZAs.
To decrease the restrictions on the environmental conditions
and to further explore the superiority of spectral information,
we combined the advantages of red-edge characteristics and
area-based algorithms to construct a novel index mRPA to
illuminate dynamic changes in aerial N uptake. The novel VI
have the characteristic of simplicity and reliability and could be
developed according to the formula: mRPA = (R760/R600)

1/2

× (R760-R718). Compared with the best-performing traditional
indices DIDA and DDn, the predictive ability of mRPA at
−10◦ view angle was effectively enhanced by 4.6–5.8%. Further
systematic analysis of VZA combinations showed that mRPA
had the best forecasting ability when compared with the
traditional indices, with small difference between combinations
of −20◦ to +10◦. This has guided us in the development of
a unified model for forecasting the aerial N uptake of wheat
across a wide angle range; this will increase the precision of N
predictions under a range of angles using portable monitors.
The integrated index mRPA was shown to be practical and
exact for aerial N uptake evaluation of winter wheat. This
result will be also beneficial for choosing appropriate VZA
and for the construction of more precise sensors for ecosystem
monitoring. Nonetheless, it is also need to further validate
the reliability and stability of the novel VI and to examine
its effectiveness under the condition of different cultivation
environment.
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