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Anthocyanic morphs are generally less efficient in terms of carbon gain, but, in turn, are

more photoprotected than anthocyanin-less ones. To date, mature leaves of different

morphs or leaves at different developmental stages within the same species have

generally been compared, whereas there is a lack of knowledge regarding different stages

of development of red vs. green leaves. Leaves (1-, 7-, and 13-week-old) of red- (RLP)

and green-leafed (GLP) Prunus in terms of photosynthetic rate, carbon metabolism and

photoprotective mechanisms were compared to test whether anthocyanin-equipped

leaves perform better than anthocyanin-less leaves and whether photoprotection

is the primary role of epidermally-located anthocyanins, using for the first time a

recently-developed parameter of chlorophyll fluorescence (qPd). GLP leaves had a higher

photosynthetic rate in 1- and 7-week-old leaves, but RLP leaves performed better at

an early stage of senescence and had a longer leaf lifespan. Anthocyanins contributed

to leaf photoprotection throughout the leaf development, but were tightly coordinated

with carotenoids. Besides photoprotecting, we propose that epidermal anthocyanins

may be principally synthetized to maintain an efficient carbon-sink strength in young and

senescent leaves, thus extending the RLP leaf lifespan.

Keywords: anthocyanin, leaf ontogenesis, photoprotection, pNPQ, photo-oxidative stress, red-leafed Prunus,

senescence, xanthophyll

INTRODUCTION

Although the ecological role of foliar anthocyanins (Gould et al., 2009; Hughes and Lev-Yadun,
2015; Landi et al., 2015; Menzies et al., 2016) has been thoroughly investigated, their functional
significance is still an open issue (Gould, 2004; Hughes et al., 2005; Manetas, 2006; Menzies et al.,
2016). The cost/benefit ratio that the plant maintains for the investment of carbon skeletons is
still unknown. These carbon skeletons are used for the biosynthesis of anthocyanins, which are
reclaimed from the primary metabolism usually addressed to plant growth (Hughes et al., 2005).
Leaf anthocyanins can be accumulated in the lower and upper epidermis (Hughes and Smith, 2007;
Merzlyak et al., 2008; Landi et al., 2013, 2014), the palisade and spongy mesophyll, or parenchymal
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cells (Hughes et al., 2007; Kyparissis et al., 2007).
Their biosynthesis (Cominelli et al., 2008; Loreti et al., 2008;
Albert et al., 2015) and degradation (Zipor et al., 2015) are
tightly regulated and their localization may change during
leaf ontogenesis (Merzlyak et al., 2008). Depending on the
ontogenetic stage of the leaf, the reddish coloration can be a
permanent or transitory trait, especially during the juvenile and
senescent phases (Kytridis et al., 2008; Zeliou et al., 2009).

Anthocyanin biosynthesis under abiotic stress such as low
temperatures, salinity, nutrient deficiency (Chalker-Scott, 1999;
Archetti et al., 2009; Landi et al., 2015) has always been a feature
of land plants (Albert et al., 2018). The most accepted hypothesis
is that they protect the leaf from excessive light radiation,
screening the photosynthetic apparatus from supernumerary (in
row) green > yellow > blue photons (500–600 nm) (Gould
et al., 2018). Irrespectively of their chemical structure, all red
anthocyanins absorb green light (Harborne, 1958) and therefore
fewer green photons reach chloroplasts in red than in green leaves
(Landi et al., 2014; Nichelmann and Bilger, 2017).

The capacity to attenuate green light depends on the
histological location of the anthocyanins (Neill and Gould,
1999; Hughes et al., 2014), and epidermally-located anthocyanins
seem better located to photoprotect the subjacent mesophyll
from photoinhibition and/or to ensure the rapid recovery of
photosystem II (PSII) after a photoinhibitory condition (Hatier
et al., 2013; Logan et al., 2015; Buapet et al., 2017; Tattini
et al., 2017). However, several papers have failed to find a
protective function of these pigments (e.g., Burger and Edwards,
1996; Kytridis et al., 2008; Zeliou et al., 2009; Liakopoulos and
Spanorigas, 2012).

Besides the “mere” presence of anthocyanins, red leaves
commonly exhibit typical morpho-anatomical traits (less
compact mesophyll and leaf thickness; Kyparissis et al., 2007;
Tattini et al., 2014), as well as physiological (lower stomatal
conductance; Landi et al., 2013) and biochemical features (higher
chlorophyll content and lower chlorophyll a:b ratio on a weight
basis; Lichtenthaler et al., 1981; lower xanthophyll content and
de-epoxidation state; Hughes et al., 2012; Landi et al., 2015;
Logan et al., 2015), which usually overlap with those found
in shade plants, i.e., the “shade acclimation syndrome” sensu
Lambers et al. (1998) and Manetas et al. (2003). Red leaves
thus often have a lower photosynthetic rate than their green
counterparts, perhaps due to the competition in light harvesting
between anthocyanins and chlorophylls (Gould et al., 2002;
Hatier et al., 2013). However, this lower photosynthetic ability
has almost been exclusively demonstrated in mature leaves,
whilst no reports have evaluated the photosynthetic performance
of red vs. green leaves throughout ontogenesis.

The massive accumulation of anthocyanins may also offer
an alternative way of reducing the accumulation of hexoses,
thus delaying the sugar-induced early senescence of leaves, as
observed in red vs. green autumn leaves (Feild et al., 2001; Hoch
et al., 2003; Schaberg et al., 2003). Hexose accumulation is known
to repress or down-regulate the expression of photosynthetic
genes (Paul and Pellny, 2003; Granot et al., 2014; Lastdrager et al.,
2014), and glucose (Moore et al., 2003) and fructose (Pourtau
et al., 2006) accumulation can induce an anticipated senescence

in leaf. However, the intimate relationship between carbohydrate
content and anthocyanin production still needs clarifying.

As young and senescent leaves are usually more vulnerable
to photoinhibition (Juvany et al., 2013), epidermally-located
anthocyanins, photoprotecting the subjacent mesophyll
cells (only partially functioning), may perhaps improve the
photosynthetic performance of red morphs, making them more
competitive in limiting conditions. To test this hypothesis,
we determined leaf gas exchange, chlorophyll a fluorescence
and pigment content in two morphs of Prunus cerasifera with
permanent red (var. Pissardii) or green (clone 29C) leaves from
juvenility (1 week-old leaves) to (early) senescence (13 week-old
leaves).

We are aware that beside the obvious presence of foliar
anthocyanins, other physiological and biochemical features
might have differed between the two morphs. However, the
different genetic background of the two morphs may only
have been of secondary importance to our core results, which
mainly depended on the different leaf pigmentation and the
adaptive traits connected to the constitutive presence of foliar
anthocyanins. In addition, it is almost impossible for tree species
to operate a knockout approach to obtain targeted anthocyanin-
less mutants as those obtained in Arabidopsis, which were used
for the first time to unequivocally test the photoprotective role of
these pigments (Gould et al., 2018).

MATERIALS AND METHODS

Plant Material
A total of 200 three-year-old P. cerasifera saplings (clone 29C,
GLP; var. Pissardii, RLP) were purchased from an Italian nursery
(Vivai Battistini, Cesena, IT). Stems of both morphs were
grafted onto 29C rootstock in November 2016. One month after
grafting, red and green individuals were transplanted to 6.5-L
pots in a growing medium containing a mixture of Einhetserde
Topfsubstrat ED 63 standard soil (peat and clay, 34% organic
C, 0.2% organic N and pH 5.8–6.0) and sand (3.5:1 in volume).
They were maintained under greenhouse conditions until March
2017, when they were transferred to open field conditions at the
Department of Agriculture, Food and Environment, University
of Pisa, Italy (43◦42′N 10◦25′E).

During the experiments, plants were kept well-watered and
fertilized. One week after the emergence (early July 2017, when
maximum irradiance is experienced by the leaf), homogeneous
leaves from 100 plants of both morphs, were marked to be
followed throughout ontogenesis. Mean monthly temperatures
and precipitations for the period are reported in Figure S1. At
each sampling date (1, 7, and 13 weeks after leaf emergence),
samples for biochemical analysis were collected at midday,
immediately frozen in liquid nitrogen, and stored at−80 ◦C until
analysis.

Leaf Gas Exchange and Chlorophyll a
Fluorescence Analysis
Gas exchange measurements were determined from 10.00 to
14.00 h from five replicates (one leaf for each sapling) of emergent
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(1-week-old), mature (7-week-old) and early senescent (13-
week-old) leaves, using a portable infrared gas analyser (Li-Cor
6400, Li-Cor Inc., Lincoln, NE, USA) following the procedure
described by Guidi et al. (2017). Mitochondrial respiration in
the light (R∗

d
) and the CO2 compensation point in absence

of respiration, Γ ∗, were calculated using the Laisk method
(von Caemmerer, 2000). Mesophyll conductance (gm) and
chloroplastic CO2 concentration (Cc) were estimated using the
variable J method (Harley et al., 1992), through the combination
of gas exchange and chlorophyll fluorescence analysis. The
maximum carboxylation rate at substomata (Vcmax(Ci)) and
chloroplastic CO2 concentration (Vcmax(Cc)), the maximum
electron transport rate (Jmax) and the triose phosphate utilization
(TPU) were measured by fitting Farquhar’s equation (Farquhar
et al., 1980).

Chlorophyll fluorescence was measured using a PAM-2000
fluorometer (Walz, Effeltrich, Germany) at the same time as the
gas exchange measurements (five replicates), after 30min of dark
adaptation as reported in Degl’Innocenti et al. (2002). Ruban and
Murchie method (2012) was used to estimate the parameter, qPd
(photochemical quenching measuring in the dark), which allows
to detect the earliest signs of photoinhibition (when qPd value is
1 corresponds to 100% of open RCIIs). qPd is calculated as:

qPd = (Fm’− F0’)/(Fm’− F0’calc)

where Fm’ is the maximum level of fluorescence yield in the
light and F0’, and F0’calc are the measured and calculated dark
fluorescence levels, respectively. F0’calc was determined according
to Oxborough and Baker (1997):

F0’calc = 1/[1/F0 − 1/Fm + 1/Fm’]

To determine the values of qPd, a Walz Junior-PAM fluorometer
(Walz) with a monitoring leaf clip was used. A sequence of
increasing actinic illumination steps (ranging from 0 to 1,500
µmol m−2 s−1) was used, each lasting 5min (Ruban and Belgio,
2014). The routine was encoded as a batch programme that
sets the saturation pulse for 600ms and turns on the actinic
light of the lowest intensity (90 µmol m−2 s−1) after 40 s of
F0 determination in the presence of the low intensity far-red
light. During illumination by actinic light (5min), only two
saturation pulses were applied at the second and fifth minutes
of illumination needed to calculate NPQ and ΦPSII. After 5min,
the light was switched off immediately after applying the second
saturation pulse. After 7 s of far-red light illumination, the
saturating pulse was applied in the dark for 5 s, followed by the
same cycle of actinic light illumination.

Soluble Sugar, Sorbitol, Starch, and
Nitrogen Content
Sugar and polyol quantification were conducted according to
slightly modified methods of Yusof et al. (2016) and Sotelo et al.
(2014), respectively. For soluble sugar and polyol extraction,
100mg of dried leaf samples were finely ground in a mortar,
suspended in 10mL of 80% aqueous ethanol (v/v), and placed
in an ultrasonic water bath at 60◦C for 30min. The solution was

centrifuged at 10,000 g for 10min at 10◦C, and the supernatant
was filtered using a HPLC filter (pore size: 0.45µm). Sucrose,
glucose, fructose and sorbitol were quantified using K-SUFRG
and K-SORB commercial kits (Megazyme, Wicklow, Ireland),
following the manufacturer’s protocol. The residual pellet of
the centrifuged solution was used for starch quantification
using commercial kit K-TSTA (Megazyme) according to the
manufacturer’s protocol.

Total N content was determined following the Kjeldahl
method (Mitchell, 1998) and expressed as the percentage dry
weight (DW). According to Sanz-Pérez et al. (2009), Nitrogen
Resorption Efficiency was calculated as (Nm − Ns)/Nm × 100,
in which Nm is nitrogen content in the mature leaf and Ns is that
contained in the early senescent leaf. For RLP the index was also
calculated at 17 weeks, when GLP had already lost all its leaves.

Pigment Analysis
Total chlorophyll (ChlTOT), β-carotene and xanthophyll
(violaxanthin, V; antheraxantin, A; zeaxanthin, Z) content
were determined by HPLC (P680 HPLC Pump, UVD170U
UV-Vis detector, Dionex, Sunnyvale, CA, USA) according to
Döring et al. (2014). In order to measure the pigment content,
a known quantity of pure standard was injected into the HPLC
system and an equation, correlating the peak area to pigment
concentration, was formulated. The data were processed using
Dionex Chromeleon software. The de-epoxidation state of
xanthophyll cycle (DES) was calculated as (A0.5+Z)/VAZ.

The anthocyanin content was estimated by using the Dualex
Scientific optical sensor (Force-A, Centre Universitaire Paris
Sud, France). It measures the leaf epidermal anthocyanin
absorbance at 520 nm by means of the chlorophyll fluorescence
screening method (Agati et al., 2011), equalizing the chlorophyll
fluorescence signal under the 520 nm excitation and that under
red excitation at 650 nm, as reported in Goulas et al. (2004).

H2O2 and O−

2 Quantification
H2O2 content was determined using the Amplex Red
Hydrogen Peroxide/Peroxidase Assay Kit (Molecular Probes,
Invitrogen, Carlsbad, CA, USA) according to Pellegrini et al.
(2013). Analyses were performed spectrometrically with a
fluorescence/absorbance microplate reader (Victor3 1420
Multilabel Counter Perkin Elmer, Waltham, MA, USA). O−

2
concentration was measured according to Tonelli et al. (2015)
using a spectrophotometer (6505 UV-Vis, Jenway, Stone, UK).

Confocal Laser Scanning Microscopy and
Leaf Anatomy
Leaf pieces of approximately 4 × 8mm in size were cut with a
razor blade and imaged using a Leica TCS SP8 confocal upright
microscope (Leica Microsystems CMS, Mannheim, Germany)
equipped with a×63 objective (HC PL APO CS2 63× 1.40 OIL).
Anthocyanins were localized by their autofluorescence excited at
488 nm, through a DD 488/552 beam splitter and acquired over
the 526–598 nm emission spectral band. Image spatial calibration
was between 0.12 and 0.16µm pixels−1. Free hand leaf cross
section, were viewed under a microscope (Helmut Hund D-6330
Wetzlar, Germany) to measure the thickness.
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Statistical Analyses
Physiological and biochemical data were analyzed by two-way
ANOVA using genotype and sampling date as the variability
factors followed by Fisher’s least significant difference (LSD)
post-hoc test (P = 0.05). Before the ANOVAs, the assumption
of homogeneity of variances was tested using Bartlett’s test.
Nitrogen content was analyzed using Student’s t-test with
sampling data as the variability factor. Linear regression was
used to determine the light mitochondrial respiration (Rd), the
CO2 compensation point in the absence of respiration Γ ∗,
and the carboxylation efficiency of Rubisco, Vcmax. Non-linear
least square regression was used to interpolate the response
of CO2 assimilation to light (light curves) or to Ci (A/Ci
curves). Percentage data were angularly transformed prior to the
statistical analysis. All statistical analyses were conducted using
GraphPad (GraphPad, La Jolla, CA, USA).

RESULTS

Photosynthetic Parameters
The net photosynthetic rate at ambient CO2 (A390) was 33%
greater in juvenile GLP than RLP leaves (Figure 1A). Net

photosynthesis increased in mature leaves of both morphs;
the gap between the two morphs was similar to that found
in the juvenile leaves. In 13-week-old leaves, A390 decreased
more in GLP (−62%) than RLP (−25%) leaves, with RLP
photosynthesizing more than GLP leaves (9.2 ± 0.6 and 6.8 ±

0.7, respectively). The gap of stomatal conductance (gs) between
green and red leaves was consistent with A390 (Figure 1B).
Mesophyll conductance (gm) was lower (−68%) in juvenile RLP
than GLP leaves, whereas no differences between GLP and RLP
were found in 7- and 13-week-old leaves (Figure 1C). This
meant that RLP young leaves had a higher gs/gm, whereas no
statistical differences were found during the ontogenesis between
GLP and RLP (Figure 1D). No differences in intercellular CO2

concentration were observed between the two leaves upon
leaf ontogenesis (Figure 1E). Finally, the photosynthetic rate in
unlimited light and CO2 conditions (Amax) was lower in red
leaves 1 week after emergence (−56%), compared to green leaves.
Amax reached similar values in RLP and GLP mature leaves,
and decreased to a similar extent in 13-week-old leaves of both
morphs (Figure 1F).

Morph and date sampling affected Vcmax at both chloroplastic
and intercellular CO2 concentrations (Figures 2A,B; Table S1).

FIGURE 1 | Net photosynthesis at saturating light and ambient CO2 (A390; A); stomatal conductance (gs; B); mesophyll conductance (gm; C), ratio of gs/gm (D),

intercellular CO2 concentration (Ci; E), net photosynthesis at saturating light and CO2 concentration (Amax; F) in 1-, 7-, and 13-week-old leaves of Prunus cerasifera

clone 29C (open circles) and Prunus cerasifera var. Pissardii (closed circles). Means (±SD; n = 5) were compared by two-way ANOVA with morph and sampling date

as sources of variation. Means flanked by the same letter are not statistically different for P = 0.05 after Fisher’s least significant difference post-hoc test.
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FIGURE 2 | Values of apparent maximum rate of carboxylation by Rubisco at intercellular (Vcmax,Ci; A) and chloroplastic (Vcmax,Cc; B) CO2 concentration, maximum

electron transport rate (Jmax; C), and triose phosphate utilization rate (TPU; D) in 1-, 7-, and 13-week-old leaves Prunus cerasifera clone 29C (open circles) and

Prunus cerasifera var. Pissardii (closed circles). Means (±SD; n = 5) were compared by two-way ANOVA with morph and sampling date as sources of variation.

Means flanked by the same letter are not statistically different for P = 0.05 after Fisher’s least significant difference post-hoc test.

Values of Vcmax were ∼2-fold higher in mature leaves of GLP
and RLP compared to 1- and 13-week-old leaves. Most GLP and
RLP values overlapped upon ontogenesis. Note that Vcmax(Ci) and
Vcmax(Cc) were higher in red than green juvenile leaves.

Jmax decreased significantly during leaf ontogenesis (−59 and
−53% in green and red leaves, respectively, when comparing
13- vs. 1-week-old leaves; Figure 2C) where (in both stages)
higher values were recorded in red compared to green leaves. For
both GLP and RLP, the pattern of TPU overlapped that of Amax

throughout the experiment (Figure 2D).

Soluble Sugar, Sorbitol, Starch, and
Nitrogen Content
Glucose content was similar in juvenile green and red leaves, but
showed a very different behavior in mature and early senescent
leaves (Figure 3A). In mature leaves, glucose content decreased
only in GLP. In senescent leaves, an increase in glucose in GLP
and in turn a strong decrease (−31%) in red leaves was found.
Fructose content was always higher in green than red leaves,
irrespectively of the leaf stage (Figure 3B). It increased from
young to mature leaves and then decreased slightly at the end of
the experiment.

Sorbitol content was higher in young green then red leaves
(Figure 3C). At 7 weeks it increased in red leaves reaching
values close to green mature leaves, whose values did not change
compared to the juvenile counterpart. A similar drop in sorbitol
content (on average−36%) was found in 13-week-old leaves of
both morphs. Sucrose content was similar in young leaves of
both morphs and remained lower in red compared to green
leaves, with only a slight increase at the end of the experiment

(Figure 3D). In green leaves, a strong and significant increase in
sucrose content was observed in 7-week-old leaves compared to
young leaves, and unlike red ones at the end of the experiment
there was a slight decrease. Starch content increased constantly
upon leaf ontogenesis in GLP whereas, after a build-up also
observed in RLP, a decline was found in 13-week-old leaves
of RLP (Figure 3E). Starch content was always higher in green
than red leaves, especially in young (3-fold) and senescent leaves
(2.6-fold) (Figure 3E).

Leaf nitrogen content was similar in both 7- and 13-week-old
leaves when comparing GLP and RLP (Table 1). However, 13-
week-old leaves of RLP showed a sensitively lower N resorption
efficiency compared to GLP (24.1 ± 1.3 vs. 42.7 ± 3.3,
respectively). Only for red leaves, was N content measured in 17-
week-old leaves, whereas at this stage, GLP had lost all its leaves
(Table 1). In 17-week-old red leaves, N content was lower than
13-week-old GLP leaves, and we found a higher N resorption
efficiency (55.3± 4.3) than in senescent green leaves (42.7± 3.3).

Anthocyanin Index and Pattern of
Epidermal Anthocyanins
Figure 4 reports various red leaf characteristics. A partial
discoloration of mature RLP leaves was observed, which
paralleled the decline in the anthocyanin index (from 0.78 to
0.35 in juvenile and mature leaves, respectively). Discoloration
was due to the loss of anthocyanins in the upper epidermis,
as highlighted by images obtained by confocal fluorescence
microscopy (Figure 4). Differences upon ontogenesis were also
detected in leaf thickness, which was higher in leaves 13
weeks after emergence compared to previous samplings. The
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FIGURE 3 | Glucose (A), fructose (B), sorbitol (C), sucrose (D), and starch (E) content 1-, 7-, and 13-week-old leaves of Prunus cerasifera clone 29C (open circles)

and Prunus cerasifera var. Pissardii (closed circles). Means (±SD; n = 5) were compared by two-way ANOVA with morph and sampling date as sources of variation.

Means flanked by the same letter are not statistically different for P = 0.05 after Fisher’s least significant difference post-hoc test.

TABLE 1 | Nitrogen content (g kg−1 DW) in leaves Prunus cerasifera clone 29C and Prunus cerasifera var. pissardii upon leaf ontogenesis starting 1 week after the leaf

emergence.

Week 7 Week 13 N resorption efficiency

(N7-N13)/N7 × 100

Week 17 N resorption efficiency

(N7-N17)/N7 × 100

Prunus cerasifera clone 29C 27.2 ± 0.1 15.6 ± 0.1 42.7 ± 3.3 –

Prunus cerasifera var. pissardii 25.7 ± 0.6 19.5 ± <0.1. 24.1 ± 1.3 11.5 ± 0.2 55.3 ± 4.3

P ns ns ***

Data were subjected to Student’s t-test with genotype as variability factor. Data are means of 3 replicates ± S.D. In the last row the significance of the test is reported (ns: P > 0.05;

***P < 0.001). The N resorption efficiency is calculated as reported in Materials and Methods section.

anthocyanin index increased again in senescent leaves (0.61),
but did not reach the values of juvenile leaves. A very low
amount of anthocyanin was consistently present in green leaves
throughout leaf ontogenesis (on average 0.15 ± 0.01; data not
shown).

Chlorophyll a Fluorescence Parameters
Effective (ΦPSII) and maximum (Fv/Fm) quantum yield of PSII
varied in similar ways in both GLP and RLP leaves upon leaf

ontogenesis (Figures 5A,C; Table S1). The only exception was
the higher ΦPSII of 13-week-old RLP leaves (Figure 5C). Young
and early senescent leaves of both RLP and GLP were similarly
photoinhibited (Fv/Fm averaged 0.75 and 0.76, respectively),
whereas both mature leaves had values typical of healthy
plants (Figure 5A). The effective quantum yield decreased
significantly upon leaf ontogenesis, with the lowest values
recorded 13 weeks after emergence in both morphs (Figure 5C).
The minimum fluorescence yield, F0, increased significantly
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FIGURE 4 | Leaf appearance, anthocyanin fluorescence signal over the adaxial epidermis (confocal microscope), leaf thickness, and anthocyanin index (see Materials

and Methods section for the details) determined in 1-, 7-, and 13-week-old leaves of Prunus cerasifera var. Pissardii. Means (±SD; n = 5 and n = 10 for thickness and

anthocyanin index, respectively) were compared by one-way ANOVA with sampling date as sources of variation. Means flanked by the same letter are not statistically

different for P = 0.05 after Fisher’s least significant difference post-hoc test.

upon leaf ontogenesis without differences in relation to morphs
(Figure 5B). In young leaves, the minimum fluorescence was
significantly lower than the other two leaf stages (Figure 5B;
Table S1). NPQ values were always higher in GLP than RLP
leaves and increased significantly and consistently during leaf
ontogenesis (Figure 5D).

The decrease in qPd, photochemical quenching in the dark,
reflects the onset of photoinhibition, and we used an approach
that assesses NPQ protection against photoinhibition of RCII,
called protective NPQ or pNPQ (Ruban and Murchie, 2012).
Figure 6 shows qPd and ΦPSII changes in relation to NPQ
determined during ontogenesis in the two morphs exposed to
increasing light intensities (see Materials and Methods). In the
absence of photoinhibition (i.e., qPd > 0.98), the actual ΦPSII

followed the same trend as the theoretical ΦPSII (Figure 6),
and decreased upon the NPQ gradient only because of the
induction of pNPQ. Overall, the results obtained in the two
morphs showed that up to high NPQ values, there was a
good overlap between the experimental data and theoretical
ΦPSII upon NPQ, when qPd was close to 1. However, at
the light intensity when qPd < 0.98, photoinhibition reduced
the PSII photochemistry, leading to a discrepancy between
actual and theoretical ΦPSII (Figure 6). This effect was more
pronounced in young leaves of both morphs in which the
photoprotective capacity of NPQ decreased also for values of
about 1 (Figures 6A,B). In mature leaves, the dynamics of qPd

and NPQ differed from those exhibited by young leaves, and
NPQ was protective against significantly higher light intensity
(Figures 6C,D). Finally, in 13-week-old leaves, NPQ strongly
increased reaching values close or even higher than 3, and
photoinhibition was detected in both morphs only at a high light
intensity (Figures 6E,F).

Figure 7 shows the relationship between protective NPQ
(pNPQ) and increasing actinic light. The curves represent the
best fit of the lowest pNPQ point and indicate the minimum
levels of pNPQ needed to protect PSII against photoinhibition at
each intensity. GLP appeared to be less photoprotected than RLP
juvenile leaves, which were not photoinhibited (qPd> 0.98) even
at a higher light intensity (420 vs. 625µmolm−2s−1, respectively;
Student’s t-test; P>0.01) (Figure 7A). This discrepancy between
red and green leaves was consistent throughout the leaf
ontogenesis.

In addition, there were dramatic differences between the NPQ
values shown by both morphs at increasing light conditions. For
example, both mature leaves were photoprotected at 420 µmol
m−2s−1 (red leaves also at 625 µmol m−2 s−1; qPd was 0.985),
but GLP had pNPQ values close to 1.1, whereas pNPQ of RLPwas
around 0.62 (Figure 7B). Again, similar differences in the level of
pNPQ at increasing irradiances were found in senescent leaves,
in which RLP leaves (but not GLP) were not photoinhibited also
at 820 µmol m−2 s−1 and had −30% lower pNPQ at 625µmol
m−2 s−1 (Figure 7C).
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FIGURE 5 | Photosystem II maximum photochemical efficiency (Fv/Fm; A), minimal fluorescence yield (F0; B), effective photochemical efficiency (ϕPSII; C), and

non-photochemical quenching (NPQ; D) in 1-, 7-, and 13-week-old leaves of Prunus cerasifera clone 29C and Prunus cerasifera var. Pissardii. Means (±SD; n = 5)

were compared by two-way ANOVA with morph and sampling date as sources of variation. Means flanked by the same letter are not statistically different for P = 0.05

after Fisher’s least significant difference post-hoc test. Lack of letters denotes non statistical significance of the interaction.

Pigment Content
Total chlorophylls followed a typical leaf pattern during
ontogenesis: they increased in mature leaves of both morphs
and significantly decreased toward the end of the experiment
(Figure 8A). Red leaves had a significantly lower concentration
of ChlTOT at 1 and 7 weeks compared to green leaves. However,
at the end of the experiment, red leaves contained a much
higher amount of total chlorophyll compared to green leaves
(Figure 8A). Carotenoids varied greatly during leaf ontogenesis
(Figures 8B,C). Interestingly, β-carotene increased strongly at
the end of the experiment in green leaves when a strong
decrease in total chlorophyll was detected (Figure 8B). In red
leaves however, β-carotene increased in red mature leaves
when epidermal anthocyanin strongly decreased (Figure 4, 8B).
Concentrations of VAZ/ChlTOT were always lower in RLP
than GLP (Figure 8C). In both RLP and GLP mature leaves,
VAZ/ChlTOT followed the same decline, whilst in 13-week-old
leaves, the ratio remained unchanged in RLP and increased again
in GLP.

H2O2 and O−

2 Levels
H2O2 and O−

2 were detected as markers of oxidative stress
during ontogenesis. The amount of H2O2 was lower in red
than in green senescent leaves (21.7 and 35.6 nmol g−1

FW, respectively), whereas no differences were found in
either juvenile or mature leaves (Figure 9A). Higher values
of O−

2 contents were also detected in senescent green leaves
(Figure 9B).

DISCUSSION

Photosynthesis of Red and Green Leaves
During Ontogenesis
The attenuation of a proportion of green-blue wavebands
reaching the leaves, as well as the metabolic cost associated with
the biosynthesis of anthocyanins, have been proposed as the dual
reason for the inferior photosynthetic capacity often found in
anthocyanin-equipped leaves (reviewed by Gould et al., 2009).
In other cases, when the ability of anthocyanins to photoprotect
the photosynthetic apparatus exceeds the apparent “disadvantage
of being red,” anthocyanin-enriched leaves perform better than
anthocyanin-less leaves (Gould et al., 1995).

Our study shows that mature leaves of RLP had a ∼30%
lower photosynthetic rate compared to GLP, in accordance with
previous results in the same species (Kyparissis et al., 2007). A
higher photosynthetic rate was also evident in juvenile leaves of
GLP. In both, juvenile and mature GLP leaves, higher values of
A390 paralleled to higher values of gs compared to the respective
RLP leaves. Stomatal conductance appeared to be the main
photosynthetic limitation in mature leaves of RLP, since Amax,
Vcmax, Jmax, and TPU are similar to those of mature GLP leaves.
In juvenile RLP leaves, other biochemical limitations were also
responsible for reduced levels of net photosynthesis, i.e., lower
values of Amax, Vcmax, Jmax, and TPU, which indicates a slower
development of functional chloroplasts than GLP (Hughes et al.,
2007).

Irrespectively of the abatement of a proportion of blue
photons reaching the antennae, the ability of anthocyanins to
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FIGURE 6 | Relationship between NPQ and qPd (open circles) and NPQ and photosystem II effective quantum yield (closed circles) determined in 1-, 7-, and

13-week-old leaves of Prunus cerasifera clone 29C (A,C,E, respectively) and Prunus cerasifera var. Pissardii (B,D,F, respectively). Data are means of at least 12

replicates of intact leaves; error bars represent the standard error. Theoretical quantum yield (continuous line) was calculated using the Equation (1) reported I Materials

and Methods section with qPd = 1.

absorb blue light, the key driver of stomatal opening, may have
further contributed to the lower photosynthesis of RLP than
GLP juvenile and mature leaves (Kim et al., 2004; Talbott et al.,
2006; Aasamaa and Aphalo, 2016). Interestingly, the stronger the
accumulation of anthocyanin (juvenile vs. mature RLP), themore
the stomata limitations we observed. The phrase “Don’t ignore
the green light” (Smith et al., 2017) stresses how the importance
of green light for photosynthesis is usually overemphasized
because of the misconception that plants poorly utilize green

light, which is related to the near-ubiquitous green appearance
(thus green reflectance) of plants on earth. Results obtained
in 1- and 7-week-old RLP leaves confirm that the attenuation
of a proportion of blue and (principally) green light induced
the “shade acclimation syndrome” (Kyparissis et al., 2007),
where mature RLP leaves exhibit altered morpho-anatomical
(i.e., thinner leaves), physiological (i.e., lower values of gs), and
biochemical traits (i.e., lower Chl a/b, data not shown) than GLP
leaves. The strongest accumulation of epidermal anthocyanins

Frontiers in Plant Science | www.frontiersin.org 9 July 2018 | Volume 9 | Article 917

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Lo Piccolo et al. Anthocyanins Role(s) in Prunus Leaves

FIGURE 7 | Relationship between light intensity and maximum photoprotective

capacity (pNPQ) during a gradually increasing routine (see Materials and

Methods for details) determined in 1- (A), 7- (B), and 13-week-old (C) leaves

of Prunus cerasifera clone 29C (open circles) and Prunus cerasifera var.

Pissardii (closed circles). Bars indicate % difference of pNPQ between red-

and green-leafed Prunus under the same actinic light intensity.

found in juvenile RLP leaves paralleled the lowest values of gm,
which (together with gs) is another limitation of CO2 diffusion
typical of shaded plants (Terashima et al., 2009). However, in
terms of light quality, the “shade acclimation syndrome” (green-
depleted red-enriched shading) differs from natural shade, a
condition of blue-depleted far-red-enriched light (Smith et al.,
2017). In RLP, this explains the lack of some traits typical of shade
leaves, such as similar values of gm found in mature leaves of RLP
and GLP, and (slightly) lower values of ChlTOT in leaves of RLP
than GLP. The disappearance of anthocyanins over the adaxial

FIGURE 8 | Total chlorophyll (ChlTOT; A), (β-carotene; B), and total

xanthophyll (VAZ/ChlTOT; C) content in 1-, 7-, and 13-week-old leaves Prunus

cerasifera clone 29C (open circles) and Prunus cerasifera var. Pissardii (closed

circles). Means (±SD; n = 5) were compared by two-way ANOVA with morph

and sampling date as sources of variation. Means flanked by the same letter

are not statistically different for P = 0.05 after Fisher’s least significant

difference post-hoc test. VAZ indicates the sum of violaxanthin (V),

antheraxanthin (A) and zeaxanthin (Z).

epidermis of mature RLP leaves may have weakened the shading
effect of anthocyanins (detailed later).

The abovementioned results in young and mature leaves
support the hypothesis that anthocyanic leaves are unable to cope
with green counterparts in terms of photosynthetic rate (Hughes
et al., 2014), given that on a long-term basis, the contribution
to the overall carbon fixation of senescent leaves is usually less
important.

To describe the full picture of the whole 13-week-period of leaf
ontogenesis, however, some particular aspects of our experiments
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FIGURE 9 | Hydrogen peroxide (A) and superoxide anion (B) content

determined in 1-, 7-, and 13-week-old leaves of Prunus cerasifera clone 29C

(open circles) and Prunus cerasifera var. Pissardii (closed circles). Means (±SD;

n = 3) were compared by two-way ANOVA with morph and sampling date as

sources of variation. Means flanked by the same letter are not statistically

different for P = 0.05 after Fisher’s least significant difference post-hoc test.

need to be considered. First, for the sake of simplicity in this
report we only describe the pattern of the main photosynthetic
parameters at midday, when green leaves doubtless performed
better than red ones. Conversely, values of A390 in the early
morning, in the afternoon and early in the evening did not differ
between mature leaves of RLP and GLP (Figure S2). Second, 13-
week-old leaves of RLP had about a +26% of net photosynthesis
compared to those of GLP, with only a slight decline with
respect to their relative 7-week-old leaves. Third, although our
experiment stopped 13 weeks after leaf emergence, we noticed
that the leaf lifespan of RLP was dramatically longer than that
of GLP; RLP plants continued to maintain their leaves even 25–
30 days after GLP leaves had completely fallen (Figure S3). The
contribution of senescent leaves to the cumulative carbon gain
might therefore have had a serious impact on RLP.

To describe the mechanisms underlying the longer leaf
lifespan of RLP, the pattern of anthocyanin biosynthesis and
carbon allocation throughout the whole leaf ontogenesis are
discussed.

Anthocyanins During Leaf Ontogenesis:
When, Where, and Why?
The function(s) of foliar anthocyanins still puzzles plant
ecologists and physiologists (Lev-Yadun and Holopainen, 2009;

Hughes and Lev-Yadun, 2015; Landi et al., 2015). Today, themost
accepted but still debated hypothesis is that these pigments may
act as an efficient sunscreen, especially when anthocyanins are
located in the leaf epidermis (review by Gould et al., 2018).

In RLP, anthocyanins are located in adaxial and abaxial
leaf epidermis, mesophyll, and parenchymatic cells, and their
accumulation parallels the higher need for photoprotection
usually displayed by young and early senescent leaves (Merzlyak
et al., 2008). A superficial interpretation of NPQ and VAZ/Chl
values found in Prunus plants, which are always lower in
red vs. green leaves, suggests that anthocyanins might be
compensatory for xanthophylls in photoprotecting the leaf
during leaf ontogenesis, which has been commonly observed
in other species (Manetas et al., 2002; Hughes et al., 2012;
Tattini et al., 2014, 2017). In addition, at each developmental
stage, the fact that GLP leaves need higher values of NPQ
to maintain similar levels of ΦPSII and qPd to those of RLP
supports this interpretation. A more extensive analysis of our
full dataset reveals a more complex situation in which the
comparable efficiency and functionality of PSII between RLP and
GLP upon leaf ontogenesis requires the close interplay between
anthocyanins and carotenoids in red leaves.

Young leaves of RLP and GLP had similar values of
pNPQ at low irradiance, but RLPs were not photoinhibited
(qPd > 0.98), even when supplied with over 50% of irradiances.
Young RLP leaves showed the highest anthocyanin accumulation
upon ontogenesis, suggesting that the synergic photoprotective
function of both xanthophyll and anthocyanins is necessary for
RLP to preserve photosystem II from excess light and to assist the
development of functioning chloroplasts (Manetas et al., 2002).
Besides the biochemical differences between red and green young
leaves, both had similar levels of H2O2, which were similar to
those of mature leaves. In addition, O−

2 values in young RLP were
not higher than those of mature red leaves.

The progressive development of functional chloroplasts from
juvenile to mature leaves leads to increased levels of ChlTOT,
whereas the xanthophyll pool remains almost constant, thus
inducing a proportionate decline in the VAZ/Chl ratio (Bertamini
and Nedunchezhian, 2003). Accordingly, in both red and green
mature leaves, we found a similar increase in ChlTOT; however
in mature RLP, the decline of VAZ/Chl was less proportionate
than in GLP, and a higher availability of β-carotene, the direct
precursor of xanthophylls, was also found. This paralleled the
partial discoloration of the adaxial epidermis of mature RLP
leaves, suggesting, again, a strict, well-orchestrated synergism
between xanthophylls and anthocyanins to protect RLP leaves.
This dynamic interplay obviated the need for a deep, permanent
filter over the leaf, which would be disadvantageous in terms
of light abatement under non-excessive light conditions. It also
meant that RLP is more photoprotected, i.e., lower values of
pNPQ and qPd>98 at higher irradiances. It is possible that
the strong increment in β-carotene found in RLP might be a
further necessary adjustment to protect weakly anthocyanin-
screened leaves from supernumerary ROS generated by very
quick transitory changes in light conditions (sunflecks) in which
the dynamic photoprotective mechanism may fail to protect the
photosynthetic apparatus efficiently (Pospíšil, 2012; Telfer, 2014).
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FIGURE 10 | Adaxial (green) and abaxial (purple-red) side of leaves of Fockea natalensis (A); effect of mechanical damage in leaves of Hedera helix (B); effect of

girdling in leaves of Prunus cerasifera var. Pissardii (red) grown at the bottom of the canopy (C); Effect of disruption of the central vein in a leaf of Hordeum vulgare (D);

effect of girdling of the central vein of Photonia x fraseri “Red Rubin” (E).

Accordingly, similar levels of ROS were recorded in both GLP
and RLP at midday.

Thirteen-week-old red and green leaves exhibited typical
symptoms of early senescence as revealed by changes in pigment
composition and decline in photosynthetic performance deriving
from the dismantling of chloroplasts (Abreu and Munné-Bosch,
2009; Schippers et al., 2015). For RLP leaves, in which the loss
of chlorophyll was not as severe as that of GLP, dismantling
occurred alongside a de-novo biosynthesis of anthocyanins over
the adaxial epidermis, whose levels were comparable to those of
young leaves. Conversely, VAZ/Chl values remained similar to
those of mature leaves, whereas the level of VAZ/Chl in GLP
increased during ontogenesis from the 7th to the 13th week.
Similarly to the mature leaves, lower values of pNPQ (−32% on
average) were found in red than green leaves, especially at high
irradiances, thus indicating the anthocyanins’ photoprotective
role. On the other hand, the huge increase in β-carotene did not
prevent green leaves from accumulating higher levels of H2O2

and O−

2 compared to red leaves which suggests a minor (or null)
influence of this compound as photo-protector in green leaves

Anthocyanin patterns during the leaf ontogenesis of
Prunus confirm that these pigments assist xanthophylls in
photoprotecting the leaves from excessive light, despite dynamic

changes at the various leaf development stages. However, because

anthocyanins accumulate strongly in young and senescent leaves,

when there is both the need for photoprotection and to maintain

a high carbon sink strength, it seems reasonable to ask whether
photoprotection is the primary role of foliar anthocyanins.

Interplay Between Anthocyanin, Sugar
Metabolism, and Leaf Lifespan
There is an apparent inextricable link between the sunscreen
effect of anthocyanins and the possibility that anthocyanins
represent a carbon sink to buffer sugar levels when the
rate of allocation of the newly synthesized carbon skeletons
proceeds slower than that of photosynthesis, at least before
some regulatory feedback mechanisms take place. However, it is
surprising that there has been so much research into testing their
photoprotective role, whereas few papers have proposed that
anthocyanin biosynthesis is principally devoted to preventing
transitory sugar accumulation under unfavorable conditions for
the leaf.

There are several factors indicating that photoprotection
may not be the primary function of anthocyanins in leaves
(some evidence is reported in Figure 10). First, around 30%
of papers have failed to reveal a photoprotective role of these
pigments (Gould et al., 2018). Second, in some cases, why do
anthocyanins accumulate in both the leaf epidermis (such as
in our Prunus plants; the effect of girdling in shade leaves;
Figure 10C), or even only in the abaxial epidermis in species
grown under shade (Figure 10A)? Third, we noted that girdling
in the central vein of mature, green leaves of anthocyanin-
producing species (Figures 10D,E), or accidental damage to
the leaves of Hedera helix (Figure 10B) led these leaves to
produce anthocyanins only in the distal part of the leaves from
where the phloem was disrupted (and where sugars presumably
accumulate), despite the fact that all the leaf surface experiences
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the same irradiance. Finally, the high amount of sugars (e.g.,
under high light conditions) has only been reported to promote
the cellular biosynthesis of anthocyanins in some cases, which
is the most visible result to the human eye, whereas in many
other circumstances, different C-based secondary metabolites,
with (Lichtenthaler et al., 2007), or without photoprotective
functions (see for example Coley et al., 1985) have accumulated
in the leaves. Accordingly, other authors have also suggested
that phenolics, including anthocyanins, may be a carbon sink for
absorbing excess photosynthetic carbon (Waterman et al., 1984).

However, there is much evidence that the reduction in sink
strength induces sugar accumulation in the leaves followed by
anthocyanin accumulation (Weiss, 2000; Hughes et al., 2005;
Teng, 2005; Solfanelli, 2006; Peng et al., 2007, 2008; Murakami
et al., 2008). The biosynthesis of anthocyanins in young leaves
can sustain an active phloem flux of translocating sugars or
polyols (such as sorbitol in our case) from source leaves, whereas
anthocyanin biosynthesis within old leaves might present a
means to moderate sugar feedback regulation, thereby avoiding
the effect of early sugar-induced senescence. In fact, in our
experiment we found the highest concentration of anthocyanins

in young and early senescent leaves of RLP; in the latter there
was also a build-up of sucrose, a strong anthocyanin-promoting
agent (Hara et al., 2003; Teng, 2005; Solfanelli, 2006; Murakami
et al., 2008). Increases in glucose, fructose, and starch found only
in GLP leaves suggests advanced senescence in green rather than
red leaves. Higher N resorption found in 17-week-old leaves of
RLP (when GLP leaves had already fallen) compared to 13-week-
old leaves of GLP is additional proof of the delayed senescence,
which occurred in leaves of RLP.

As schematized in Figure 11, the accumulation of
anthocyanins in older RLP leaves may therefore (i) delay
the sugar-promoted leaf senescence, (ii) maintain a more
efficient photosynthetic apparatus for longer, and (iii) allow
red leaves to translocate more N than GLP leaves, as already
reported by previous research (Feild et al., 2001; Hoch et al.,
2003). The capacity of anthocyanins to retard leaf senescence,
thereby extending the leaf lifespan suggests the “conservative-use
strategy” adopted by species with “long-lived organs” (e.g.,
evergreens) which inhabit nutrient-limiting environments
in which a slower turnover of plant organs is advantageous
(Valladares et al., 2000). When a RLP leaf abscises, it carries

FIGURE 11 | Variation in photoprotective mechanisms between green-leafed Prunus cerasifera clone 29C (GLP) and red-leafed Prunus cerasifera var. Pissardii (RLP)

at different leaf stages (upper side). Variations in sugar, starch, and nitrogen remobilization in relation to respective photosynthetic capacity and leaf lifespan of GLP

and RLP leaves upon leaf ontogenesis (bottom). pNPQ, maximum photoprotective capacity; VAZ, sum of violaxanthin (V), antheraxanthin (A) and zeaxanthin (Z); A390
net photosynthetic rate at saturating light and ambient CO2.
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with it less than half of its maximum N (45%), as found in other
conservative species (Chapin, 1980). On the other hand, GLP
behaves like a fast-growing species that maximizes the biomass
yield during favorable conditions and for which the loss of a
higher level of N by leaf fall (57% was not recycled) can be easily
compensated for by enhanced uptake mechanisms from soil in
the following growing season.

The observations above do not deny that anthocyanins may
have protective function. However, it seems more realistic that
their photoprotective role, among others proposed regarding
the plant-environment interaction (Archetti et al., 2009; Hughes
and Lev-Yadun, 2015; Landi et al., 2015; Menzies et al.,
2016), may only be a secondary adaptation occurring in the
metabolism of plant species in which anthocyanins are transitory
or permanently accumulated.

In conclusion, we wish to suggest the possibility that foliar
anthocyanins firstly accumulate to prevent temporary sugar
excess in source organs but, in turn, this implicates other
biochemical and physiological consequences. Anthocyanin
biosynthesis induces, for example, a downregulation of
alternative mechanisms devoted to photoprotection (i.e.,
xanthophyll pool and/or antioxidant apparatus). So that, it is at
least possible that there was a non-light-driven selective pressure
of this pathway in ancestral species when the biosynthetic
pathway of anthocyanins firstly evolved, but rather other
factors connected to the sugar metabolism did. This is little

more than a hypothesis, but we believe it warrants further
study.
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