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Molecular marker analysis allow for a rapid and advanced pre-selection and resistance

screenings in plant breeding processes. During the phenotyping process, optical

sensors have proved their potential to determine and assess the function of the

genotype of the breeding material. Thereby, biomarkers for specific disease resistance

traits provide valuable information for calibrating optical sensor approaches during

early plant-pathogen interactions. In this context, the combination of physiological,

metabolic phenotyping and phenomic profiles could establish efficient identification

and quantification of relevant genotypes within breeding processes. Experiments were

conducted with near-isogenic lines of H. vulgare (susceptible, mildew locus o (mlo)

and Mildew locus a (Mla) resistant). Multispectral imaging of barley plants was daily

conducted 0–8 days after inoculation (dai) in a high-throughput facility with 10 wavelength

bands from 400 to 1,000 nm. In parallel, the temporal dynamics of the activities of

invertase isoenzymes, as key sink specific enzymes that irreversibly cleave the transport

sugar sucrose into the hexose monomers, were profiled in a semi high-throughput

approach. The activities of cell wall, cytosolic and vacuole invertase revealed specific

dynamics of the activity signatures for susceptible genotypes and genotypes with mlo

and Mla based resistances 0–120 hours after inoculation (hai). These patterns could

be used to differentiate between interaction types and revealed an early influence of

Blumeria graminis f.sp. hordei (Bgh) conidia on the specific invertase activity already

0.5 hai. During this early powdery mildew pathogenesis, the reflectance intensity

increased in the blue bands and at 690 nm. The Mla resistant plants showed an

increased reflectance at 680 and 710 nm and a decreased reflectance in the near

infrared bands from 3 dai. Applying a Support Vector Machine classification as a

supervised machine learning approach, the pixelwise identification and quantification

of powdery mildew diseased barley tissue and hypersensitive response spots were

established. This enables an automatic identification of the barley-powdery mildew

interaction. The study established a proof-of-concept for plant resistance phenotyping
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with multispectral imaging in high-throughput. The combination of invertase analysis and

multispectral imaging showed to be a complementing validation system. This will provide

a deeper understanding of optical data and its implementation into disease resistance

screening.

Keywords: crop resistance, phenotyping, multispectral imaging, invertase, Blumeria graminis f.sp. hordei,

PhenoLab, classification, support vector machine

1. INTRODUCTION

The ascomycota Blumeria graminis f.sp. hordei (Bgh) is an
obligate biotroph organism and the causal agent of barley’s
powdery mildew. It infests leaves and all green parts of barley
plants. After the pre-penetration stage which finished with the
penetration of the epidermal cell 15 hai, the post-penetration
stage starts with an invagination of the fungus inside the
epidermal cell. After this entering, Bgh develops a haustorium
in the periplasmatic space 24 hai (Francis et al., 1996; Pryce
et al., 1999). Haustoria are the feeding organs of Bgh and they
deliver nutrients and necessary compounds for the biotrophic
fungus (Green et al., 2002). A missing ATPase activity in Bgh
is predicted to cause a loss of solute retention capacity of the
host cell, which enable Bgh to take up nutrients (Gay et al.,
1987). To make necessary carbohydrates available, Bgh reduce
the activity of Ribulose-1,5-bisphosphate carboxylase/oxygenase
(RuBisCO) and further enzymes of the Calvin cycle (Scholes
et al., 1994; Wright et al., 1995a). Studies with powdery mildew
of wheat (B. graminis f.sp. tritici) indicated that powdery mildew
triggers the accumulation of acid invertases to change the source-
sink relation in cereals (Wright et al., 1995b). With the nutrient
income, Bgh is able to develop secondary mycelium on the
leaf surface. Close to the area of the primary haustorium,
conidiophores are grown, producing new conidia 5 dai. The
disease is then macroscopically visible as white pustules and the
conidiophores produce ∼6,000 conidia per millimeter per day
(Blumer, 1967). Thus fungal plant pathogens have an strong
impact on gen-protein-hormone-metabolite signaling and on the
cell histology of plants to overcome resistances such as waxy
cuticula, cell wall and the innate resistance. Resistant barley
genotypes are typically incompatible plant-pathogen systems e.g.,
based onmildew locus o (mlo, papilla formation) or mildew locus
a (Mla, hypersensitive response resistance) (Jørgensen, 1992).
Different plant-pathogen interactions have specific impact on
the plant physiology and histology which individually influence
the spectral reflectance signature of plants (Mahlein et al., 2012;
Wahabzada et al., 2015).

To determine and assess these changes, different optical
sensors were established which non-invasively measure specific
spectral ranges e.g., spectral sensors, chlorophyll fluorescence
and thermography (Mahlein, 2016). These optical sensors record
the plant phenotype. Phenotyping is the visual description
and assessment from single organs to the canopy, and this
phenotype is influenced by the genome and the environment
(Fiorani and Schurr, 2013). In this context, plant spectral
reflectance from 380 to 2,500 nm can be measured using

hyperspectral imaging. The recorded reflectance signature can
be used to assess the plant health status, because several
chemical compounds and the cell structure has specific optical
characteristics. The visual range (VIS, 400–700 nm) is mainly
influenced by photo pigments like chlorophyll, carotenoide and
anthocyanin (Gitelson et al., 2001; Blackburn, 2007). The near
infrared (NIR, 700–1,000 nm) is characterized by scattering
processes of the plant and on the leaf structure. Spectral range
from 1,000 to 2,500 nm is described as the short wave infrared
range (SWIR) with specific water absorption bands (Whiting
et al., 2004). During plant pathogenesis the characteristic spectral
signature pattern is specifically changed over time (Mahlein
et al., 2010). These changes in the spectral reflectance intensity
and spectral pattern can be also used to derive histological
changes and biological stages of the plant and pathogenesis
(Wahabzada et al., 2016). This enables the characterization of
the causal agent and the pathogenesis stage (Mahlein et al.,
2012). According to these findings, different plant-pathogen
interactions specifically influence the spectral signature and the
detection of resistant and tolerant crop varieties may be possible.
Recent studies identified different resistance reactions such as
barley resistances against powdery mildew or sugar beet lines
resistant againstCercospora leaf spot using hyperspectral imaging
(Kuska et al., 2017; Leucker et al., 2017). Spectral pattern of
the corresponding pathogenesis differ and can be distinguished
from incompatible plant-pathogen interactions (Arens et al.,
2016; Oerke et al., 2016; Kuska et al., 2017; Leucker et al.,
2017). Therefore, hyper-/multispectral imaging is a promising
technique for high-throughput phenotyping approaches in plant
resistance breeding with increasing flexibility, due to technical
and methodology developments (Behmann et al., 2018; Thomas
et al., 2018b). Leaf chemicals and metabolites can be detected
using hyperspectral imaging and machine learning approaches
(Arens et al., 2016; Pandey et al., 2017), but the relationship of
biochemical mechanisms and hyperspectral reflectance during
plant-pathogen interactions are not completely clear.

Currently, many crop improvements are based on molecular
plant breeding techniques to identify key factors (Wenzel, 2006;
Schaart et al., 2016). Established molecular markers and genetic
maps are used for marker-assisted selection, efficient parental
selection and high-throughput screening of desired genotypes
(Wenzel, 2006). In this context, plant invertases play a key
role in plant development, cell regulation, metabolism, hormone
signaling and defense response (Roitsch and González, 2004;
Proels and Hückelhoven, 2014). The proposed main function
of invertases is the carbohydrate partitioning, but investigations
of the last decades revealed the multi-functionality of invertases
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(Roitsch and González, 2004; Proels and Hückelhoven, 2014).
Invertases irreversibly cleaves sucrose to glucose and fructose
which are themajor transported sugars in higher plants (Williams
et al., 2000). These can be taken up by plant cells due to
hexose transporters (Roitsch, 1999). A coordinated regulation
of primary metabolism and pathogen defense responses has
been shown (Ehness and Roitsch, 1997; Berger et al., 2007).
Studies by Roitsch et al. (2003), Proels and Hückelhoven (2014),
and Tauzin and Giardina (2014) reviewed functions of cell
wall invertases (Cw-Inv) in the context of pathogen infection.
They highlighted the modes of Cw-Inv in plant cell regulations
and plant-pathogen interactions. In addition to the extracellular
invertase isoenzyme, two intracellular isoenzymes were shown to
be involved in the infection by necrotrophic fungi (Berger et al.,
2004) and hemibiotrophic bacteria (Bonfig et al., 2010). Such
sugar-based signals were also shown in barley-powdery mildew
compatible and incompatible interactions (Scholes et al., 1994;
Swarbrick et al., 2006). Scholes et al. (1994) hypothesized that
apoplastic invertase increased in barley during powdery mildew
pathogenesis, because of a increased activity of acid invertase.
These specific enzyme kinetics could be used as possible
biomarkers for the detection of resistant plant genotypes. Linking
these physiological and the optical scales will improve the
performance of hyper-/multispectral imaging in plant resistance
breeding and will establish a new non-invasive methodology for
plant sciences (Großkinsky et al., 2015, 2017).

In this study, different barley genotypes were measured in
a high-throughput approach using multispectral imaging. In
the first experiment, plants were not inoculated to determine
the natural senescence of the genotypes and the influence on
the spectral reflectance signature. In the second experiment,
plants were inoculated with Bgh. Powdery mildew pathogenesis
as well as mlo gene-based resistances and Mla gene-based
resistances were identified. Data analysis approach frommachine
learning could establish and validate resistance phenotyping
by multispectral imaging. This is the basis for an automated
spectral characterization of susceptible and resistance phenotypes
in high-throughput. Furthermore, the temporal dynamics of
changes in the activities of invertase isoenzymes were analyzed
during different barley-powdery mildew interactions. Proved
barley-powdery mildew interactions could be identified by
invertase activity pattern already from 0.5 hai.

2. MATERIALS AND METHODS

2.1. Plant Cultivation and Inoculation of
Powdery Mildew
The experimental set-up was divided into two parts. For both
investigations, plants were grown in commercial substrate (SW
Horto AB, Hammenhög, Denmark) for 10 days in the greenhouse
at 22/18 ◦C and a photoperiod of 16 h. H. vulgare cv. Ingrid
wild type (WT) was used as a susceptible genotype to powdery
mildew. The corresponding near-isogenic line Ingrid M.C. 20,
containing dysfunction in mildew locus o 3 (mlo3) (Hinze et al.,
1991) and near-isogenic line cv. Pallas 22, containing dysfunction
in mlo5 gene were used to assess non race-specific papilla based

resistance.H. vulgare cv. Ingrid I10 with resistant mildew locus a
12 (Mla12) and Pallas 01 with Mla1 and Mla12 resistance loci
were used to analyze a hypersensitive response (Kølster et al.,
1986; Boyd et al., 1995).

Bgh, isolate A6 is avirulent to cv. Ingrid M.C. 20 and I10, and
cv. Pallas 01 and 22 (Wolter et al., 1993; An et al., 2006; Swarbrick
et al., 2006) and was maintained on cv. IngridWT in a controlled
environment. Twenty-four hours before inoculation the conidia
of heavily infested plants were shaken off and discarded in order
to assure homogenous and vital conidia for inoculation. For each
genotype, 80 primary leaves were inoculated with a density of X =
307 (± 112) conidia/cm2 from young powdery mildew pustules
(7–10 dai). Further 80 primary leaves were kept untreated (non-
inoculated) as healthy control. For destructive measurements,
five primary leaves of both treatments were sampled and frozen
in liquid nitrogen 0.5, 12, 24, 48, 72, 96, and 120 hai.

2.2. Total Protein Extraction
Barley leaves were weighed and then homogenized in liquid
nitrogen with 0.1 % PVPP. According to (Jammer et al., 2015),
1 ml extraction buffer (40 mM TRIS-HCl pH 7.6, 3 mM MgCl2,
1 mM EDTA, 0.1 mM PMSF, 1 mM benzamidine, 14 mM
ß-mercaptoethanol, 24 µ M NADP) was mixed with 500 mg
powdered material for 60 min at 4 ◦C. The homogenate was
centrifuged at 4 ◦C and 20,000 g for 45 min. The supernatant
was transferred into a new tube and kept on ice as a crude
extract. According to Jammer et al. (2015), the remaining pellet
was washed three times with ddH2O and resuspended in 1 ml
high salt buffer (1 M NaCl, 40 mM TRIS-HCl pH = 7.6, 3 mM
MgCl2 and 15 mM EDTA) over night at 4 ◦C in a dark room. The
resuspended pellet was centrifuged at 4 ◦C and 20,000 g for 25
min. The supernatant was transferred into a new tube as the cell
wall extract. To reduce the salt concentration, both extracts were
dialysed overnight against 20 mM potassium phosphate buffer
(pH = 7.4) at 4 ◦C in a dark room. Extracted protein content in
both extracts was determined according to the Bradford method
(Bradford, 1976), using BSA Fraction V as standard protein. The
extracts were aliquoted, frozen in liquid nitrogen and stored at
−20 ◦C for further use.

2.3. Enzyme Activity Profiling
For semi-high-throughput analysis, a 96-well microtiter plate
(Sarstedt, Nümbrecht, Germany) formate was used with a 5 µl
citric acid-phosphate-buffer, 5 µl 0.1 M sucrose, 35 µl ddH2O,
and 5µl of dialysed protein extract. For determination of Cw-Inv
activity, aliquots of the cell wall extract were incubated with citric
acid-phosphate-buffer pH = 4.5 (454 mM Na2HPO4, 273 mM
citric acid). For determination of cytosolic invertase (Cyt-Inv)
activity, aliquots of the dialysed crude extract were incubated
with citric acid-phosphate-buffer pH = 6.8 (772 mM Na2HPO4,
114mM citric acid) and to test vacuolar invertase (Vac-Inv), citric
acid-phosphate-buffer pH = 4.5 was used. In addition, a 0–50
nmol glucose standard curve was preparedwith ddH2O. Reaction
mixtures were incubated for 30 min at 37 ◦C and then cooled
down for 5 min on ice to stop the reaction. According to Jammer
et al. (2015), the cooled down reaction mixtures were incubated
with 200 µl of glucose oxidase-peroxidase reagent (10 U ml−1
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GOD, 0.8 U ml−1 POD, 0.8 mg ml−1 ABTS, 0.1 M potassium
phosphate buffer, pH = 7.0) for 30 min at 25 ◦C. The amount of
liberated glucose was determined by measuring the absorbance
at 405 nm in a plate reader (Ascent Multiskan, Thermo Fisher
Scientific, Waltham, USA). Specific activities were expressed as
nkat gFW−1. All assays were carried out in triplicate and relative
differences of nkat gFW−1 were calculated using Formula 1.
To consider the biological dynamic, a variance propagation was
calculated as measure of dispersion according to Formula 2.

Formula 1. Calculation of relative differences in specific
activity rD[%] [nkat gFW−1] of invertases between non-
inoculated (healthy) and B. graminis f.sp. hordei inoculated barley
leaves.

(inoculated − healthy)

(healthy)
× 100 = rD

Formula 2. Calculation of the standard deviation of relative
activity differences between non-inoculated (healthy) and B.
graminis f.sp. hordei inoculated barley leaves by variance
propagation as measure of dispersion of relative difference
specific activity rD[%] [nkat gFW−1] of invertases.

√

√

√

√

(

(

1

healthy

)2

× (
sinoculated√

3
)2 +

(

inoculated

(healthy)2

)2

× (
shealthy√

3
)2

)

= s(rD)

2.4. Multispectral Image Acquisition and
Data Analysis
Using narrow banded LEDs, multispectral images with 10
wavelength bands were automatically acquired at spectral bands
365, 460, 525, 570, 645, 670, 700, 780, 890, and 970 nm and
spatial resolution of five megapixels (PhenoLab, Videometer,
Hørsholm, Denmark) (Svensgaard et al., 2014). A hemisphere
setup (PhenoLab, Videometer, Hørsholm, Denmark) was used
to assure homogeneous and diffuse illumination of the plants
by high power LED sources. Multispectral images consist of
consecutive panchromatic images each with a specific LED
illumination at the corresponding wavelength. Plants were daily
randomized and imaged 0–8 dai.

Spectral signatures of pixels from healthy and diseased
regions were extracted manually. Therefore, a rectangular
region of interest of ≥ 155 pixels was extracted. When a
symptomatic area became visible the amount of pixels extracted
increased depending on the symptom development. The spectral
reflectance signature was calculated as the arithmetic average of
the regions of interest.

For data driven analysis of the multispectral imaging data,
a non-linear Support Vector Machine (SVM) classification
with a radial base function kernel was applied. Two different
classification models for powdery mildew symptoms and
HR-spots were learned. As training data healthy plant
pixels of the control group and manually selected powdery
mildew symptoms and HR spots were used, respectively. To
enhance accuracy at the last 2 days of the second experiment,
healthy plant pixels provided by the mlo3-resistant genotype
were included in the training data. Hyperparameters were

optimized using the combination of ten-fold cross-validation
and grid-search. Predictions were obtained applying the
model on pixel-level to the plant pixels within the image.
Background image parts like soil, tray and conveyor system
were removed in a preprocessing step by thresholding
and spatial masks. The pixel-wise classification was then
summarized per tray to the ratio of affected pixels to all
plant pixels expressed in percentage. As both models were
applied to all images, two ratio values per day and image are
derived.

2.5. Separability of Phenotypes
Based on the ratio of powdery mildew symptoms, and HR-spots
the plants were assigned to a response type, (I) susceptible, (II)
mlo resistance or (III) Mla resistance. A threshold classification
of the 20 samples was performed whereas each sample was
represented by the two ratios determined by the SVM. A
threshold of 5 % on the powdery mildew ratio was used to
separate resistant and susceptible samples whereas a threshold of
0.45 % on the HR-ratio was used to separate Mla resistance and
mlo resistance.

3. RESULTS

3.1. Temporal Dynamics of Changes in
Activities of Invertase Isoenzymes During
Barley-Powdery Mildew Interactions
To characterize susceptible and Bgh resistant genotypes the
specific activities of cell wall, cytosolic and vacuolar invertases
were analyzed (Figure 1). Therefore, relative differences (rD) of
the specific activity of inoculated plants to non-inoculated plants
were calculated. Positive values indicate higher specific activity in
Bgh inoculated individuals compared to non-inoculated plants.
Negative values showed a lower activity.

Cell wall invertase activity increased over the experimental
period (Figure 1A). Susceptible WT showed the lowest
activity of −77% comparing to the non-inoculated control
0.5 hai. The mlo5 genotype showed a declined activity
of the cell wall invertase until 24 hai. Highest activity up
to 200% was measured in mlo3 leaves. Cw-Inv activity
revealed significant differences between mlo3 and mlo5 on
all investigated time points in exception of 96 hai (Table 1).
Both Mla genotypes showed a similar cell wall invertase
activity pattern with significant differences 96 and 120 hai
(Table 1).

Specific activity of WT cytosolic invertase increased after
0.5 hai (Figure 1B). Compared to control plants, the activity
was higher at 48 and 120 hai. The mlo3 and mlo5 genotypes
showed similar dynamics in the cytosolic invertase activity
with an 6% increased activity in mlo5 leaves 96 hai. But
significant differences were shown to all other tested time-
points (Table 1). Mla1 had the highest cytosolic invertase
activity up to 11% over the experimental period (Figure 1B).
The Mla12 genotype had a declined activity and could
significantly differentiate from Mla1 0, 24, 72, and 120 hai
(Table 1).
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FIGURE 1 | The effect of compatible and incompatible mlo and Mla barley interactions with B. graminis f.sp. hordei on the specific activity signatures of invertases

0.5–120 hai. Relative differences (rD) of the specific activity between the inoculated near-isogenic lines and their corresponding non-inoculated leaves were calculated.

Positive values demonstrate higher invertase activity in inoculated leaves, negative values higher invertase activity of non-inoculated leaves. Each invertase shows a

specific activity signature for each near-isogenic line. Data shown are from a representative of three independent experiments (n = 5 × 3 biological replicates ×
technical replicates).

Susceptible WT had a declined activity of the vacuolar
invertase to −96% until 48 hai (Figure 1C). Then, the activity
normalized until the end of the analysis 120 hai. Interestingly,
this activity was significantly different to all resistant barley
near-isogenic lines (Table 1). Both mlo genotypes showed an
similar dynamic pattern of the vacuolar invertase activity with
the highest increase of 48% 96 hai (Figure 1C). HR based
resistant Mla12 genotype showed lower activity comparing to
non-inoculated plants until 72 hai.Mla1 plants had an increased
activity at 24, 72, and 120 hai.

3.2. Influence of Barley-Powdery Mildew
Interactions on the Multispectral
Reflectance
The multispectral reflectance changed over the experimental
period specifically for each interaction type (Figure 2). First

changes of the reflectance of susceptible cv. Ingrid WT were

assessable 2 dai (Figure 2A). The reflectance intensity increased

in the VIS range from 380 to 700 nm in accordance with plant
growth. Reflectance in the blue range and around 680 nm showed
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TABLE 1 | Hours after inoculation with B. graminis f.sp. hordei that have

significant differences in invertase activity of proved near-isogenic barley lines

(Welch’s t-test, α = 0.05).

WT mlo3 Mla12 mlo5 Mla1

Cw-Inv

WT X 12, 24, 72, 96, 120 12, 96, 120 0, 24, 96, 120 0, 12, 96

mlo3 - X - 0, 12, 24, 48,

72, 120

96, 120

Mla12 - - X 0, 12, 24, 48,

72

96, 120

mlo5 - - - X 12, 24, 96

Mla1 - - - - X

Cyt-Inv

WT X 0, 72, 120 0, 48, 120 0, 72, 120 0, 24, 72

mlo3 - X 120 24 24, 72, 120

Mla12 - - X - 0, 24, 72, 120

mlo5 - - - X 0, 12, 24, 72,

120

Mla1 - - - - X

Vac-Inv

WT X 72, 96 0, 12, 24, 72 0, 12, 72, 96 0, 12, 24, 72

mlo3 - X - - -

Mla12 - - X - 0, 24

mlo5 - - - X -

Mla1 - - - - X

a stronger increase from 4 dai. The NIR range from 700 nm
showed a stepwise increase in the reflectance intensity 3 and 5 dai.
Powdery mildew pustules were visible from 5 dai and overspread
the whole plants 7 dai (Figure 2A). The papilla based resistant
mlo3 genotype showed no relevant changes in the multispectral
reflectance until 4 dai (Figure 2B). The reflectance increased in
the NIR range from 6 dai. In addition, the intensity increased
around 380 and 550 nm. The plants showed no powdery mildew
symptoms but several bleached spots. Multispectral signatures of
Bgh inoculated Mla12 plants significantly changed from 600 to
680 nm and around 900 nm 4 dai (Figure 2C). A plateau pattern
was observed in the spectral range from 550 to 690 nm from 7
dai. The plants show necrotic spots on the leaf surface from 5 to
6 dai.

The Pallas Mla1 genotype showed similar changes in the
spectral reflectance already 2 dai (Figure 3A). Small necrotic
spots were also visible on the leaves from 5 to 6 dai. In contrast,
the mlo5 genotype showed several bleached spots (Figure 3B).
The multispectral signature revealed a slight increases in the
intensity from 380 to 660 nm. The reflectance intensity in the NIR
range showed a continuous increase.

3.3. Automatic Classification of Barley
Genotypes Based on the Interaction With
B. graminis f.sp. hordei
Applying the SVM on the multispectral images, the identification
of powdery mildew diseased tissue and HR spots was feasible
(Figure 4). For the identification of reaction types, two different

SVM models were applied. In both analyses, healthy tissue is
indicated in green pixels, powdery mildew infested tissue is
indicated in blue pixels (Figure 4A), HR spots are indicated
in red pixels and non-plant pixels are indicated in black.
(Figure 4B).

The ratio determination of powdery mildew diseased pixels
and pixels undergoing a HR, revealed a specific pattern
which was in accordance with the different barley-powdery
mildew interactions (Figure 4C). The quantitative ratios for all
investigated near-isogenic lines are shown in Figure 4C. Powdery
mildew symptoms can be clearly detected and reach a level of up
to 9% of the overall plant pixels. A significant increase in affected
pixels was visible at 3 dai with a strong increase till 8 dai. The
highest value of the non-susceptibly groups was reached bymlo5
with below 0.6% at the last day. The determined ratio of HR-
reactions reached up to 1.15% for Mla12 and up to 0.7% for the
Pallas Mla1. For susceptible Ingrid genotype, up to 0.67% of the
pixels were determined as HR reactions.

The detection of the susceptible genotype bases mainly on
the powdery mildew-ratio whereas the differentiation between
Mla and mlo resistance is based on the HR-ratio. In the
present experiment, a simple threshold based classification was
sufficient for an accurate separation of the classes. The confusion
matrix, shown in Table 2 summarizes multispectral images of
the individual barley-Bgh interactions 7 dai. All samples (16
plants per multispectral image) were classified correctly, except
of one single Mla sample. This sample showed neither powdery
mildew symptoms nor a significant number of HR pixels and was
therefore assigned to bemlo resistant. An overall accuracy of 95%
was reached in the present experiment.

4. DISCUSSION

4.1. Temporal Dynamics of Invertase
Activity Signatures Allow Early
Identification of Barley-Bgh Interactions
and Their Functionality Is Assessable by
Parallel Multispectral Imaging
Cw-Inv increased especially in mlo and Mla resistant near-
isogenic lines over the experimental period. An increase in
the activity of invertases in Bgh inoculated leaves will have
several consequences. Beside an increased hydrolysis of sucrose
to glucose and fructose, the photosynthesis rate is reduced and
several defense genes are activated (Scholes et al., 1994; Both
et al., 2005; Swarbrick et al., 2006). Recently, investigations by
Brugger et al. (2017) highlighted a decreased photosynthetic
rate and an increased non-photochemical quenching of mlo3
and Mla1 leaves inoculated with Bgh. This is caused by the
light energy, reflected as thermal dissipation and not used for
photosynthesis. Swarbrick et al. (2006) hypothesized that a
reduced photosynthesis rate is induced by increased Cw-Inv
activity and play a role in hexoses generation which may supply
energy for the defense response and signaling for defense genes
against Bgh. The increased spectral reflectance intensity 500–700
nm from 48 hai is associated with lower rate in photosynthesis
of susceptible WT and resistant Mla1 and Mla12. A specific
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FIGURE 2 | Multispectral signatures of B. graminis f.sp. hordei inoculated H. vulgare leaves cv. Ingrid WT (A), mlo3 (B), and Mla12 (C) 0–8 dai and corresponding

RGB images 7 dai. Susceptible WT leaves showed increased reflectance over the entire spectrum during the experimental period (A). The mlo3 genotypes showed a

slight increase around the green peak and NIR (B). Reflectance intensity of Mla12 increased especially around 680 nm (C) (n = 64 × (≥150) biological replicates ×
technical replicates).

increase of Cw-Inv activity during plant-pathogen interaction
was also observed in different systems and trophic styles (Proels
and Hückelhoven, 2014). This supports Cw-Inv as a promising
biomarker, but several signals are converged at the site of Cw-Inv.
Therefore, this potential biomarker must be evaluated for every
specific plant-pathogen system. In this study, Cw-Inv and Cyt-
Inv showed to be significantly different between the investigated

plant-pathogen systems at least during two experimental time
points. The spectral reflectance showed similar patterns for the
specific interaction and allowed an accurate characterization of
the interaction type. Differences on the “omic level” can be
induced by their different signal pathways e.g., Mla1 induces
Bgh race-specific resistance via a RAR1 independent pathway
(Schulze-Lefert and Vogel, 2000; Bieri et al., 2004).
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FIGURE 3 | Spectral characteristics of B. graminis f.sp. hordei inoculated H. vulgare leaves cv. Pallas Mla1 (A) and mlo5 (B) 0–8 dai and corresponding RGB images

7 dai (n = 64 × (≥150) biological replicates × technical replicates).

Specific activities of the tested invertase isoenzymes
was significant lower in Bgh inoculated WT compared to
the corresponding non-inoculated leaves already 0.5 hai.
Furthermore, the continuous increase of Vac-Inv activity
from 48 hai was in accordance with increased reflectance
around 365, 460, and 670 nm of susceptible WT, which is
characteristic for powdery mildew pathogenesis (Kuska et al.,
2015, 2017; Wahabzada et al., 2015). Such early phenomena
was investigated by Nielsen et al. (2000). They have shown an
extracellular proteinaceous matrix from the conidia body by
electron microscopy already 1 hai. They proposed even an earlier
interaction between plant and conidia, because they identified
that conidia can uptake low-molecular-weight compounds
before germination. This makes Bgh conidia capable of signal-
recognition and respond to the host, immediately after the first
contact (Nielsen et al., 2000). In this context, it was also shown
that cell wall carbohydrates contribute to penetration resistance
(Ellinger et al., 2013). Later increased invertase activities in
this study are similar to results of Scholes et al. (1994); Both
et al. (2005); Swarbrick et al. (2006) and are important to
facilitate nutrition uptake by the Bgh haustoria which prefer
glucose (Whipps and Lewis, 1981). In addition, the increased

spectral reflectance in the green and red range are in accordance
with studies by Scholes et al. (1994). They hypothesized a
reduced photosynthesis activity due to increased invertase
activity, because the increased carbohydrate concentration down
regulates the Calvin cycle. These would affect plant development
and architecture, which are indicated in the NIR range (Gates
et al., 1965; Slaton et al., 2001). But, increasing reflectance
between 750 and 1,000 nm in this study was mainly caused by
plant growth and leaf overlapping. The decreased reflectance
intensity 8 dai is caused due to hang down and overlapping of the
barley leaves. Thus, the leaves were in a different height and angle
composed to earlier experimental days. This can be avoided using
a plant fixation which keep the leaves in position at every day
time and will reduce the effect of increasing reflectance intensity
over the whole spectrum and experimental period (Mahlein
et al., 2012). Further solution, which consider the leaf angle could
be the implementation of 3D models for the normalization of
spectral reflectance (Behmann et al., 2016). Different state-of-the-
art optical approaches and machine learning applications for the
estimation of disease severity were realized on the leaf level (Bock
et al., 2010; Rumpf et al., 2010; Pethybridge and Nelson, 2015;
Kuska et al., 2017; Thomas et al., 2017). Thomas et al. (2018a)
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FIGURE 4 | Automatically detected powdery mildew (PM) diseased and HR undergoing pixels applying SVM on multispectral images. In (A,B), representative

sections of the multispectral images are illustrated. Healthy tissue is indicated in green pixels and PM diseases tissue in blue pixels (A). Red pixels are indicated tissue

undergoing a HR (B). PM and HR pixels are quantified in their ratio to healthy pixels (C). Quantification revealed the susceptible near-isogenic line WT by a high

amount of PM diseased pixels from 5 dai. The Mla near-isogenic lines can be identified by high amount of HR pixels. Low pixel ratios for both models are shown for

mlo near-isogenic lines.

TABLE 2 | Confusion matrix of automatic prediction of susceptible, mlo and Mla

based resistant barley near-isogenic lines against powdery mildew based on

Support Vector Machine analysis of multispectral images 7 dai.

Predicted Ground Truth

Susceptible mlo-resistance Mla-resistance Precision

susceptible 4 0 0 1

mlo-resistance 0 8 1 0.89

Mla-resistance 0 0 7 1

Recall 1 1 0.88 acc. = 95 %

established a mini-plot facility in the greenhouse for
high-throughput identification and quantification of powdery
mildew tolerant barley lines using hyperspectral imaging in
the VIS range. For detailed review of limitations and solution
statements for spectral imaging in plant breeding processes, we
refer to Kuska and Mahlein (2018) and Thomas et al. (2017).
In our study, the quantification of diseased and HR pixels was
feasible on whole plants using SVM on multispectral images.
This enables the characterization of barley-powdery mildew
interaction types with a high precision and shows the potential
of machine learning methods for high-throughput resistance
screening (Behmann et al., 2015). In further trials, the trained
model can be applied to identify and characterize unknown
genotypes as mlo or Mla resistant, even if the causing locus
is unknown so far. For further models, the specific crops
and pathogenesis must be investigated. Therefore, the use
of specific fungal isolates is essential to identify race-specific
resistances e.g., against the wheat stem rust isolate Ug99. Here
the isolate overcame wheat resistances and common biological

markers are now limited or inoperative (Singh et al., 2011).
The here presented technique and method has high potential
to identify new promising parental candidates for present
and future breeding purposes in a fully automated manner.

However, a direct differentiation of the mlo and Mla loci
was not realized by the multispectral imaging, which shows
the current limitation for practical breeding processes. For

such a detailed phenotyping, the coherency of hyperspectral

reflectance signatures with physiological and “omic data” must

be systematically investigated (Arens et al., 2016; Leucker et al.,
2017; Kuska and Mahlein, 2018). New developed markers and
resulted new breeding lines can be then tested under different
environmental conditions and will be analyzed and assessed by
multispectral imaging.

In summary, this study represents a successful proof-of-
concept for effective and efficient screening of barley-powdery
mildew interaction types in a controlled environment with

high-throughput solutions. Data analysis can be highly improved
by machine learning approaches. In addition to reduced labor

intensity, a pixelwise disease and HR spot estimation was

enabled by a SVM which allows a precise barley-powdery
mildew interaction type prediction. Consequently, multispectral

imaging can be used for high-throughput plant resistance
screenings to identify resistant plants and to differentiate
them in a controlled environment. The distinct temporal
dynamics of changes in activity signatures of invertase
isoenzymes can be used for early identification of barley-
Bgh interactions, which are assessed on functionality by parallel
multispectral imaging. In future approaches, multispectral
imaging will be established for different environmental
scenarios to analyze the stability of plant resistance in
combination with abiotic stress factors. In these scenarios,
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the combination of metabolic and phenomic profiles will be
highly informative.
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