
ORIGINAL RESEARCH
published: 17 July 2018

doi: 10.3389/fpls.2018.01022

Frontiers in Plant Science | www.frontiersin.org 1 July 2018 | Volume 9 | Article 1022

Edited by:

Marta Sousa Silva,

Universidade de Lisboa, Portugal

Reviewed by:

Fabio Sciubba,

Sapienza Università di Roma, Italy

Matthew Paul,

Rothamsted Research (BBSRC),

United Kingdom

*Correspondence:

Claire Domoney

claire.domoney@jic.ac.uk

Specialty section:

This article was submitted to

Plant Metabolism and Chemodiversity,

a section of the journal

Frontiers in Plant Science

Received: 27 February 2018

Accepted: 25 June 2018

Published: 17 July 2018

Citation:

Ellis N, Hattori C, Cheema J,

Donarski J, Charlton A, Dickinson M,

Venditti G, Kaló P, Szabó Z, Kiss GB

and Domoney C (2018) NMR

Metabolomics Defining Genetic

Variation in Pea Seed Metabolites.

Front. Plant Sci. 9:1022.

doi: 10.3389/fpls.2018.01022

NMR Metabolomics Defining Genetic
Variation in Pea Seed Metabolites
Noel Ellis 1,2,3, Chie Hattori 1, Jitender Cheema 1, James Donarski 4, Adrian Charlton 4,

Michael Dickinson 4, Giampaolo Venditti 4, Péter Kaló 5, Zoltán Szabó 5, György B. Kiss 6 and

Claire Domoney 1*

1 John Innes Centre, Norwich, United Kingdom, 2 IBERS, Aberystwyth University, Aberystwyth, United Kingdom, 3 Faculty of

Science, School of Biological Sciences, University of Auckland, Auckland, New Zealand, 4 Fera Science Ltd., York,

United Kingdom, 5National Agricultural Research and Innovation Centre, Agricultural Biotechnology Institute, Gödöllő,
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Nuclear magnetic resonance (NMR) spectroscopy profiling was used to provide an

unbiased assessment of changes to the metabolite composition of seeds and to define

genetic variation for a range of pea seed metabolites. Mature seeds from recombinant

inbred lines, derived from threemapping populations for which there is substantial genetic

marker linkage information, were grown in two environments/years and analyzed by

non-targeted NMR. Adaptive binning of the NMRmetabolite data, followed by analysis of

quantitative variation among lines for individual bins, identified the main genomic regions

determining this metabolic variability and the variability for selected compounds was

investigated. Analysis by t-tests identified a set of bins with highly significant associations

to genetic map regions, based on probability (p) values that were appreciably lower than

those determined for randomized data. The correlation between bins showing high mean

absolute deviation and those showing low p-values for marker association provided an

indication of the extent to which the genetics of bin variation might be explained by one

or a few loci. Variation in compounds related to aromatic amino acids, branched-chain

amino acids, sucrose-derived metabolites, secondary metabolites and some unidentified

compounds was associated with one or more genetic loci. The combined analysis shows

that there aremultiple loci throughout the genome that together impact on the abundance

of many compounds through a network of interactions, where individual loci may affect

more than one compound and vice versa. This work therefore provides a framework for

the genetic analysis of the seed metabolome, and the use of genetic marker data in the

breeding and selection of seeds for specific seed quality traits and compounds that have

high commercial value.
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INTRODUCTION

Metabolite profiling, based on chemical fingerprints provided by nuclear magnetic resonance
(NMR) spectroscopy, provides an approach for the unbiased assessment of changes in the content
of small molecules in response to genetic and/or environmental factors. Such profiles provide a
useful and rapid method for assessing the changes that occur in the metabolome as a consequence
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of plant genotype and/or the interaction between genotype
and environment (Messerli et al., 2007). The use of NMR
spectroscopy for holistic studies of plant metabolism predates the
term “metabolomics” (Fiehn et al., 2000) by some years (Moore
et al., 1983; Belton and Ratcliffe, 1985; Ratcliffe, 1987; Fan, 1996).

NMR spectroscopy provides a method of choice to facilitate
the efficient analysis of the large number of samples that is
necessary to deal with the expected intrinsic variability of plant,
or equivalent, biological materials particularly where these need
to be grown or cultured under field or similar “near-natural”
conditions. Such has been the case for the study of “substantial
equivalence” in genetically modified plants, where NMR has been
used in the analysis of field samples of wheat (Baker et al., 2006).
Higher amounts of maltose and/or sucrose and differences in
free amino acids were apparent in a transgenic line, and these
observations were followed bymore detailed studies of the amino
acid composition using gas chromatography-mass spectrometry
(GC-MS). NMR has also been employed to evaluate the effects
of genetic modification and assess the effect of drought-stress
on the Pisum sativum L. (pea) leaf metabolome (Charlton et al.,
2004, 2008). Significant changes in resonances under drought-
stress conditions were attributed to a range of compounds, both
primary and secondary metabolites, including proline, valine,
threonine, homoserine, myoinositol, γ -aminobutyrate (GABA)
and trigonelline (nicotinic acid betaine). Some of these changes
translated to alterations in the seed metabolome in the same
experiments (unpublished data).

It has been shown, using GC/MS analyses of Arabidopsis
developing seeds, that the seed desiccation period is associated
with a major increase in the levels of free metabolites; these
include the nitrogen-rich amino acids (asparagine, lysine, and
arginine), the aromatic amino acids (tryptophan, phenylalanine,
tyrosine), serine, alanine, the non-proteinogenic amino acid
GABA, TCA-cycle intermediates, fumarate and succinate, and
the levels of sucrose, galactose, arabinose, trehalose, sorbitol,
galactitol, gluconate-6-phosphate and glycerate (Fait et al., 2006).
Few studies have been carried out to investigate the effects of
genetic variation on the metabolite composition of seeds. For
the seeds of many crops, quality traits may be defined in terms
of the synthesis of a number of key metabolites, for example
the concentration of 2-acetyl-1-pyrroline (2AP) in rice linked
to fragrance quality (Shi et al., 2008). An alternative to the
expensive and time-consuming GC/MSmethod for assaying 2AP
content in breeding programmes is offered by the demonstration
that the metabolite is controlled by a gene, betaine aldehyde
dehydrogenase, for which allelic variation has been described (Shi
et al., 2008).

In pea, the molecular basis for many seed quality traits is
largely unknown. An exception to this is the understanding of
the control of sucrose content at a gross level, where naturally
occurring mutants with defects in starch biosynthesis have
elevated sucrose contents in their seeds. Mutations at two
genetic loci (r and rb) have been exploited in the development
of some of the varied food uses of pea seeds (Wang et al.,
1998). Studies have shown the many pleiotropic effects that
mutations at r and rb exert on seed metabolism overall; these
include changes to nitrogen/protein accumulation, water content

and seed shape when compared with wild-type lines (Perez
et al., 1993; Casey et al., 1998; Lyall et al., 2003). These
alterations to seed composition can be mimicked to similar
or greater extents in mutants induced either through chemical
mutagenesis or transgenesis, where additional genes of starch
biosynthesis have been targeted (Wang and Hedley, 1991; Wang
et al., 1998; Weigelt et al., 2009). While the r and rb loci are
determined by mutations in a starch-branching enzyme and
the large subunit of ADP-glucose pyrophosphorylase (AGPase),
respectively, (Bhattacharyya et al., 1990; Hylton and Smith, 1992),
transgenic lines of pea expressing RNAi constructs targeting the
small subunit(s) of AGPase have shown a very similar phenotype,
when compared with wild-type lines (Weigelt et al., 2009).

In many legume species, oligosaccharides derived from
galactinol and sucrose are synthesized in seeds. In pea,
these comprise the raffinose oligosaccharide (RFO) group of
compounds, which include stachyose and verbascose in addition
to raffinose. Quantitative and qualitative variation for these
compounds has been described for pea, lentil andMedicago (Frias
et al., 1994, 1999; Karner et al., 2004; Vandecasteele et al., 2011).
Although RFOs are generally regarded as anti-nutrients in seeds,
research in Medicago suggests that these compounds are related
to seed vigor (Vandecasteele et al., 2011), while additional studies
highlight their role in plant stress responses (Nakabayashi and
Kazuki, 2015).

The aim of this study was to determine the extent to
which variation in the metabolome of mature seeds was under
genetic control and to investigate the main types of compounds
involved in such regulation. This information could be used
further to identify genotypes that are enriched in particular seed
components, some of which may be associated positively or
negatively with quality and/or health-promoting traits. Given
the knowledge of the impact of the allelic state at the r and rb
loci (above) and the variation that exists within these genotypes
with respect to seed maturation, we sought to assess the extent
of metabolome variation within r and rb genotypes of pea. In
this paper, we define a metabolite phenotype for seeds from
geneticallymarked recombinant inbred r and rbmutant lines.We
describe variation within the metabolome of mature seeds from
the recombinant inbred lines, for which we provide substantial
genetic marker information and a framework for the analysis
of metabolite data in relation to genetic loci and markers.
Furthermore, for some of the identified metabolites, candidate
genes have been identified for the control of metabolite content.

MATERIALS AND METHODS

Plant Materials
A selection of recombinant inbred lines (RILs) from three
mapping populations (JI 281× JI 399, 32 lines; JI 15× JI 399, 38
lines; JI 15× JI 1194, 26 lines) and their parent lines (all available
from the JIC Pisum germplasm collection; https://www.seedstor.
ac.uk/search-browseaccessions.php?idCollection=6) were grown
in microplots (1 m2) at two locations, John Innes Centre,
Norwich (JIC) and at the Processors & Growers Research
Organization, Peterborough (PGRO), over two consecutive
seasons (Year 1, 2011 and Year 2, 2012). The lines comprise 100
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variant vining seed genotypes (either r or rb mutants), derived
from crosses that have integrated genetic maps and are densely
populated with genetic markers (Supplementary File S1). The
JI 1194 parent is r, JI 399 is rb, and JI 281 and JI 15 are wild type
for both r and rb.

Seeds were treated with Wakil seed treatment and sown
directly into plots in bird-proof cages in the spring (March).
Plants were irrigated and sprayed for protection against aphids
as necessary. Mature (senesced) plants and their seeds were
harvested together in July. Seeds were threshed and hand-picked
to remove any foreign objects, while phenotype checks ensured
the identity, integrity and purity of the genetic stock. From
these, seed aliquots (approximately 6g) were prepared for NMR
metabolite analysis.

NMR Analysis
The NMR profiles of Year 1 and Year 2 samples (mature seeds
from r and rb RILs grown at two sites) were analyzed by 1H
high resolution NMR spectroscopy. Dried pea samples were
ground into a fine powder and extracted with 1:1 methanol: water
(150mg per 1.5mL). Samples were vortexed for 30min before
centrifugation (20,817g for 10min). Methanol was removed from
900 µL of every supernatant by passing a stream of nitrogen
over the sample for approximately 1 h. Samples were lyophilized
overnight and then re-constituted in 700 µL NMR sample
buffer (250mM sodium phosphate, pH 7.0; 0.5mM trimethylsilyl
propanoic acid, TSP, dissolved in D2O), centrifuged (20,917g
for 10min) and 540 µL transferred to a labeled NMR tube.
Sodium azide (60 µL aliquot of 10mM, dissolved in D2O) was
added to every sample to prevent microbial growth before NMR
analysis. Extracts were also produced from the seed material
using deuterated chloroform to ensure that metabolites which
were not soluble in deuterated phosphate buffer solution were
analyzed.

All spectra were acquired using an 11.7 T Bruker 500 MHz
NMR spectrometer equipped with a 5mm TCI cryoprobe.
Acquisition and processing of the raw data were performed
by using Topspin 2.13 patch level 6 (Bruker, Germany). NMR
parameters and the magnetic field homogeneity were optimized
using a control pea seed extract. The magnetic field was locked
on the deuterium signal of the D2O and the homogeneity was
optimized. The free induction decay (FID) was recorded using
a 30◦ 1H flip angle determined from a 90◦ pulse length of 11.25
µs. A relaxation delay of 3 s was inserted into the pulse sequence
to ensure that quantitative data were acquired. Repetitions (256)
of 65,536 complex points were collected over a spectral width of
7002.8Hz, with the center of the spectrum at 500.1323546 MHz.
The NMR probe head was maintained at a temperature of 300K
and the sample remained static during data collection. These
parameters resulted in a total experiment time of approximately
45min per sample.

NMR Data Processing
The data were Fourier transformed and an interactive phase
correction applied to the spectrum. A baseline correction was
applied and the spectrum referenced to the TSP peak at 0 ppm,
the area of which was set to unity for all processed spectra

using FELIX software (Accelrys, San Diego, CA, USA). Spectral
binning of the resonances was performed using bespoke software,
Metabolab, a graphical user interface developed using the Matlab
platform. Adaptive binning was applied to the data by using the
undecimated wavelet transform at a predefined level to reduce
the number of variables and limit the effect of the variation of
chemical shifts (Davis et al., 2007). Using this approach on the
data acquired for different experiments (2 years) resulted in a
difference in the total bin number determined for the two data
sets. However, the bin identities could be compared, based on
their defined limits.

NMR Compound Identification
The identification of metabolites was performed by comparing
resonances in the bins with the resonances of spectral data
available either from a list of standards present in an internal
database or from literature. As a literature source, the following
on-line NMR databases were used:

1. Madison Metabolomic Database: http://mmcd.nmrfam.wisc.
edu

2. Human Metabolomics Database: http://www.hmdb.ca
3. Database of organic compounds: http://sdbs.db.aist.go.jp/

To assign the binned data, the profiles of all acquired spectra were
superimposed to determine the range of chemical shifts of all
resonances included in the binned area. Following identification
of chemical shift values, the listed databases were interrogated
and a list of the most likely candidate metabolites was formed.
The spectrum of the candidate metabolite was compared with
the spectra acquired from the samples either directly, by
using the spectra of the compounds in the internal database,
or indirectly, using the on-line NMR databases (1–3 above).
One-dimensional 1H and two-dimensional homonuclear and
heteronuclear correlation NMR experiments (1H –1H TOCSY
and 13C – 1H HSQC) were also used to aid the assignment. The
acquisition parameters for the TOCSY and HSQC experiments
are given in Supplementary Table 1. A set of resonances was
attributed to aglycone derivatives of anthocyanins, based on the
study of Kirby et al. (2013).

Normalization of NMR Bin Data and
Determination of the Mean of Absolute
Deviation (MAD)
The analysis of variation within any one bin across RILs was
carried out following normalization of the bin values to a mean
of 100 and standard deviation of 1, which resulted in all values
being positive. Binned NMR data were normalized according to
the formula below to facilitate further data processing.

A’L is the normalized bin area for the line L calculated as
follows:
aL = NMR peak area
mua = mean of the peak area for the RILs and the parents of
the mapping population
SDa = standard deviation of the peak area for the RILs and the
parents of the mapping population
A’L = 100+ ((aL - mua)/ SDa)
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As a result, each bin has a mean of 100 and a standard
deviation of 1.

Due to the number of data points to be analyzed (968 NMR bins
for year 1, 990 NMR bins for year 2), an initial prioritization of
bins for mapping analysis was achieved, using Mean of Absolute
Deviation from the mean (MAD) values as a measure of the
variation within any given bin. MAD values provide a measure
of the absolute deviations of a set of data about the data’s
mean, that is, it is the average distance of the data set from
its mean. Although high MAD values indicate bins with high
variation across the population, this variation in phenotype does
not necessarily indicate genetic variation. However, analysis of
bins which have higher MAD values increases the possibility of
detecting those bins for which quantitative trait loci (QTL) could
be mapped. Due to the normalization carried out (as above),
MAD values for the normalized data ranged between 0 and 1.
Heat maps were generated to visualize MAD value distributions
along the NMR spectrum and to compare relative MAD values
among datasets (Supplementary Figure 1).

Linkage map analysis (see below) was performed for bins of
interest, whereby quantitative variation within NMR bins was
shown to be associated with genetic loci, if the two groups of
lines carrying one or the other parentmarker at that locus showed
significant difference in NMR signal strength. Analysis by t-tests
identified a set of bins with highly significant associations to
genetic map regions. The correlation between MAD value and
probability of genetic association for each bin was examined,
using Pearson’s correlation coefficient, in order to validate the
usefulness of MAD values as a method of prioritization.

Genetic Analysis of Quantitative Data
Derived for NMR Bins
The genetic marker data and associated genetic maps for seven
linkage groups (LG) of the three recombinant inbred pea
populations (JI 281 × JI 399; JI 15 × JI 399; JI 15 × JI
1194) which formed the basis for this study are available as
Supplementary Data (Supplementary File S1, with the genetic
map data available as Supplementary File S1–Figures M1–M9).
Briefly, the genetic markers determined were based on gene-
specific polymorphisms, as well as sequence-specific amplified
polymorphic markers based on the retroelement PDR1 (Knox
et al., 2009). Linkage analysis was carried out for three sets
of RILs, and genetic maps obtained by ordering all available
markers and determining their relative positions using THREaD
MAPPER, a web-based software developed at JIC (Cheema
et al., 2010), which can be accessed at http://threadmapper.org/
threadmapper. The linkage maps generated were used to draw
genetic map charts for assessing genetic loci associated with
quantitative variation in NMR signals, which can be visualized
across the NMR spectrum for all datasets as movies at http://
www.threadmapper.org/qdips. Additionally, genetic markers
associated with groups of NMR signals were analyzed in Excel,
based on p-values as described below.

For high-throughput genetic analysis of quantitative trait
data, single marker analyses were performed for 12 data sets
(RIL population, year and location), using the linkage maps

generated and the NMR bin quantitative signals as phenotypic
data (968 and 990 bins for year 1 and year 2, respectively).
A programme (available on request) was developed in house
to generate p-values from Student’s t-tests between RIL and
maternal/paternal alleles. For most subsequent analyses, p-values
were transformed to -log10 to enable map charts to be plotted for
visual investigation.

Significance thresholds were determined for all datasets. To
minimize the impact of false positive signals generated by
multiple t-tests, the significance threshold for each dataset was
determined individually. First, the frequency distribution of all
p-values associated with markers for all bins within a dataset
was plotted within the range of 0 < p ≤ 0.05 with intervals of
0.0001 (Figure 1, blue line) and the average of ten successive
intervals generated to remove noise from raw data (Figure 1,
black line). The data were subjected to randomization (100 times
resampled) and the mean p-value frequency derived from the
randomized data (Figure 1, red line) plotted, with error bars of±
3 standard deviations (Figure 1, yellow shadow). A significance
threshold for p-value was determined where the plot of the
experimental dataset crossed over the upper error bar of the
resampled (randomized) dataset as indicated (Figure 1, green
shadow).

RESULTS

Metabolite Analysis
NMR spectra were acquired and peaks identified by adaptive
binning (see section Materials and Methods, Davis et al., 2007)
which allowed clear separation of peaks, and therefore calculation
of peak areas, but with the consequence that the peaks did
not coincide exactly between years. Some resonance frequencies
included within a peak were known and thus bonds and
compounds that contributed to the peak area could be identified.
A list of correspondences and potential contributing compounds
are given in Supplementary Tables 2, 3.

Peak areas were imported to Microsoft Excel Worksheets and,
for a given data set (year and RIL population), the data were
normalized so that each peak had an area of 100 and a standard
deviation of 1. This meant that all peak areas were positive and
that statistical analyses did not unduly emphasize variation in
intense peaks and thus global analyses could be applied to the
whole data set.

For a given population of RILs, the peak areas for each
individual were available and the difference between the mean
score for the lines with contrasting alleles was calculated. The
expectation for each genotype is that the mean is 100 and the
standard deviation is 1. The expected value of the difference
between the two means is therefore 0 and given the number of
individuals of each genotype a Student’s t-test statistic can be
generated. A related test calculated the mean absolute difference
(Mean of Absolute Deviation from the mean, MAD) of the peak
areas; this is greatest if there are two data subsets, one greater
than 100 and the other less than 100. Example heat maps of
MAD values in relation to the NMR spectrum are shown in
Supplementary Figure 1, where regions of the spectrum showing
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FIGURE 1 | Determination of significance values (as listed in Table 1). An example of a plot of the observed number of p-values (blue line) of a given value (<0.05)

compared to the number of p-values of that magnitude from randomized data (red line), which enabled the estimation of a cut-off value above which p-values were

indistinguishable from random values. Black line: average of ten successive intervals, Yellow shadow: error (±3S.D.) of 100 times resampled data, Green shadow: cut

off point of p-values above the significance threshold. Data were determined for JI 15 × JI 1194 RILs, mature seeds, year 1, PGRO location.

consistently high variation are apparent. MAD values and the t
statistic were well-correlated (Supplementary Figure 1).

The t-tests performed provided a probability value (p) for
the two means being different from each other, but this is
seriously confounded by multiple testing (ca. 1,000 bins and 790
markers). We therefore examined the frequency distribution of p
as compared to randomized data in order to identify a threshold
significance value for p (Figure 1).

Genetic Map Based Analysis
The determination of cut-off p-values generated large numbers
of “significant” associations (Table 1). This suggested that,
for most NMR bins, some genetic marker(s) could explain
a component of their variation. While this is of theoretical
interest, it does not focus attention on specific marker/metabolite
associations. An alternative approach was taken where the
minimum p-value for each marker was plotted against the
genetic map of each RIL population (Figure 2). This identified
those regions of the genetic map with the most significant
effect on the metabolite profile and, once these had been
identified, the NMR bin most affected by that marker could be
identified.

The plot identifies regions of the genetic map that have
important effects on the metabolite profile. It should be realized
that these are regions of relative importance because the low p-
values are included in the estimation of the standard deviations.
If one of the most extreme peaks was missing, then the standard
deviations used to estimate significance would be of a lower
value. Those associations that are consistent between years are
symmetrically reflected about the genetic map and equivalent

TABLE 1 | Summary of pea recombinant inbred populations for which metabolite

data were collected for mature seeds in 2 years and two locations.

Dataset Significance threshold

(p-value)

Number of

significant marker

bin associations

JI 281 × JI 399, Y1, JIC 0.0073 18,040

JI 281 × JI 399, Y1, PGRO 0.0136 36,549

JI 281 × JI 399, Y2, JIC 0.0215 54,849

JI 281 × JI 399, Y2, PGRO 0.0071 19,261

JI 15 × JI 399, Y1, JIC 0.016 25,721

JI 15 × JI 399, Y1, PGRO 0.0168 27,136

JI 15 × JI 399, Y2, JIC 0.0001 398

JI 15 × JI 399, Y2, PGRO 0.0023 4,002

JI 15 × JI 1194, Y1, JIC 0.0035 3,012

JI 15 × JI 1194, Y1, PGRO 0.005 4,636

JI 15 × JI 1194, Y2, JIC 0.0018 1,392

JI 15 × JI 1194, Y2, PGRO 0.0003 401

The significance threshold (see Figure 1) determined for every dataset [population

identity, year (Y1 or Y2) and location of plant growth (JIC or PGRO)] is listed, together

with the number of markers for which significant quantitative variation in NMR bin signal

intensities was determined.

positions on the genetic maps can be seen. The seven regions
identified as peaks on the map (Figure 2) are discussed below.

Peak 1 and Peak 6
These peaks are associated with a segment at the top of linkage
group (LG) I characterized by the microsatellite marker PC20
and the gene encoding a small subunit of AGPase (Aubert
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FIGURE 2 | Locating the genomic regions with the most contrasting alleles. Genetic maps (linkage groups identified by roman numerals, I–VII) of the three populations

analyzed (left to right JI 281 × JI399, JI 15 × JI 399, JI 15 × JI 1194) grown at JIC (Top) and PGRO (Bottom) are shown and the common logarithm of minimum

p-value [–log10 (p)] for each marker is plotted (in blue, below the map for year 1 data, and −1 times this value in brown above the map for year 2 data). The red lines

correspond to +3 and +5 standard deviations of all p-values for that population and location. Solid red arrows indicate marker-NMR resonance associations that are

consistent between years, open arrows indicate those that reach the threshold value in 1 year, all numbered for reference in the text.

et al., 2006). The classical locus D also maps in this region
(Ellis and Poyser, 2002) and this locus is known to regulate
the pattern of anthocyanin deposition. The resolution of the
map is insufficient to identify a single causative allelic difference.
However, although the peak assignments for this region (peaks 1
and 6) in the three populations at the two sites do not coincide
exactly (Figure 2), the region includes some common genetic
markers; the associated compounds are listed in Table 2. Note
that these markers identify only the most significant associations,
so a lack of replication does not mean that a shared association
does not occur. One peak, and compound, implicated more
than once is the flavanone glycoside hesperidin. The p-value
data for the additional peaks identified for hesperidin, as shown
in Supplementary Figure 2 for the JI 281 × JI 399 population
(JIC, years 1 and 2), illustrate the consistency of this association.
All but one of the bins that include a resonance assigned to
hesperidin behave co-ordinately across the genetic map. This is
consistent with the signals being derived from variation in the
abundance of hesperidin or a closely related compound. The
lack of significance for one bin (and an equivalent resonant
range in both years) could be explained by a contribution from
an additional signal in that bin from a compound that does
not co-vary in abundance with hesperidin. Here, additional
resonances are associated with aromatic compounds, tryptophan
and its catabolite tyramine. Taken together, these signals suggest
that there is allelic variation in this LG I region that alters
the regulation of compounds closely related to the anthocyanin
pathway, and the D locus may therefore be implicated.

Peak 2
This is a broad peak on LG II (Figure 2) and has its
highest significance value in the population JI 281 × JI

399 associated with the classical gene A, which regulates
anthocyanin biosynthesis and corresponds to a gene encoding
a bHLH transcription factor (Hellens et al., 2010). The peak
resonances are listed in Table 3; most of the bins are in
the aromatic region of the spectrum, two in the sugar range
and one in the expected range for aliphatic amino acids.
The distribution of year 1 and year 2 p-values for the bin
tentatively assigned as the flavonoid naringin in the JI 281
× JI 399 RILs (JIC location) are shown in Supplementary
Figure 3 and show no significant p-value associated with
A. Surprisingly although A and a segregate in all three
populations analyzed, no signal for an anthocyanin was detected
in this analysis. Kirby et al. (2013) have undertaken an
NMR analysis of anthocyanins in Rhus typhina, identifying
profiles with multiple resonances, and so it was expected that
signals from pea anthocyanins might be similarly scattered
throughout the NMR spectrum. The resonances identified by
these authors as corresponding to aglycones can be aligned with
the bins we defined in this group. These results are shown in
Supplementary Figure 4, and suggest that it is likely that some
A-regulated anthocyanins are detected by this analysis of mature
seeds.

Peak 3
Peak 3 corresponded to the top region of LG III in two of
the three populations analyzed (Figure 2). This peak, close
to the rb locus, may be considered an artefact due to there
being very few RbRb genotypes within these two populations,
where the vining genotypes selected for analysis were rb mutant
lines (see section Materials and Methods). The rb mutation
is a consequence of a nine-base pair deletion in the gene
encoding the large subunit of AGPase (Rayner et al., 2017),
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TABLE 2 | Peak 1 and Peak 6 resonances and associated NMR bin data.

Population Location Year Bin ID comment Bin range ppm Compound ppm

JI 281 × JI 399 JIC 1 196

199

Hesperidin

Aromatic

7.106494107–7.096238809

7.09111116–7.085983511

7.106494

7.085984

2 209

210

216

Aromatic, unknown

Unknown

Aromatic, unknown

7.139396521–7.130850439

7.130850439–7.125722791

7.089829248–7.077010126

7.13726

7.084702

PGRO 1 196 Hesperidin 7.106494107–7.096238809 7.106494

2 214 Hesperidin 7.107776019–7.09111116 7.106494

JI 15 × JI 399 JIC 1 166

182

184

206

207

Aromatic, tentative Naringin

Aromatic, tentative Tyramine

Tyrosine multiplet 3,5

Unassigned

Aromatic, tentative Chlorogenic

acid

7.359458121–7.347066302

7.237249155–7.224002728

7.219729688–7.209474390

7.050089969–7.041543887

7.041543887–7.031715894

7.359458

7.224003

7.2127

7.031716

2 243 Unknown 6.9415

PGRO 1 166

182

219

Aromatic, tentative Naringin

Aromatic, tentative Tyramine

Unassigned

7.359458121–7.347066302

7.237249155–7.224002728

6.945400467–6.932581348

7.359458

7.224003

6.9415

2 200

201

228

Tyrosine multiplet 3,5

Aromatic, unknown

Unassigned

7.198791788–7.186399969

7.186399969–7.178708496

7.042398495–7.03342511

7.1898

7.183409

JI 15 × JI 1194 JIC 1 166

183

192

Aromatic, tentative Naringin

Tyrosine

Unassigned

7.359458121–7.347066302

7.224002728–7.219729688

7.126150095–7.122304358

7.359458

7.21973

2 196 Aromatic, unknown 7.237676459–7.226993857 7.237249

PGRO 1 182

194

217

Aromatic, tentative Tyramine

Unassigned

Unassigned

7.237249155–7.224002728

7.110339844–7.108203323

6.966765674–6.948818903

7.224003

2 228 Unassigned 7.042398495–7.03342511

Summary provides the population identity, year and location of plant growth (JIC or PGRO), NMR bin number and range, and compound information. In bold are the bin numbers and/or

compound data that were identified consistently.

which maps close to the top of LG III. It is noteworthy that
this peak is missing from the JI 15 × JI 1194 population where
all individuals are RbRb. Nevertheless, it is of interest that
variation in metabolite profiles reflected the status of the rb
locus.

Peak 4
A peak in the JI 281 × JI 399 population in the middle
of LG IV for plants grown at PGRO is seen for both years
(Figure 2). The peak of this value corresponding to bin 681
in JI 281 × JI 399 (Y1, PGRO) was not assigned to a known
compound.

Peak 5
For both the JI 281 × JI 399 and JI 15 × JI 399 populations
a peak can be seen in LG VI (Figure 2). The significant
signals are for bin 490 in year 2 in JI 281 × JI 399 (JIC)
and in JI 15 × JI 399 (PGRO), which was not assigned
to a known compound but there is a resonance noted at
5.1052 ppm.

Peak 7
This corresponds to bin 879 in year 1 in the JI 15 × JI 1194
population and corresponds to an unidentified compound with
a resonance at 1.1974 ppm.

Compound Based Analyses
Using the genetic map as a way of identifying interesting
compound/marker associations identified those regions of the
map which had the most profound effect on the metabolite
pool. However, this approach was limited because the association
between NMR bins and known compounds within those bins
was poorly established. It did suggest, however, that there are
regions of the genome that have a major impact on the seed
metabolome and which require further characterization, for
example using 2D NMR or complementary analytical methods.
The extent of this genetically controlled variation was revealed
to be greater than initially expected, compared to analysis of leaf
metabolomes (Charlton et al., 2008). A complementary approach
was to examine variation associated with priority compounds,
or classes of compounds, for which NMR resonances have been
established.
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TABLE 3 | Peak 2 resonances and associated NMR bin data.

Population Location Year Bin Comment Bin range ppm Compound

ppm

JI 281 × JI 399 JIC 1 309

910

Unassigned

Unassigned

6.252740561–6.231375357

0.881101007–0.869136493

2 432 Unassigned 5.709637079–5.698527173

PGRO 1 250 Unassigned 6.720211221–6.706110187

2 249

569

570

Unassigned

Unknown

Unknown

6.891560156–6.883868683

4.319616916–4.312780051

4.312780051–4.304661273

4.3151

4.3089

JI 15 × JI 299 JIC 1 299 Aromatic,

unknown

6.371958398–6.34589285 6.371958

2 354 Unassigned 6.289488712–6.271969244

PGRO 1 157 Unassigned 7.450046585–7.448337369

2 336 Aromatic,

unknown

6.372385703–6.354866235 6.371958

JI 15 × JI 1194 JIC 1 307 Aromatic,

tentative

chlorogenic

acid

7.450046585–7.448337369

2 n/a n/a n/a

PGRO 1 n/a n/a n/a

2 354 Unassigned 6.289488712–6.271969244

Summary provides the population identity, year (Y1 or Y2), location of plant growth (JIC or PGRO), NMR bin number and range, and compound information. In bold is the bin number

identified more than once.

Here we need to consider two problems. The first is that
any bin contains more than one resonance frequency and so
the signal intensity may reflect the abundance of more than one
compound. The second problem is that any particular resonance
may derive from more than one molecule, for example if the
molecules differ at remote positions. One way to overcome this
is to consider the behavior of the signals from molecules with
many assigned resonances which might be expected to behave
co-ordinately. Several amino acids fulfil these criteria and are
discussed below.

Isoleucine
There are 23 bins that report the intensity of resonances from
isoleucine in year 1 and year 2 data (see Supplementary Table 3).
If these all report variation in the abundance of the same
compound, then the p-values for each marker should be strongly
correlated. Comparing the year 1 and year 2 data for JI 281 × JI
399 grown at JIC (Supplementary Table 4A), this is clearly not
the case. The highest correlation coefficient is 0.344 (year 1 bins
795 and 904 vs. year 2 bin 977), and the lowest is −0.377 (year
1 bin 848 vs. year 2 bin 915). In contrast, comparison of the p-
values for bins assigned to isoleucine within either year 1 or year
2 were highly correlated, with correlation coefficients reaching
0.97 in year 1 and 0.99 in year 2 (Supplementary Table 4B). This
suggests that different bins are in fact reporting on co-varying
determinants of the NMR signal, consistent with reporting on
the same compound (or set of compounds). However, not
all correlations were high even within an assignment class
(defined in terms of the source of the NMR resonance in
Supplementary Table 3). This is consistent with some bins
reporting on resonance due to similar bonds in related (but
different) compounds, or interference from resonances generated
from different compounds that fall within the same bin.

The corresponding bins have different ppm ranges in different
years; this may mean that the partitioning of signals is different
between the data sets from the 2 years which may be more
important than environmental effects on the biological samples.
Indeed, the average of the correlation coefficients comparing
overlapping bins between years is −0.024 ± 0.140 (n = 21),
while the average of the correlation coefficient comparing
non-overlapping bins between years is −0.027 ± 0.110 (n =

209), which would be consistent with the interpretation that
overlapping bins are no more closely related than different
bins that contain a resonance from the same compound;
in other words, there are confounding signals within a bin.
Partitioning these signals along the genetic map is therefore
a useful way of dissecting out commonalities across the bins
as shown in Figure 3. Although some peaks are consistent
between Figures 3A,B, no peaks are consistent between years in
Figure 3B, consistent with the suggestion that the bins are not
comparable between years.

Leucine
Three bins were assigned to leucine in the year 1 and year
2 data, with details provided in Supplementary Table 5 and
Supplementary Figure 5. These bins are close to one another and
illustrate the way bins correspond between years. The data also
highlight how adaptive binning can result in differences in the
distribution of resonances among bins between the year 1 and
year 2 datasets. (For example, the year 1 bin 903 includes the
leucine resonance at 0.9494 ppm and the isoleucine resonance at
0.9584 ppm, but these are in separate bins in the year 2 data).

The distribution of –log10 (p) values for leucine is shown on
the genetic linkage map in Figure 4. Here the reflection of the
pattern above and below the map shows the consistency of the
data between years and sites, which is particularly noticeable
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FIGURE 3 | (A) Mapping variation attributed to isoleucine. LG I–VII of the genetic map of the JI 281 × JI 399 RIL population are displayed horizontally from bottom to

top for each isoleucine signal. The –log10 (p)-values for each marker are plotted above the genetic map for NMR resonances associated with different parts of the

isoleucine molecule. Different bins are plotted with a slightly different color, those from year 1 in red and those in year 2 in blue. Overall, the identified peaks (labeled a–h)

(Continued)
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FIGURE 3 | are different between years, with the exception of peak h. The multiple bins assigned to isoleucine multiplet 7 are deconvoluted in (B). Mapping variation

attributed to isoleucine multiplet 7. LG I–VII of the genetic map of the JI 281 × JI 399 RIL population are displayed horizontally from bottom to top. The –log10
(p)-values for each marker are plotted above the genetic map for year 2 data and below the genetic map for year 1 data. The color coding for the various bins is

indicated adjacent to the relevant map. The bin groupings are according to the correlations given in Supplementary Table 4. The peaks (labeled a–h) correspond to

those identified in (A) for isoleucine multiplet 7. The red lines above the map correspond to 3 SD units for the variation in p-values.

FIGURE 4 | Mapping variation attributed to leucine. The seven linkage groups (I–VII) of the JI 281 × JI 399 genetic map are displayed horizontally from bottom to top.

The –log10 (p) values for each marker are plotted above the genetic map for year 2 data and below the genetic map for year 1 data. The color coding for the various

bins is indicated adjacent in the boxed section. The bins that contain the same resonance in year 1 and year 2 are given the same color. The red lines above and

below the map correspond to 3 SD units for the variation in p-values for year 2 and year 1, respectively.

on LG II in the region of the classical genetic marker A. The
correlations among leucine associated bins for two years are given
in Supplementary Table 6. The correlations between sites and
years for LG II are given in Table 4, where the most different
site/year combination is JIC in year 2. Remarkably, the strongest

and most consistent signal is coincident with the A locus. The
direction of this effect shows that the allele a is associated
with an increase in signal intensity (Supplementary Figure 6),
implying a role for this locus in regulating compounds beyond
anthocyanins.

Frontiers in Plant Science | www.frontiersin.org 10 July 2018 | Volume 9 | Article 1022

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ellis et al. Metabolomic Genetics of Pea Seeds

TABLE 4 | Linkage group II correlation coefficients of p-values among sites and

years for leucine related NMR signals in the JI 281 × JI 399 RILs (Year 1, Year 2)

across two sites (JIC, PGRO).

JIC Y1 JIC Y2 PGRO Y1 PGRO Y2

JIC Y1 0.481 0.692 0.711

JIC Y2 0.481 0.580 0.680

PGRO Y1 0.692 0.580 0.719

PGRO Y2 0.711 0.680 0.719

Shading intensity is proportional to the value of the correlation coefficient.

The JI 281 × JI 399 Recombinant Inbred
Population
Focussing on a single RIL population limits the analysis to a pair
of alternative alleles, and we have shown above that the least
correlated pair is the year 1 and year 2 data for the population
JI 281 × JI 399 grown at JIC. We therefore examined these data
sets and filtered according to the −log10 (p) values, selecting
only marker/bin associations having a −log10 (p) value greater
than 5 standard deviations from the mean of all values. For
both years, this is a more stringent selection than using the p-
values obtained using data randomization (see above). These
data are summarized in Figure 5. Where there is correspondence
in the identification of a marker/bin association at this level
of stringency, the two types of symbol are coincident, whereas
regions unique to a given year are indicated by the presence
of a single symbol type (Figure 5). The resonance signals for
all the bins where a compound has been identified are listed in
Supplementary Table 7 and the compounds affected are listed in
Table 5.

Raffinose and Related Oligosaccharides in the JI 281

× JI 399 Population
The raffinose family of oligosaccharides (RFOs) are among the
list of compounds in Table 5. These three (raffinose, stachyose,
verbascose) are related in terms of their biosynthesis (Peterbauer
et al., 2002). One of the enzymes involved (raffinose synthase,
Rfs) shows genetic variation that maps approximately centrally
on LG III (close to PSAB124, PSAA491 and PSAC18 markers in
the JI 281× JI 399 population; close to agpS1_SNP3 on LG III in
Iglesias-García et al., 2015). The gene encoding a second enzyme
of this pathway, stachyose synthase (Sts), has been mapped to LG
V in another cross (cv. Princess× JI 185, not used in this study).
It is therefore of interest to describe how allelic variation for those
bins, which contribute to the set displayed in Figure 5 and are
associated with only one of these compounds, is distributed on
the genetic map. This is illustrated in Figure 6.

The graph (Figure 6) includes an association between one of
the verbascose-related bins (566) and the location of stachyose
synthase on linkage group V. Overall, the correlation between
the two verbascose bins (566, 544) is low, likely due to additional
resonance signals. However, the correlations of bin 566 with the
others assigned uniquely to RFOs suggests that this set of bins is
reporting on related compounds. The slight elevation of –log10
(p) values near the location of the raffinose synthase gene does
not reach the threshold level. This is notable, as there are eight

amino acid differences between the deduced raffinose synthases
of JI 281 and JI 399, four of which are predicted to lie within
the mature protein (Q216K, R253W, G329V, and M379V for JI
281 and JI 399, respectively). The most significant associations
for this group of compounds are with regions of LG II (stachyose,
verbascose) and LG IV (raffinose, stachyose) (Figure 6).

Genetic loci on different linkage groups are associated with
effects on raffinose concentration (Figure 6). The three raffinose
bins (591, 589, and 587) are generally well correlated for
the whole map, where the lowest correlation is for bins 589
and 587 with r = 0.729. However, the analysis for individual
linkage groups has a range of correlation values, as would
be expected if there is some interference from additional
resonances that are under distinct genetic control. The most
variable pair is 589 and 587 and their minimum correlation
(for LG II) is 0.298 and maximum is 0.980 (for LG IV).
Nevertheless, the strong correlation among these three bins is
consistent with them reporting reasonably well on the same
or a related compound. The most striking feature of these
correlations according to linkage group is the contrast between
LG II and LG IV. For LG II most correlations are positive;
three negative pairwise combinations involve bin 587, with the
other raffinose related bins having a positive correlation to
both stachyose and verbascose bins. Linkage group II is the
least differentiated in terms of these bins (measured as the
mean average deviation of the non-self-correlations. For LG
I–VII, these are: I, 0.331; II, 0.254; III, 0.351; IV, 0.616; V,
0.307; VI, 0.301; VII, 0.420, and overall 0.299). In contrast,
LG IV is the most differentiated, with raffinose and stachyose
positively correlated, but these are negatively correlated with
verbascose, consistent with an allelic difference in the final
step of the pathway. This is also seen on the –log10 (p)
plot toward the right-hand side of LG IV (Figure 6), where
the color symbols are well separated, suggesting a difference
in control of the early and late steps in the RFO pathway.
Within this group of compounds, the most intense NMR signal
was from stachyose (bin 585) and this showed the largest
actual difference in signal intensity between the contrasting
allelic states (higher with the JI 399 allele); the greatest
percentage difference between the allelic classes was for bin 544
(verbascose) which was higher when associated with the JI 281
allele.

DISCUSSION

In this paper, we investigate the genetic control of significant
metabolites in pea seeds and provide a framework for their
analysis in association with genetic maker data. Two approaches
were adopted to examine the extent to which genetic, rather
than environmental, control was important in determining the
metabolome of seeds derived from three mapping populations:
a map-based and a compound-based analysis. Despite the
difficulties in associating NMR bin resonances exclusively with
specific compounds, the screens have identified classes of
compounds that should be investigated further as well as regions
of the genetic map that warrant further investigation in relation
to the compounds that are affected. We conclude that:
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FIGURE 5 | Significant genetic marker-NMR bin associations in the JI 281 × JI 399 RILs. The x axis represents a concatenated genetic map for LG I–VII in numerical

order. Below the axis several reference genetic loci are indicated. The y axis represents the NMR spectrum in ppm. To the right of the graph a representative trace of

the NMR spectrum is shown vertically to indicate relative signal intensity. The blue spots represent the upper and lower bounds of a selected year 1 bin and the red

crosses are the upper and lower bounds of selected year 2 bins (both JIC location). Bins were selected that had –log10 (p) values greater than the mean plus 5 SD

units.

TABLE 5 | Summary of compounds identified which differed in JI 281 × JI 399

RILs with high significance.

Compounds identified in Years 1 and 2 Year 1 only Year 2 only

Alanine Isoleucine Sucrose Aspartic acid Phenylacetic

acid

Arginine Leucine Trigonelline Delphinidin

Chlorogenic acid Myoinositol Tyramine (or hesperidin)

Folic acid Naringin Tyrosine Dodecenic

acid

GABA p-coumarate Valine Glutamine

Glutamate Phenylalanine Verbascose Methyl maleic

acid

Glutathione Raffinose

Hesperidin Rutin

Homoserine Stachyose

1) There are many different metabolites for which their
abundance, within seeds of the RILs studied, varies under
genetic control.

2) The genetic control of these compounds is distributed
throughout the genetic map, with some regions implicated in
the control of diverse metabolites.

An association between anthocyanin/phenylpropanoid
derivatives and the nature of the allele at the A locus on
LG II provides an example where the associated gene is a
strong candidate for the observed effect, based on knowledge
of flower color and seed trait differences associated with A/a.
However, the highly significant differences in the branched
chain amino acids (leucine, isoleucine) also associated with
this locus suggests a wider impact on amino acid metabolism.
This may be explained by considering that the anthocyanins
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FIGURE 6 | Mapping variation attributed to oligosaccharides. The seven linkage groups (I–VII) of the JI 281 × JI 399 genetic map are displayed horizontally from

bottom to top. The –log10 (p) values for each oligosaccharide bin/marker are plotted above the genetic map (year 1, JIC). The threshold value for p determined from

the randomization and t-test is indicated by the red horizontal line. The positions of raffinose synthase and stachyose synthase genes on linkage groups III and V are

indicated by black triangles. The three bins assigned to raffinose (591, 589, and 587) are indicated in shades of red, stachyose (585) in green, and the two verbascose

bins (566 and 544) in blue. On the right of the genetic map, a correlation analysis of the p-values for each bin within each linkage group is indicated, together with a

color scale for the correlation range −1 to +1. At the bottom of the correlation scores, the correlation between the bins for the whole linkage map is given.

are derived from phenylalanine/ phosphoenolpyruvate, while
leucine/isoleucine are derived from pyruvate. Therefore, a
reduced flux from phosphoenolpyruvate to phenylpropanoids
in a mutants may generate a higher flux from pyruvate
and hence more leucine/ isoleucine. This hypothesis is in
agreement with the directional change in these amino acids
(Supplementary Figure 6). Although the pool of free amino acids
is relatively small in mature seeds, in comparison with protein-
derived amino acids, it is likely to represent a component
of the seed metabolome which is significant to seed storage
and early germination. Fait et al. (2006) showed that the

metabolic preparation for germination and efficient seedling
establishment is initiated during seed desiccation. Understanding
the genetic control of such variation is therefore of academic
as well as economic interest. Other work has highlighted
the impact of single gene changes on the seed metabolome;
metabolomic profiling of pea lines down-regulated for AGPase
has demonstrated the widespread consequences for metabolism
of changes to this single gene (Weigelt et al., 2009). Significant
variation in relative amounts of amino acids and in polyamine
metabolism was reported in a study of seeds from wild type and
mutant pea lines, differing by the presence or absence of pea
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albumin 2 genes, normally expressed in seeds (Vigeolas et al.,
2008).

The genetic loci associated with variation in RFOs are equally
of interest, with some genetic control possibly attributed to
genes encoding the major synthetic enzymes of the pathway
(LG III and LG V), but a much higher level of significance
implicating control by genetic loci on LG II and IV. The
below threshold variation associated with the different Rfs
genes in JI 281 and JI 399 is in agreement with the different
Rfs alleles encoding proteins that do not differ greatly in
functionality. Certainly, none of the variant Rfs regions are
predicted to be of high relevance to protein function (using
CODDLE and PARSESNP programmes). The association of
verbascose variation with LG V and the Sts gene may be
consistent with the JI 281 Sts allele progressing the galactosylation
of RFOs further than its JI 399 counterpart. Transfer of
a further galactinol residue to stachyose gives verbascose, a
reaction which is probably catalyzed by a bifunctional stachyose
synthase (Peterbauer et al., 2001). In combination, these loci
(Figure 6) may be important for determining seedling vigor.
In Medicago truncatula, seven of the 12 QTL for germination
rate or post-germinative growth parameters co-located with
sucrose/RFO QTL (Vandecasteele et al., 2011). A significant
negative correlation was also found between seed vigor traits
and sucrose: RFO ratio and, in addition, 80% of the variation
in the stachyose: verbascose ratio co-located with a stachyose
synthase gene. The genetic control of RFOs is of additional
interest, given their involvement more generally in abiotic and
biotic stress responses (Cao et al., 2013; Nakabayashi and Kazuki,
2015).

Further development of the framework presented here for
association of NMR resonances and genetic variation could
include two-dimensional NMR on the contrasting genotypes,
focussing on the resonances identified as being significant.
Additionally, HPLC and/or GC-MS could supplement these
analyses. The identification of candidate genes implicated in the
genetic regions highlighted by this work could be accelerated
by using the fast neutron mutant population, which has been
developed for pea in one of the genetic backgrounds studied
here (rb mutant) and where large genomic regions have been
shown to be deleted (Domoney et al., 2013). Deletions could be
positioned with respect to the genetic map and (when available)
the genome sequence of pea to identify a subset of fast neutron
mutants in which the NMR signals could be compared. Mutants
affected in the relevant signal would presumably carry a deletion
in the gene of interest and therefore it could be identified. These
approaches would be complementary to those presented by Luo
(2015) for metabolite-based genome-wide association studies in
plants.

CONCLUSION

NMR analysis of genetically marked lines of pea has revealed
genetic variation associated with sets of metabolites present
in mature seeds. Some of this variation may be explained by
few genetic loci, including variation in compounds related
to aromatic amino acids, branched-chain amino acids,
sucrose-derived metabolites, secondary metabolites and some
unidentified compounds. Overall there is extensive variation
within r or rb genotypes that has major implications for seed
quality traits and may impact nutritional and/or organoleptic
parameters. This variation is under the control of multiple
loci distributed throughout the genome, presenting an array of
possibilities for breeders. Our approach shows how the major
genetic determinants of such variation can be identified and
therefore managed within a breeding programme. The combined
analysis thus presented provides a framework for the genetic
analysis of the seed metabolome. The genetic marker datasets
provided may be used in the further analysis of seed components
that relate directly to seed storage and end-use quality traits.
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