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Mass spectrometry based imaging is a powerful tool to investigate the spatial distribution
of a broad range of metabolites across a variety of sample types. The recent
developments in instrumentation and computing capabilities have increased the mass
range, sensitivity and resolution and rendered sample preparation the limiting step for
further improvements. Sample preparation involves sectioning and mounting followed
by selection and application of matrix. In plant tissues, labile small molecules and
specialized metabolites are subject to degradation upon mechanical disruption of plant
tissues. In this study, the benefits of cryo-sectioning, stabilization of fragile tissues and
optimal application of the matrix to improve the results from MALDI mass spectrometry
imaging (MSI) is investigated with hydroxynitrile glucosides as the main experimental
system. Denatured albumin proved an excellent agent for stabilizing fragile tissues such
as Lotus japonicus leaves. In stem cross sections of Manihot esculenta, maintaining the
samples frozen throughout the sectioning process and preparation of the samples by
freeze drying enhanced the obtained signal intensity by twofold to fourfold. Deposition of
the matrix by sublimation improved the spatial information obtained compared to spray.
The imaging demonstrated that the cyanogenic glucosides (CNglcs) were localized in
the vascular tissues in old stems of M. esculenta and in the periderm and vascular
tissues of tubers. In MALDI mass spectrometry, the imaged compounds are solely
identified by their m/z ratio. L. japonicus MG20 and the mutant cyd1 that is devoid
of hydroxynitrile glucosides were used as negative controls to verify the assignment of
the observed masses to linamarin, lotaustralin, and linamarin acid.

Keywords: hydroxynitrile glucoside, cyanogenic glucoside, matrix assisted laser desorption ionization, MALDI,
Manihot esculenta, Lotus japonicus

INTRODUCTION

Plants synthesize a diverse range of specialized metabolites to fend off herbivores and pests and
to communicate with the environment (Møller, 2010; Neilson et al., 2013). In addition, some
specialized metabolites like cyanogenic glucosides (CNglcs) may serve as storage and transport
forms of reduced carbon and nitrogen used to fine tune primary metabolism (Jenrich et al., 2007;
Picmanova et al., 2015; Nielsen et al., 2016; Bjarnholt et al., 2018). Understanding these interactions
is key to developing robust crop plants for the future.
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Mass spectrometry imaging (MSI) is a powerful technique
to guide elucidation of the functional properties of specialized
metabolites in nature by enabling determination of their
precise cellular localization based on their molecular mass
(Shroff et al., 2008; Hamm et al., 2010; Li B. et al., 2011; Sarsby
et al., 2012; Li et al., 2013; Becker et al., 2014; Bjarnholt
et al., 2014; Hölscher et al., 2014; Boughton et al., 2015;
Shroff et al., 2015; Jarvis et al., 2017). Recent technological
advances have provided increased sensitivity and improved mass
and spatial resolution of their localization (Li et al., 2013;
Boughton et al., 2015). Current, approaches to MSI for the
spatial measurement of low mass natural products and their
metabolites are dominated by Matrix Assisted Laser Desorption
Ionisation (MALDI) (Boughton et al., 2015; Boughton and
Hamilton, 2017; Weber et al., 2017). For small molecule
analysis in complex matrices, the inability to distinguish between
the presence of near-isobaric compounds with similar mass-
to-charge (m/z) ratios provides a significant challenge for
mass spectrometry (MS) based identification. Ultra-high mass
resolution by MALDI – Fourier Transform Ion Cyclotron
Resonance-MS (FTMS) provides significant advantages, using
both high mass accuracy to identify the molecular formula
(typically less than 2 ppm mass error) and ultra-high mass
resolution to resolve metabolites with similar m/z (utilizing
resolving powers >100,000).

Mapping of labile bio-active natural products to specific
cells and tissue-types requires new instrumental and sample
preparation methods. This is because the fixation and preparation
processes may result in loss or structural degradation of the
metabolites, either removing them entirely or decreasing their
relative concentrations in the tissue or altering their cellular
localisation by diffusion. Hydrolysis of glycosylated natural
products during preparation for MALDI-MSI is attributed
to the presence of glycosidases which during sectioning and
processing are brought into contact with their otherwise
compartmentalized substrates as demonstrated for many two
component defense systems like those based on CNglcs
(Morant et al., 2008). To stabilize tissues between the inherent

time difference between sampling and preparation, tissues
are generally flash-frozen and stored to retain the structure
and distribution of endogenous metabolites prior to analysis.
Frozen tissues require cryo-sectioning to generate thin tissue
sections which are then generally thaw-mounted directly
to a target suitable for analysis. For frozen plant samples
containing CNglcs, the cryo-sectioning and freeze-thaw steps
disrupt the cellular structures and results in mixing of the
CNglcs with β-glucosidase enzymes leading to hydrolysis. This
lowers signal intensity and impairs the spatial distribution
analyses.

Here we present a novel broad based technique to embed,
prepare, section, and mount plant tissue suitable for LDI
and MALDI-MSI. The technique circumvents hydrolysis and
diffusion of labile glycosides. The method was developed
using Manihot esculenta (cassava) with the aim of being
able to accurately monitor the distribution of CNglcs in
different tissues at ultra-high mass resolution using FTMS.
M. esculenta produces the two mono-CNglcs, linamarin (1)
and lotaustralin (2), a number of cyanogenic di-glcs and
apiosides as well as structurally related amides, acids (3) and
anitriles (Picmanova et al., 2015; Figure 1), with the latter
three being intermediates in the hypothesized endogenous
turn-over pathways of CNglcs (Nielsen et al., 2016; Bjarnholt
et al., 2018). A second CNglc producing species, Lotus
japonicus, was used to verify the developed technique. This
species produces both linamarin and lotaustralin and the non-
cyanogenic hydroxynitrile glucosides rhodiocyanosides A (4)
and D (5) (Bjarnholt and Møller, 2008). A non-cyanogenic
L. japonicus mutant (cyd1) harboring a non-functional CYP79A1
enzyme was also included in the present study and provided
an experimental negative control system (Takos et al., 2011).
Whereas linamarin is the main CNglc present in cassava
(Nartey, 1968; Koch et al., 1992; Lykkesfeldt and Møller, 1994),
lotaustralin is the main CNglc in L. japonicus (Forslund et al.,
2004).

Cyanogenic glycosides (CNglcs) are specialized metabolites
widely distributed throughout the plant kingdom (Gleadow and

FIGURE 1 | Structures of hydroxynitrile glucosides and their endogenous turn-over products in Manihot esculenta (Me) and Lotus japonicus (Lj).
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Møller, 2014). They are α-hydroxynitrile glycosides and as noted
above form part of a two-component defense system detonated
by a specific β-glucosidase that releases a hydrogen cyanide bomb
upon disruption of the cellular structure, e.g., as mediated by
a feeding herbivore (Figure 2; Morant et al., 2008). CNglcs are
formed from amino acids which in the general pathway are
converted into α-hydroxynitriles (cyanohydrins) by the action of
two membrane bound cytochrome P450s and then via the action
of glycosyltransferases converted into mono and di-glycosides
(Conn, 1969).

Once considered to function only as components of plant
chemical defense systems, it has become apparent that CNglcs
contribute to enhance plant (Møller, 2010; Gleadow and Møller,
2014). They show species-specific chemical profiles and patterns
of localization, both of which can change during plant ontogeny
(Halkier and Møller, 1989; Adewusi, 1990; Koch et al., 1992;
Nambisan and Sundaresan, 1994; Nielsen et al., 2016). Little is
known about how plants balance biosynthesis, transport, storage,
and turnover of CNglcs and how this is influenced by changing
environmental conditions. Localisation of CNglcs and related
metabolites with high spatial resolution within a range of tissues
may be able to help shed light on some of these areas.

RESULTS

Sectioning and Embedding Method
The preparation of plant tissues for mass spectrometric imaging
required modifications when compared to standard procedures
used with animal cells (Norris and Caprioli, 2013; Spengler,
2015). The rigid structure of the plant cell wall, the high
intracellular water content and presence of large vacuoles render
frozen sections of most plant tissues delicate to handle and prone
to fracturing. To bypass this physical property, sections of a
thickness above 35 µm were prepared to reduce breakage. For
M. esculenta stem and tuber samples, section thicknesses of 40
and 60 µm, respectively, offered the best overall analytical details.
In the case of L. japonicus leaves, a tissue thickness of 40 µm
provided the best sections for analysis. Sections were mounted
onto glass slides using either a standard ‘freeze-thaw’ approach
or a ‘freeze-dry’ approach where frozen sections were transferred
onto carbon double sided tape prior to freeze-drying.

Due to the relatively thin and delicate structural nature of
leaves, it is not possible to section intact frozen leaves without
prior imbedding. Sturdier plant tissues, such as the stems

and tubers of M. esculenta plants used in this study may be
sectioned without imbedding. In this study, we exploited the use
of denatured albumin as an inexpensive and readily available
embedding medium for fine tissue structures. The leaf material
was sandwiched between two pieces of denatured albumin, then
gently frozen over a surface of liquid nitrogen and sectioned.
This approach offered leaf tissue sections suitable for MALDI-
MSI analysis due to the very low background from the albumin,
ease of handling and good sectioning properties (Kellersberger
et al., 2011, 2012). Albumin contains very few small molecules
that could interfere with any MALDI analysis, being made up
of water (88–90%), protein (10–12%), and carbohydrate (0.24%)
and containing almost no lipid.

Matrix Deposition Strategies Affect
Distribution of Compounds
Matrix selection and deposition is an essential part of MALDI-
MSI. 2,5-Dihydroxybenzoic acid (DHB) was chosen as matrix
since it has been shown to work well with low molecular
mass molecules such as nucleotides, peptides, lipids, and
saccharides in positive ion mode (Zaima et al., 2010). Two
deposition technologies were tested: Spray (wet) and sublimation
(dry).

Sections were first mounted using a freeze-dry method and
analyzed by MALDI-MSI. Initially, we focussed on measuring
the distribution of linamarin reported as the most abundant
CNglc in the M. esculenta tissue using wide mass range profiling
(Nartey, 1968; Lykkesfeldt and Møller, 1994; Selmar, 1994).
Linamarin was predominantly observed as the potassium salt
[M+K]+ at m/z 286.06873 (calc. 286.06875, 0.05 ppm mass
error) with a relatively low response compared with other
endogenous metabolites (data not shown). The presence of the
potassium salt agrees with previous findings (Kebarle, 2000;
Kristensen et al., 2005). In the vacuole, the concentration
of potassium ions may reach 500 mM (de Lacerda et al.,
2003; Kanto et al., 2012). To increase sensitivity for linamarin,
a method using Continuous Accumulation of Selected Ions
(CASI) scan across a narrow m/z range was employed to
filter highly abundant ions at different m/z. Vast differences
were observed in linamarin response and localisation when
comparing sections with DHB applied by either spray or
sublimation (Figure 3). Specifically, results from the sprayed
section showed a higher degree of tissue disruption and poor
resolution of linamarin distribution, including very low signal
(if any) in comparison to the signal obtained in equivalent

FIGURE 2 | Hydrolysis of the cyanogenic glucoside (CNglc) linamarin in M. esculenta and L. japonicus as a result of tissue disruption and the action of the
β-glucosidase linamarase to form the α-hydroxynitrile, acetone cyanohydrin. Acetone cyanohydrin is dissociated into hydrogen cyanide and acetone by the action of
an α-hydroxynitrile lyase. At alkaline pH, the latter process proceeds non-enzymatically.
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FIGURE 3 | Distribution of linamarin ([M+K]+ m/z 286.06873) in 40 µm sections of a M. esculenta stem excised approximately 5 cm from the apex and covered with
2,5-dihydroxybenzoic acid (DHB) either by TM spray (A,B) and sublimation (C,D). Data was not normalized, Scale represents 0–100% signal intensity. Bar: 500 µm.

areas of tissues when the matrix was applied by sublimation
(Figure 3).

Sample Mounting Techniques Affect
Metabolite Stability, Intensity, and
Distribution
In M. esculenta, hydrolysis of the CNglcs linamarin and
lotaustralin is catalyzed by linamarase, which is a highly
stable β-glucosidase (Elias et al., 1997). To determine the
stability and dislocation of CNglcs during the section mounting
process, two different mounting techniques were compared,
‘freeze-thaw’ and ‘freeze-dry’ using sequential sections from
the same tissue sample. For the mounting techniques, a
standard freeze-thaw mounting to glass slide followed by
vacuum drying was compared to mounting a frozen section
to carbon double-sided tape followed by freeze-drying. In both
treatments, sublimation with the matrix DHB was carried
out before CNglc analysis. The experimental material used
was M. esculenta stem tissues from young parts of the
M. esculenta plant excised 5 cm from the apex and from
older parts excised 5 cm above the soil surface. Images of
freeze-dried vs freeze-thaw mounted sections on both young
and older stem tissues were collected in the same analytical
instrument sequence to compare the localisation of linamarin

across the stem using the two different mounting techniques
(Figure 4). Results showed that the standard freeze-thaw
mounting approach led to an overall twofold to fourfold
decrease in linamarin ion intensity when compared to the
freeze-dried carbon tape based method in similar areas of
tissue (Figure 5). Overall, the results indicate that a significant
amount of the CNglc content is lost using the freeze-thaw
mounting technique compromising to some extent the ability
to accurately assess the distribution of linamarin in the tissue
section.

Distribution and Cyanogenic
Compounds in M. esculenta
Manihot esculenta stem sections from the upper and lower part
of the plant and from tubers proved to be useful proof of
concept samples for visualizing the differential distribution of
linamarin, lotaustralin [M+K]+ m/z 300.08435 (calc. 300.08439,
0.15 ppm error) and linamarin acid [M+K]+ m/z 305.06326
(calc. 305.06332, 2.16 ppm error). Linamarin and lotaustralin
were observed to be present and evenly distributed throughout
all tissue types of the young stem material except that the
concentrations were somewhat reduced in the central core. In
the sections from the older part of the stem, linamarin and
lotaustralin were restricted to the first cell rows of the cortex,

Frontiers in Plant Science | www.frontiersin.org 4 June 2018 | Volume 9 | Article 892

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-00892 June 26, 2018 Time: 16:29 # 5

Bøgeskov Schmidt et al. Imaging of Labile Glucosides

FIGURE 4 | The linamarin ([M+K]+ m/z 286.06873) signal obtained in 40 µm cross sections of M. esculenta stem excised 5 cm below apex (A,E) or 5 cm above soil
surfaced (C,G) mounted either by freeze-dry (A–D) or freeze-thaw methodology (E–H). Scale represents 0–100% normalized signal intensity.

to cells around the phloem and to the parenchymatous cells
surrounding the secondary xylem in the center of the stem
(Figure 6). For tubers, linamarin and lotaustralin was localized
to the periderm and vascular ring. Linamarin acid was found
predominantly in the epidermis of stems and was detectable
in the entire tuber but predominantly in the periderm. Cross-
sections and longitudinal sections of old stems showed the same
spatial distribution.

Testing of the Sample Preparation
Technique and Observed Masses in
Lotus japonicus
Once the stable MALDI-MSI preparation and sampling method,
utilizing the denatured albumin embedding and freeze-dry
method was established for M. esculenta, the techniques were
tested on L. japonicus tissue. In the wild-type, CYP79D3 catalyzes
the first committed step in CNglc biosynthesis in the leaves
(Forslund et al., 2004). The cyd1 mutant of L. japonicus does not
produce CNglcs because it contains a non-functional CYP79D3
(Takos et al., 2010). L. japonicus MG20 wildtype plants and cyd1
mutants were analyzed for ions expected to be the potassium
adducts of lotaustralin, linamarin, and rhodiocyanoside A/D
(observed [M+K]+ m/z 298.06944, calc. 298.06874, 2.33 ppm
error). The signals for these adducts were observed in wild-
type plants but were absent in the cyd1 mutant, thus linking
these ions to the in vivo presence of their respective metabolites
(Figures 7, 8). Linamarin, lotaustralin, and rhodiocyanoside A/D
appeared to localize to the epidermal layers on both sides of
the leaf. To further understand the role of the acid forms of
CNglcs, the localisation of linamarin acid and lotaustralin acid
were examined. An ion corresponding to the potassium adduct of
linamarin acid [M+K]+ m/z 305.06519 (calc. 305.0639, 4.23 ppm

mass error) was observed in both wild-type and cyd1. The
respective signal for the potassium adduct of lotaustralin acid was
not observed.

DISCUSSION

The classically assigned physiological function of CNglcs is
their action as defense compounds through cyanogenesis. The
defense response is activated when otherwise compartmentalized
CNglcs and hydrolytic enzymes are brought into contact
by tissue disruption (Morant et al., 2008). More recently
CNglcs have been attributed functions as transport and
storage forms of reduced nitrogen and as ROS scavengers
(Møller, 2010; Picmanova et al., 2015; Nielsen et al., 2016;
Bjarnholt et al., 2018), resulting in the transient formation
of the corresponding amides and carboxylic acids. Spatial
analysis by MSI may guide the understanding of the
orchestration of such functions at the tissue and cellular
level and result in the discovery of hitherto unrecognized new
functionalities.

The separation of CNglcs and hydrolytic enzymes is partly
disrupted upon tissue sectioning. In an aqueous cellular
environment, the β-glycosidases are active and may by simple
diffusion processes gain contact with and hydrolyse CNglcs
present. A recent report on MSI of CNglcs in flax (Linum
usitatissimum) seed noted the potential for rapid hydrolysis of
CNglcs but no measures to prevent this were provided (Dalisay
et al., 2015). We observed that the mounting technique and
method for application of matrix had a significant impact on
signal intensity and localisation of CNglcs in M. esculenta tissues
and we suggest keeping tissues frozen during all steps from
sampling until matrix application (Figure 9).
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FIGURE 5 | Box and dot plot of normalized linamarin ([M+K]+ m/z 286.06873) signal intensities in young and older 40 µm cross sections of a cassava stem
mounted either by the freeze-thaw method (FT) or freeze-dry method (FD). Red dots represent outliers.

Denatured albumin has previously been used in a number
of different applications including quantitation directly from
images (Kellersberger et al., 2011, 2012). A typical histological
approach involves embedment of tissues in an Optimal
Cutting Temperature (OCT) compound prior to freezing.
OCT compounds have been shown to smear across the
surface of tissues during cryo-sectioning and to significantly
suppress analyte signal (Schwartz et al., 2003). Other embedding
media including agar (Marques et al., 2014), gelatine (Ye
et al., 2013; Horn et al., 2014; Korte and Lee, 2014), and
carboxymethylcellulose (Yoshimura et al., 2012; Bencivenni et al.,
2014) are available and have been employed for a variety of
different tissue types. In general, aqueous gels or solutions have
a tendency to spread or wet surrounding tissue slices when
thawed, potentially reducing the spatial information obtained
and inducing the hydrolysis of labile compounds. We found that
handling the tissues while frozen and the inclusion of a freeze-dry
step circumvented these negative effects. Inclusion of a freeze-
dry step is recommended and would mitigate wetting if using
a gel based embedding medium. More recently, methods using
frozen gel embedding mediums and cryotape transfer have been
demonstrated in barley and quinoa seeds but require specific
cryotape (Gorzolka et al., 2016; Jarvis et al., 2017). The denatured
albumin embedding, section and freeze-dry method described
here presents a simple and low-cost alternative to the sample
handling procedures described above.

In a single scan of a tissue sample, full range unbiased MSI
offers an unprecedented account of the metabolic status with
spatial resolution reaching the cellular level. In the event of low
signal intensity for a desired analyte, the advanced features of

the Bruker SolariX system enable targeted CASI experiments and
trapping, increasing the sensitivity for individual metabolites.
The CASI based method applies a quadrupole filter thus
excluding competing ions from the detection cell. When coupled
to high mass resolution, the approach provides excellent analyte
signal intensity and capability to measure distribution of specific
metabolites of interest. This was documented in the studies of
the M. esculenta tissue samples, where the CASI based methods
provided the best result by excluding competing ions from the
detection cell increasing the sensitivity for the specific metabolites
in question greatly, particularly when testing different mounting
methods.

MALDI-MSI results for M. esculenta tubers demonstrated that
linamarin and lotaustralin are localized in the periderm and
vascular ring tissue (Figure 6). This pattern corresponds to earlier
findings using DESI-MSI on fresh sections and orthogonal LC-
MS on laser dissected tissues in which these CNglcs were also
found to be localized in these regions (Li et al., 2013). Extending
these previous finding, we show for the first time the localisation
of the CNglcs linamarin and lotaustralin in stems and the
presence of the endogenous turn-over product linamarin acid in
stems and tubers of M. esculenta. Localisation of CNglc pathway
transcripts and enzymes in M. esculenta stems have shown
the pathway to localize to vascular tissue, cortex, and around
the laticifers (Kannangara et al., 2011). The same localisation
patterns were found for linamarin and lotaustralin in the data
presented here (Figure 6). Linamarin acid is predominant in
the sections obtained from the older part of the stem, which
corresponds to the observations reported by Picmanova et al.
(2015). Other intermediates of the proposed CNglc turnover
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FIGURE 6 | Distribution of linamarin ([M+K]+ m/z 286.06873) (A–D), lotaustralin ([M+K]+ m/z 300.08435) (E–H), and linamarin acid ([M+K]+ m/z 305.06326) (I–L) in
40 µm sections of young (5 cm from apex) and old (5 cm from soil surface) M. esculenta stem section and in 60 µm sections of tuber, all mounted using the
freeze-dry method and sublimated with 2,5-DHB. Bars indicate 1 mm for all stem sections and 2 mm for all tuber sections. Scale represents 0–100% normalized
signal intensity.

pathway were not found but are generally present in very low
concentrations (Picmanova et al., 2015), potentially below the
limits of detection within this experiment. Glucosinolates—sulfur
containing defense compounds found in Brassicaceae species—
share similar initial biosynthetic steps and mode of bioactivation
(Bak et al., 1998; Ishida et al., 2014). Localisation studies of
glucosinolate biosynthesis and sulfur in stems of Arabidopsis
thaliana linked both to specific cells in the vascular tissues
(Koroleva et al., 2000; Li J. et al., 2011). The similar localisation
patterns for glucosinolates and CNglcs in the vascular tissue
might indicate they share even more functional parallels. The
localisation of linamarin and lotaustralin to the first row of cortex
cells and the vascular tissue in the older parts of the stem could
offer protection against both generalist herbivores and phloem
feeders.

In MSI, compounds are observed as their respective charged
ions and are then first putatively annotated by the accurate
mass match and the isotopic peak profile. Due to the possibility
of many metabolites possessing a similar mass, an orthogonal
technique, such as tandem-MS directly off tissue, LC-MS, NMR
or the use of prior information are required to confirm identity
(Boughton et al., 2015; McDonnell et al., 2015; Dias et al.,
2016). The presence of linamarin, lotaustralin and linamarin
acid have previously been identified using various orthogonal

techniques in both M. esculenta and L. japonicus (including
rhodiocyanosides A/D) (Forslund et al., 2004; Picmanova et al.,
2015; Nielsen et al., 2016; Bjarnholt et al., 2018), but their spatial
distributions have not been visualized using MALDI-MSI. In
L. japonicus, both a cyanogenic wild-type and an acyanogenic
mutant were available to test the sample preparation technique
developed with M. esculenta and to ensure that the observed
masses correspond to the CNglcs of interest and their related
metabolites. A simple comparison between the two types can
provide a clear statement (presence or absence) whether the
observed mass indeed correspond to the metabolite of interest.
One peculiar observation was the presence of linamarin acid in
both wild-type and the acyanogenic cyd1 mutant. This indicates
that linamarin acid may be formed by an additional route not
related to endogenous turn-over of linamarin.

The presented method provides a broadly applicable
preparation technique that enables imaging of plant metabolites
using MALDI-MSI. For labile metabolites acted upon by
hydrolysing enzymes it was found essential to halt enzymatic
action by freeze-drying. Likewise, dry sublimation based matrix
deposition significantly increased the metabolite signal above
the signal obtained using wet spray based matrix deposition
techniques. High mass accuracy, complementary LC-MS data
and the availability and use of biological control samples like
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FIGURE 7 | Presence of linamarin ([M+K]+ m/z 286.06873), lotaustralin
([M+K]+ m/z 300.08435), rhodiocyanoside A/D ([M+K]+ m/z 298.06944), and
linamarin acid ([M+K]+ m/z 305.06326) in 40 µm cross sections of Lotus
japonicus MG20 (A,C,E,G,I) and cyd1 (B,D,F,H,J) leaves mounted using the
freeze-dry method and sublimated with 2,5-DHB. Scale represents 0–100%
normalized signal intensity.

FIGURE 8 | Box and dot plot of normalized signal intensities of linamarin
([M+K]+ m/z 286.06873), lotaustralin ([M+K]+ m/z 300.08435),
rhodiocyanoside A/D ([M+K]+ m/z 298.06944), and linamarin acid ([M+K]+

m/z 305.06326) in 40 µm cross sections of L. japonicus MG20 and cyd1
leaves mounted using the freeze-dry method and sublimated with 2,5-DHB.
Red dots represent outliers.
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FIGURE 9 | Workflow diagram of preparation of tissue containing labile
compounds for mass spectrometry based imaging.

cyanogenic and acyanogenic cultivars provide independent
coupling of m/z values observed to the known presence or
absence of the labile metabolites. The advanced features of the
MALDI-FT-ICR-MSI allowed targeted analysis of plant tissue
metabolites with low abundancy, which would otherwise be
difficult to detect. MSI is a potent new technology but cannot
stand alone in structural identification of the constituents
present in the samples analyzed. Control images obtained
with reference compounds added to the dried tissue sample
offers an alternative to the use of mutants. Appropriate sample
preparation methodologies need to be adhered to in order to
gain trustworthy results.

EXPERIMENTAL PROCEDURES

Plant Material
Manihot esculenta (cassava) cultivar MAus7 (kindly provided by
Professor Roslyn Gleadow, Monash University, Melbourne) was
propagated from stem cuttings and grown in a greenhouse at a
30◦C/16 h day and 20◦C/8 h night regime. L. japonicus MG20
and cyd1 mutant seeds were provided by Dr. Daniela Lai and
the plants grown in a greenhouse at 21◦C day/16 h and 18◦C
night/8 h regime.

Tissue Preparation
Manihot esculenta stem (‘young’ tissue: 5 cm from apex, ‘old’
tissue: 5 cm above soil with stem diameters of approximately 4
and 8 mm) and tuber (with approximately diameter of 12 mm)
tissues were harvested directly from 3 to 5 months old plants
and immediately frozen in a 50 mL Falcon R© tube placed in
liquid nitrogen. Commercial chicken eggs were boiled and peeled.
The denatured egg white composed of albumin was collected.
Suitably sized pieces were then cut to size for embedding the
leaf sections. L. japonicus leaf samples were harvested directly
from the plant and embedded in a 2 cm cube of denatured
albumin (boiled egg-white). The albumin block was wrapped in
cellophane and frozen gently by placing it directly above a liquid
nitrogen surface. Tissues and the frozen blocks were mounted to a
chuck using Tissue-Tek R© Optimal Cutting Temperature (O.C.T.)
compound. Sections were cut at 35–60 µm thickness making sure
no OCT compound came into contact with the sectioned tissue.
For freeze-thaw mounting, sections were transferred onto pre-
chilled (kept in the cryomicrotome at −20◦C) Menzel–Gläser
Superfrost Ultra-Plus Glass slides then gently warmed from the
rear of the slide by pressing a finger until the glass was warm
enough for the section to thaw and attach to the slide. For
freeze-dried mounting, sections were transferred to pre-chilled
glass slides with mounted carbon double-sided tape (ProSciTech,
Thuringowa, QLD, Australia) and gently pressed onto the carbon
double-sided tape using a fine paintbrush. All slides prepared
with sections were kept frozen in a 50 mL Falcon R© tube placed
in liquid nitrogen and were freeze-dried overnight. Mounted
sections of both techniques were then stored in a vacuum-
desiccator at room temperature.

Matrix Deposition
To compare the different matrix deposition strategies, mounted
tissue sections were covered with 2,5-DHB (Sigma-Aldrich) using
either wet (spray) or dry (sublimation). Wet matrix deposition
was carried out using a HTX TM-Sprayer (HTX Industries,
Chapel Hill, NC, United States) fitted with a Shimadzu LC20-AD
HPLC pump (Shimadzu Australia, Rydalmere, NSW, Australia)
using the following settings: Flow rate: 0.1 mL/min; Gas flow rate:
10 L/min; Nozzle temperature: 30◦C; Spray conditions: 8 passes,
900 mm/min, spacing of 2 mm with alternate passes at a 90◦ offset
and repeat passes set to an offset of 1 mm. DHB was dissolved
in ethanol (100%) at a concentration of 10 mg/mL providing
a matrix concentration of xx mg/mm2. For dry application,
DHB was sublimed onto tissue sections using a custom built
sublimation apparatus at temperatures of 130–140◦C at vacuum
pressures less than 0.1 mBar for a period of 7–8 min to generate a
matrix coverage of 0.3± 0.1 mg/cm2.

Mass Spectrometer
For spatial mass spectrometric analysis, a Bruker (Bruker
Daltonik, Bremen, Germany) SolariX XR 7 Tesla Hybrid
ESI/MALDI-FT-ICR-MS was used. The instrument was operated
in the positive ion mode using optimized instrumental settings.
For full scan experiments, a mass range from m/z 100–800 was
employed with analysis instrument set to broadband mode with
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a time domain for acquisition of 2M providing an estimated
resolving power of 130,000 at m/z 400. For targeted analysis,
CASI was used with a center mass set to m/z 286.1
(linamarin [M+K]+), m/z 300.1 (lotaustralin [M+K]+) and
m/z 305.1 (linamarin acid [M+K]+) with 1 Da window
chosen using a total of 1 ICR cell fills. The laser was set
to 28 or 30% power using the minimum spot size resulting
in ablation spots of approximately 35–40 µm in diameter.
A total of 1,500–2,000 shots were fired per spectrum at
a frequency of 2 kHz within a 50 µm × 50 µm array.
Optical images of tissue sections were acquired using an Epson
Photosmart 4480 flatbed scanner using a minimum setting of
4,800 d.p.i.

Data Analysis
Acquired mass spectrometry data were analyzed using Compass
FlexImaging 4.1 (Bruker) and were normalized to Total Ion
Chromatogram (TIC) and hierarchical cluster analysis conducted
using a peak tolerance of 2 ppm mass error. Individual spectra
were analyzed using Data Analysis 4.2 with peak lists generated
using signal to noise threshold = 4 and 0.15% base peak
height threshold. For quantification purposes similar areas of
tissue (cell type and total area) were selected by generating
specific regions of interest (ROI) using FlexImaging software.
The ROI were exported as a spectrum list and imported into
Data Analysis where an average spectrum was generated for

each specific ROI. The average signal intensity of the respective
m/z was then compared. Data were imported into SCiLS lab
software with the respective ROIs and Box-dot plots were
generated.
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