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A commentary on

Directions for Optimization of Photosynthetic Carbon Fixation: RuBisCO’s EfficiencyMayNot

Be So Constrained After All

by Cummins, P. L., Kannappan, B., and Gready, J. E. (2018). Front. Plant Sci. 9:183.
doi: 10.3389/fpls.2018.00183

INTRODUCTION

Ribulose 1,5-bisphosphate carboxylase/oxygenase (Rubisco, EC 4.1.1.39) catalyzes the fixation of
CO2 and O2 onto ribulose 1,5-bisphosphate (RuBP) during photosynthesis and photorespiration,
respectively. This enzyme is required by nearly all photosynthetic organisms and its expression,
structure, and mechanism have been intensively studied, with the ultimate objective of engineering
a more “efficient” enzyme (i.e., faster and more specific to CO2). The reaction proceeds via
a step-wise mechanism whereby RuBP is converted to an enediolate and then CO2 is added
and the resulting 6-carbon (carboxyketone) intermediate is hydrated and cleaved (Figure 1A).
Nevertheless, our current understanding of the chemical mechanism is limited and thus best
ways to optimize the rate of CO2 fixation or affinity for CO2 are not totally clear. Therefore,
comparisons of Rubisco kinetics from different organisms have been used to infer general rules
that dictate variations in turn-over for carboxylation (kccat), apparent Michaelis constant for CO2

(Kc), and specificity (Sc/o). In their recent paper, Cummins et al. (2018) looked at published kinetic
constants for a range of photosynthetic organisms and using linear regressions, concluded that
“dissociation constants” for CO2 and O2 (rate constants for decarboxylation and deoxygenation)
were relatively high and break the generally assumed relationship between kcat and Sc/o. Despite
substantial variation in the chemical strategies of Rubiscos from different taxonomic groups that
may exist, we believe that this analysis misinterprets implicit relationships between Rubisco rate
constants, and overlooks experimental evidence (Table 1) for feeble rates of deoxygenation and
decarboxylation.
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FIGURE 1 | Relationship between Rubisco’s turn-over rate for carboxylation

(kccat) and the apparent Michaelis constant for CO2 (Kc) using the same

dataset tabulated by (Cummins et al., 2018). (A) Formal representation of the

mechanism for carboxylation, with rate constants mentioned in main text.

(B) Representation of kccat against Kc using a linear scale on both axes.

Steady-state kinetics are so that kccat = Kc·k6·c·Ke/[(1 + c)·(1 + Ke)] where

Ke is enolization equilibrium constant k9/k10 and c is commitment to catalysis

k8/k7 (Farquhar, 1979). It should be noted that k6 is not in s−1 but in µM−1

s−1 and thus not on the same scale for all organisms since it depends on

prevailing subcellular CO2 concentration. The two linear models shown (blue

and red lines) represent numerical examples of the relationship and assume

that k6·[CO2] is fixed at 5 s−1 while k6 is subdivided into three domains of

prevailing CO2 conditions varying with Kc (10, 50 and 100µM). Calculations

assume that enolization is efficient (Ke = 16, red) or poor (Ke = 1, blue) and

that the commitment to catalysis is c = 95/5 = 19 (Lorimer et al., 1986).

SIMPLE LINEAR REGRESSION IS
UNLIKELY TO BE REPRESENTATIVE

It is common practice to use linear relationships between kinetic
parameters in order to facilitate our understanding of the implicit
linkage between rate constants of the mechanism. However,
this technique is difficult to apply to Rubisco kinetics because
no combination of experimentally accessible kinetic parameters
(kccat, Kc, Sc/o) gives access to individual rate constants. Basically,
Cummins et al. (2018) use the relationship Kc = (kccat +

γck7)/KRk6 (where k6 and k7 are the rate constants associated
with CO2 addition [carboxylation per se] and decarboxylation,
respectively1; γc is a complex parameter that integrates rate
constants of enolization as well as hydration and cleavage) in
order to find 1/KRk6 and γck7/KRk6 by linear regression across
enzymes from a variety of photosynthetic organisms. As they

1Here, we use the original rate constant numbering used to describe Rubisco

kinetics in Farquhar (1979).

recognize themselves, there is no linear relationship between Kc

and kccat (replotted in Figure 1B). Therefore, they used either (i) a
selection of points (typically, one taxonomic group) to minimize
non-linearity or (ii) used a log-transformation with subsequent
re-linearization by Taylor expansion. The first method gives a
considerable range of values between taxonomic groups (negative
or positive slope), and the second method disregards conditions
of validity to perform a Taylor expansion (i.e. to neglect second-
order terms). Computed coefficients 1/KRk6 and γck7/KRk6 are
in fact very unlikely to be constant because: (i) KR directly
depends on RuBP enolization equilibrium constant (Ke) since
KR = Ke/(1 + Ke), which varies between Rubisco forms
(Table 1); (ii) the rate constant for carboxylation (k6) and/or
decarboxylation (k7) may vary between Rubisco forms; and (iii)
γc comprises rate constants of enolization as well as hydration
and cleavage.

There is experimental evidence that hydration is a very
efficient process, that is, the on-enzyme hydration equilibrium
of the carboxyketone substantially favors the hydrated form
(Lorimer et al., 1986). Furthermore, (stereo)chemical constraints
on the mechanism indicate that CO2 addition and hydration
may be concerted (Cleland et al., 1998). Mathematically, this
means that γc must be a relatively small number, close to
kccat/k8a where k8a denotes the rate constant associated with
hydration [denoted as k7 in Cummins et al. (2018)]. Also, kccat
can be rearranged to k9k8b/(k9 + k8b), making apparent the
rate constant of enolization (k9). There is also direct evidence
that the enolization equilibrium varies between Rubisco forms,
and this probably contributes to explaining the non-linearity of
the kccat/Kc relationship, as explained in Table 1 and (Tcherkez,
2013). In other words, the commitment to, and the transition
state involved in enolization differ significantly between Rubisco
forms such that the enolization equilibrium is an important
variable in the landscape of Rubisco kinetic parameters, in
addition to carboxylation (k6) and processing (k8).

DECARBOXYLATION AND
DEOXYGENATION ARE NEGLIGIBLE IN
WILD-TYPE RUBISCO

Linear regressions carried out by Cummins et al. (2018) provide
an estimate of γck7 (the product of γc and the decarboxylation
rate constant, k7) which is found to be of the same order of
magnitude (3–4 s−1) as kccat itself, meaning a low commitment
of the enzyme to catalysis (kccat/γck7 ≈ 1). Such a high
decarboxylation rate clearly contradicts experimental evidence
(Table 1). We nevertheless recognize that mutant Rubisco forms
can be impacted on decarboxylation, as we previously assumed
in the L335V mutant to explain the typically low 12C/13C isotope
effect on V/K (McNevin et al., 2007). Kinetic fitting of Rubisco
velocity carried out by McNevin et al. (2006) suggested modest-
to-high values of decarboxylation but these authors explicitly
mentioned that computations were unable to give a reliable
value, with no improvement of residuals whatever k7 may
be. Deoxygenation is even less likely than decarboxylation for
fundamental reasons summarized in Table 1.
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TABLE 1 | Direct evidence that the enolization equilibrium differs between Rubisco forms, and that decarboxylation and deoxygenation are negligible.

Questions raised by

Cummins et al. (2018)

Answer

(yes/no)

Experimental evidence References

Is the decarboxylation rate

of importance?

No 1. The partitioning (catalysis:decarboxylation) of the 6-carbon intermediate when it is fed

to the enzyme has been shown to be at least 95:5.

Lorimer et al., 1986

2. Should decarboxylation be substantial, we should observe a small 12C/13C kinetic

isotope effect (13V/K) during carboxylation. In fact, 13V/K is given by αeq·(1 + cα7 )/(1 + c)

where αeq is the equilibrium isotope effect of carboxylation, α7 is the kinetic isotope effect

of decarboxylation and c the commitment to catalysis (c = k8b/k7). CO2 addition on

sugars forming a ternary C atom favors 13C by about 3‰ so that αeq is about 0.997. A

value of c = 1 gives a fractionation within 0.997-1.011 for possible values of α7 between 1

and 1.030 (feasible range for a 12C/13C kinetic isotope effect). It is therefore impossible to

match the observed isotope effect in most organisms (13V/K ≈ 1.030 in higher plants)

unless assuming extremely high values of the isotope effect for decarboxylation (about

1.070).

O’Leary and Yapp, 1978;

Roeske and O’Leary, 1984,

1985; Rishavy and Cleland,

1999

Is enolization variable and

thus can KR (and γc)

change a lot between

Rubiscos?

Yes 1. A typical example is Rhodospirillum rubrum, which does not fit the empirical linearization

used by Cummins et al. (2018). In fact, the intrinsic 1H/2H isotope effect (RuBP deuterated

in H3) on maximal velocity (DV ) when enolization becomes rate-limiting (at low pH) is clearly

lower in R. rubrum than in spinach; in addition, the isotope effect at limiting RuBP (DV/K) is

unity in R. rubrum but increases at low pH, contrary to what is observed in spinach. The

enzyme of R. rubrum can also easily exchange the H3 proton with the solvent.

Saver and Knowles, 1982;

Van Dyk and Schloss, 1986

2. There are considerable differences in the ability to carboxylate

xylulose-1,5-bisphosphate (C3 stereoisomer of RuBP) between higher plants, prokaryotes

and red algae, showing that the mechanistic constraints on H3 abstraction and thus

stereochemistry of enolization differ between Rubisco forms.

Pearce, 2006

Is the deoxygenation rate of

importance?

No 1. O2 addition forms a peroxide. In general, oxygenation to a peroxide is irreversible and

thus deoxygenation of a peroxide is extremely unlikely.

Frankvoort, 1978; Lorimer,

1981

2. Should the peroxide be deoxygenated, deoxygenation would not be the reverse of

oxygenation because the spin-forbidden character of oxygenation requires excited

chemical forms that are unlikely to be reformed. In practice, going backwards from the

peroxide to the enediolate is strongly thermodynamically disfavored.

Jonsson, 1996; Bathellier

et al., 2018

3. As with 13C (above), the 16O/18O isotope effect during oxygenation (18V/K ≈ 1.021)

indicates that an important commitment to deoxygenation is not credible.

Guy et al., 1993

KINETIC PARAMETERS ARE
CONSTRAINED BY BOTH CHEMISTRY
AND ENVIRONMENT

Taken as a whole, while we recognize that the attempt of
Cummins et al. (2018) is valuable in trying to extract implicit
rate constants from readily observable kinetic parameters,
we believe that concluding that decarboxylation and
deoxygenation are quantitatively important is not plausible.
Our assumption published in Tcherkez et al. (2006) that
Rubisco’s evolutionary strategy involves complementarity of
the active site to the transition-state, referred to as “tight-
binding hypothesis” by Cummins et al. (2018), does not
necessarily include a preferential change in the rate constant
for carboxylation (k6) instead of k7 (decarboxylation), contrary
to their claim. Rubisco adaptive value integrates not only
catalytic “efficiency” (kccat/Kc) but also specificity (Sc/o), in
the prevailing environmental CO2/O2 conditions. Even in
diatoms which show variation in Kc while having a rather
constant kccat (Young et al., 2016), there is a relationship
with CCM protein abundance and composition (such as
the occurrence of carbonic anhydrase isoform δ) and thus

subcellular CO2 concentrations (Young and Hopkinson, 2017)
(see also Figure 1B). Also, it should be kept in mind that some
residues of the active site are involved in several steps, such
as R. rubrum Lys 166 which is involved in both enolization
and hydration + cleavage, providing a chemical basis for the
interdependence of kinetic parameters (Harpel et al., 2002).
Therefore, the analysis described in Cummins et al. (2018)
does not provide evidence that Rubisco kinetics are “not so
constrained.”
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