

Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food

Luciano Avio¹, Alessandra Turrini^{1,2}, Manuela Giovannetti^{1,2*} and Cristiana Sbrana³

¹ Department of Agriculture, Food and Environment, University of Pisa, Pisa, Italy, ² Interdepartmental Research Center "Nutraceuticals and Food for Health", University of Pisa, Pisa, Italy, ³ Institute of Agricultural Biology and Biotechnology, C.N.R., UOS Pisa, Pisa, Italy

The new paradigm in agriculture, sustainable intensification, is focusing back onto beneficial soil microorganisms, for the role played in reducing the input of chemical fertilizers and pesticides and improving plant nutrition and health. Worldwide, more and more attention is deserved to arbuscular mycorrhizal fungi (AMF), which establish symbioses with the roots of most land plants and facilitate plant nutrient uptake, by means of a large network of extraradical hyphae spreading from colonized roots to the surrounding soil and functioning as a supplementary absorbing system. AMF protect plants from biotic and abiotic stresses and are able to modulate the activity of antioxidant enzymes and the biosynthesis of secondary metabolites (phytochemicals), such as polyphenols, anthocyanins, phytoestrogens and carotenoids, that play a fundamental role in promoting human health. An increasing number of studies focused on the use of AMF symbionts for the production of functional food, with enhanced nutritional and nutraceutical value. Yet, while several plant species were investigated, only few AMF were utilized, thus limiting the full exploitation of their wide physiological and genetic diversity. Here, we will focus on AMF effects on the biosynthesis of plant secondary metabolites with health-promoting activity, and on the criteria for a finely tuned, targeted selection of the best performing symbionts, to be utilized as sustainable biotechnological tools for the production of safe and healthy plant foods.

Keywords: arbuscular mycorrhizal symbionts, healthy food, nutraceutical value, sustainable agriculture, secondary metabolism gene regulation, AMF functional diversity, health-promoting phytochemicals

INTRODUCTION

The new paradigm in agriculture, sustainable intensification, is focusing back onto beneficial soil microorganisms, for the role played in reducing the input of chemical fertilizers and pesticides, while improving plant nutrition and health (Philippot et al., 2013). Worldwide, more and more attention is deserved to arbuscular mycorrhizal (AM) fungi (AMF), a key functional group of beneficial soil microbes belonging to the subphylum Glomeromycotina (Spatafora et al., 2016), able to establish a mutualistic symbiosis with the roots of 80% of plant species (Smith and Read, 2008). These encompass the most important crops for human consumption, such as wheat, rice, corn, barley, pulses, oats and millet, grapevine, olive, vegetables like strawberries, potato, tomato, medicinal plants and economically important species, such as sunflower, sugarcane, cotton, tobacco, coffee, tea, cocoa, rubber and cassava. AMF do not show host specificity, but are asexual obligate biotrophs, unable to complete their life cycle without host plants.

OPEN ACCESS

Edited by:

Guido Lingua, Università degli Studi del Piemonte Orientale. Italv

Reviewed by:

Katarzyna Turnau, Jagiellonian University, Poland Roger Tai Koide, Brigham Young University, United States

*Correspondence:

Manuela Giovannetti manuela.giovannetti@unipi.it

Specialty section:

This article was submitted to Plant Microbe Interactions, a section of the journal Frontiers in Plant Science

Received: 22 May 2018 Accepted: 05 July 2018 Published: 14 August 2018

Citation:

Avio L, Turrini A, Giovannetti M and Sbrana C (2018) Designing the Ideotype Mycorrhizal Symbionts for the Production of Healthy Food. Front. Plant Sci. 9:1089. doi: 10.3389/fpls.2018.01089

1

AMF life cycle is simple: germinating spores originate a short-lived mycelium able to recognize the roots of host plants and to differentiate appressoria on their surface. Then appressoria produce hyphae growing intercellularly in the roots and arbuscules, a sort of haustoria formed within root cells, where nutrient exchanges between the two symbionts occur. Up to 20% of total plant photosynthates is transferred to AMF, which, as chemoheterotrophs, utilize them as carbon source (Jakobsen et al., 1992; Smith and Read, 2008; Giovannetti et al., 2012); such transfer enables AMF to grow and form new spores. On the other hand, the extensive extraradical mycelium (ERM) explores the surrounding soil beyond the depletion zone around roots, and increases the root absorbing surface (up to 40 times) (Giovannetti et al., 2001). ERM is able to uptake and translocate soil mineral nutrients, such as phosphorus (P), nitrogen (N), sulfur, potassium, calcium, iron, copper, and zinc, thus improving plant growth and biomass production (Lehmann and Rillig, 2015). In addition, AMF provide diverse ecosystem services, enhancing water uptake, and increasing plant tolerance to biotic and abiotic stresses (Gianinazzi et al., 2010), thereby decreasing the need of chemical fertilizers and pesticides inputs (Toussaint et al., 2008; Sikes et al., 2009).

Several studies reported that AMF may modulate the synthesis of secondary metabolites in host plants, leading to a higher activity of antioxidant enzymes and enhancing the levels of diverse phytochemicals with health-promoting activities (Sbrana et al., 2014). Such findings are very important, as worldwide both consumers and producers are increasingly interested in the health-promoting properties of plant-derived foods. Indeed a number of epidemiological studies reported the role played by some plant secondary metabolites, including polyphenols, glucosinolates, flavonoids and carotenoids in the prevention of chronic diseases, arteriosclerosis, heart diseases and cancer (Duthie, 2000; Johnson, 2002; Lund, 2003). For example, theaflavins and thearubigins from black teas showed antiproliferative action (Bhattacharya et al., 2009), grape seed extract exerted preventive effects against human colon carcinoma and lung epithelial cancer (Wang et al., 2007; Lazzè et al., 2009), luteolin, kaempherol, apigenin and myricetin from diverse fruits and vegetables possessed anti-inflammatory and antibacterial activities (Dillard and German, 2000) and essential oils from myrtle displayed antimutagenic and antigenotoxic properties (Mimica-Dukić et al., 2010). In addition, glucosinolates from broccoli, cauliflower and cabbage were able to modulate carcinogens metabolism and detoxification (Dillard and German, 2000; Tang et al., 2010), while allicin and its organosulfur derivatives from garlic showed antitumoral activities in diverse human cancers (Butt et al., 2009; Teiten et al., 2013; Zhang et al., 2015). Although such phytochemicals are expressed mainly depending on plant genotype, their production may be modulated by diverse agronomic and environmental factors, including AMF symbioses. Here, we will focus on AMF ability to modulate the biosynthesis of plant secondary metabolites with health-promoting activity, and on the criteria for a finely tuned, targeted selection of the best performing symbionts, to be utilized as sustainable biotechnological tools for the production of safe and healthy plant foods.

THE PRODUCTION OF PHYTOCHEMICALS BY MYCORRHIZAL PLANTS

A large body of evidence showed that the establishment of AM symbiosis induces changes in plant physiology, modulating the activity of host cell primary and secondary metabolism (Fester and Hause, 2005; Lohse et al., 2005; Schliemann et al., 2008; Wipf et al., 2014; Schweiger and Müller, 2015; Cervantes-Gámez et al., 2016). Many authors investigated the changes induced by AMF in secondary metabolism, in relation to the production of functional compounds in roots, shoots, leaves, fruits and seeds of many different plant species (Sbrana et al., 2014).

Mycorrhizal produced plants higher amounts of phytochemicals with therapeutic value, such as the phytoestrogens biochanin A, formononetin, genistein, daidzein, showing a preventive action in osteoporosis, menopausal symptoms and degenerative diseases (Ososki and Kennelly, 2003; Khaosaad et al., 2008), sesquiterpene lactones, able to inhibit cell proliferation and tumor growth (Jurkiewicz et al., 2010; Teiten et al., 2013), the cardioactive and hypotensive alkaloid forskolin (Sailo and Bagyaraj, 2005), furanocoumarins (angelicin and psoralen) and the chemotherapeutic agents pterocarpans (erybraedin C and bitucarpin A), able to induce apoptosis in human colon carcinoma cell lines (Maurich et al., 2006; Pistelli et al., 2017).

Different species of medicinal and aromatic plants were investigated for their phytochemical contents upon mycorrhizal colonization, showing higher shoot levels of antioxidant compounds, such as rosmarinic acid, caffeic acid and essential oils in basil (Copetta et al., 2006, 2007; Toussaint et al., 2008; Rasouli-Sadaghiani et al., 2010), and anthraquinone derivatives, such as hypericin and pseudohypericin in Hypericum perforatum (Zubek et al., 2012). Also the levels of essential oils showed altered profiles in mycorrhizal Origanum sp. (Karagiannidis et al., 2011), and large increases in the fruits of mycorrhizal Coriandrum sativum, Anethum graveolens, Trachyspermum ammi, in the leaves of Artemisia annua and in the seeds of Foeniculum vulgare (Kapoor et al., 2002a,b; Chaudhary et al., 2008). Moreover, mycorrhizal plants of Stevia rebaudiana showed enhanced levels of the health-promoting compounds steviol glycosides (Tavarini et al., 2018).

Apart from medicinal plants and herbs, works investigating the phytochemical content of mycorrhizal plants cultivated for human consumption encompass a limited number of species, like lettuce, onion, tomato, maize, artichoke, strawberry, pepper and sweet potato (Table 1). Most of the data available on edible plant products have been obtained by studying single plant varieties, while only few works investigated the differential responses of cultivars/varieties belonging to the same species of food plants. For example, different mycorrhizal strawberry varieties did not show comparable levels of anthocyanins, anthocyanidins and vitamin C in fruits, while only some green and red leaf lettuce varieties contained larger amounts of anthocyanins, carotenoids, chlorophylls, tocopherol, and total phenolics, and showed a higher antioxidant activity, compared with control plants (Table 1). This represents a limitation of the studies performed so far, given the large number of old TABLE 1 | Secondary metabolites and antioxidant activities in mycorrhizal food plants.

Plant species	Variety or cultivar	AMF species	Measured metabolites/antioxidant activity assay method	Effect of AMF inoculation	References
(A) GREENHOUS	E OR MESOCOSM	EXPERIMENTS			
Solanum lycoper	sicum L.				
	F1 Hybrid, GS-15	Mix of: Glomus intraradices, Glomus mosseae, Glomus etunicatum (Soil and Water Institute of Iran)	Lycopene (FW) DPPH ^a	Increased concentration Increased activity	Ordookhani et al., 2010
	Guadalete	Mix of: Glomus mosseae, Glomus caledonium, Glomus viscosum, Glomus intraradices, Glomus coronatum	Lycopene and β-carotene Lutein Ascorbic acid	No effect No effect Decreased concentration	Copetta et al., 2011
	Moneymaker	Glomus intraradices IMA6	Lycopene (FW) Total phenols (FW) Ascorbic acid (FW) Glutathione (FW) ABTS ^b (FW)	Increased concentration No effect No effect No effect No effect	Giovannetti et al., 2012
	Nemo-Netta	<i>Glomus mosseae</i> (Biocult Ltd., South Africa)	Lycopene (FW) Total flavonoids (FW) Ascorbic acid (FW) ABTS	Increased concentration, only at late inoculation time No effect No effect No effect	Nzanza et al., 2012b
	Moneymaker	Funneliformis mosseae BEG12 and/or <i>Rhizophagus</i> <i>irregulari</i> s BB-E (Agrauxine, F)	Lycopene (FW)	Mixed inoculation: no effect; single isolate inoculation: increased concentration	Hart et al., 2015
			β-carotene and total carotenoids (FW)	Mixed inoculation: increased concentration; single isolate inoculation: no effect	
			29 Odor-active volatile compounds	Distinct phytochemical profiles, but variable quantitative effects	
	Komeett	<i>Rhizophagus irregularis</i> (Premier Tech Inc., Canada)	DPPH (DW) Vitamins B1, B3, B5, B6, ascorbic acid (FW)	No effect No effect	Hart et al., 2015
			Vitamin B6, ascorbic acid (DW)	Decreased concentration	
Capsicum annuu	m L.				
	San Luis	Glomus fasciculatum or Mix1 (Glomus constrictum,	Carotenes	Increased concentration by Mix2	Mena-Violante et al., 2006
		Glomus geosporum,	Xanthophylls	Increased concentration by	
		Glomus fasciculatum, Glomus tortuosum) or Mix2 (Glomus aggregatum, Glomus deserticola, Glomus geosporum, Glomus microaggregatum, Sclerocystis coremioides)	Capsaicinoids	Mix2 No effect	
	Cacho de cabra	Glomus intraradices (commercial) Glomus claroideum (native)	Ascorbic acid (FW)	Increased concentration (native), no effect (commercial)	Castillo et al., 2009

Plant species	Variety or cultivar	AMF species	Measured metabolites/antioxidant activity assay method	Effect of AMF inoculation	References
Fragaria x ananas	ssa Duch.				
-	Aromas	<i>Glomus intraradices</i> (Premier Tech Biotechnologies Company, Canada)	Total phenols (DW) p-coumaric acid (DW)	No effect Increased concentration at intermediate N	Castellanos Morales et al., 2010
		Gundddy	Gallic, ferulic, ellagic acids (DW)	No effect or decreased concentration depending on N concentration	
			Cyanidin-3-glucoside (DW) Pelargonidin-3-	Increased concentration at intermediate N No effect	
			glucoside (DW) Quercetin and kaempferol (DW) Catechin (DW)	Increased concentration at intermediate N No effect	
	Selva	Mix (Mybasol, Italy)	Pelargonidin 3-glucoside, Pelargonidin 3-rutinoside and pelargonidin malonyl glucoside (FW)	Increased concentration	Lingua et al., 2013
			Pelargonidin acetyl glucoside and cyanidin 3-glucoside (FW)	No effect	
			Total pelargonidins (FW)	Increased concentration	
	Selva	Mix of: Rhizophagus intraradices, Glomus aggregatum, Glomus viscosum, Claroideoglomus etunicatum, Claroideoglomus claroideum (Mybasol)	Ascorbic acid (FW) Folate (FW)	Increased concentration	Bona et al., 2015
	Fortuna	Glomus iranicum var. tenuihypharum (Mycogrowth®, Spain)	Total phenols and Anthocyanins (FW)	Increased concentration at early inoculation	Cecatto et al., 2016
	Sabrina		Ascorbic acid (FW) Total phenols, anthocyanins and ascorbic acid (FW)	No effect No effect	
	Splendor		Total phenols and Ascorbic acid (FW) Anthocyanins (FW)	No effect Decreased concentration	
Lactuca sativa L.					
A	var. <i>capitata,</i> Batavia Rubia	Glomus fasciculatum	Carotenoids (FW)	Increased concentration depending on leaf position	Baslam et al., 2011
- ASSA	iviui igula		ascorbic acid (FW) Anthocyanins (FW)	Increased concentration	
CHER.	var. <i>capitata</i> , Maravilla de Verano		Carotenoids, total phenols and ascorbic acid (FW)	No effect	
			Anthocyanins (FW)	Increased concentration	

Plant species	Variety or cultivar	AMF species	Measured metabolites/antioxidant activity assay method	Effect of AMF inoculation	References
	var. <i>longifolia</i> , Cogollos de Tudela	Glomus fasciculatum or Mix of: Glomus intraradices, Glomus mosseae (Atens	Carotenoids (FW) Total phenols (FW)	No effect Increased concentration in outer leaves	
	Tudola	Spain)	Anthocyanins (FW)	Increased concentration in inner leaves	
			Ascorbic acid (FW)	Increased concentration in in in in in in in inner leaves by <i>G. fasciculatum</i>	
	Batavia Rubia Munguía	Mix of: Rhizophagus intraradices, Funneliformis mosseae (Atens)	Carotenoids (FW)	Decreased concentration in autumn in inner leaves and increased in spring	Baslam et al., 2013
			Total phenols (FW) Anthocyanins (FW)	No effect Increased concentration in winter and spring in inner	
			Ascorbic acid (FW)	Increased concentration in winter and spring in outer leaves	
	Maravilla de Verano		Carotenoids (FW)	Increased concentration in winter and spring in inner leaves	
			Total phenols (FW) Anthocyanins (FW)	No effect Increased concentration in winter in outer leaves and	
			Ascorbic acid (FW)	No effect	
	Batavia Rubia Munguía and Maravilla de	Mix of: Rhizophagus intraradices, Funneliformis mosseae (Atens)	Total carotenoids (DW)	Increased concentration in Batavia Rubia Munguía	Goicoechea et al., 2015
	Verano		Epidermal flavonols Anthocyanins (by	Decreased levels in Batavia Rubia Munguía No effect	
			optical monitoring) Soluble phenols (DW) DPPH (DW)	No effect Increased activity in Batavia Rubia Munguía, decreased in Maravilla de Verano	
	not available	Rhizophagus intraradices	Superoxide dismutase and catalase	Increased activity	Durán et al., 2016
			Ascorbate peroxidase Glutathione reductase Total carotenoids (FW)	Reduced activity No effect Increased concentration	
	var. <i>crispa</i> Eluarde and Panisse	Funneliformis mosseae AZ225C or Rhizoglomus irregulare IMA6 (formerly	ORAC ^c (FW) Total phenolics (FW)	Increased activity Increased concentrations with IMA6	Avio et al., 2017
		Glomus intraradices)	Total anthocyanins (FW) (only Eluarde)	Increased concentrations	
Ocimum basilicum	L.				
	Genovese	<i>Glomus mosseae</i> BEG 12, or <i>Gigaspora margarita</i> BEG 34, or <i>Gigaspora rosea</i> BEG 9	Essential oils (13 terpenoids and 2 phenolic compounds)	Variable depending on AMF and compound	Copetta et al., 2006, 2007
	Genovese Italian and Purple Petra	<i>Glomus intraradices</i> (Native Plants Incorporated, USA)	Total anthocyanins (FW) Total phenolics and phenolic acids (FW)	Increased concentration in Purple Petra No effect	Lee and Scagel, 2009

Plant species	Variety or cultivar	AMF species	Measured metabolites/antioxidant activity assay method	Effect of AMF inoculation	References
	not available	Glomus fasciculatum or Glomus etunicatum or Glomus intraradices	Total essential oils (DW)	Increased concentration and distinct phytochemical profiles	Rasouli- Sadaghiani et al., 2010
	Cinnamon, Siam Queen, Sweet Dani and Red Rubin	Rhizophagus intraradices (Native Plants Incorporated)	Total anthocyanins (FW) Total phenolics (FW) Phenolic acids (FW) Total flavonoids (FW)	Increased concentration in Red Rubin No effect Increased concentration No effect	Scagel and Lee, 2012
	Tigullio and Dark Opal	Rhizoglomus irregulare IMA6 (formerly Glomus intraradices)	ABTS (DW) Total carotenoids (DW) Total phenolics (DW) Anthocyanins (DW) (Dark Opal) Rosmarinic acid (DW)	No effect Decreased concentration No effect Decreased concentration Decreased concentration	Battini et al., 2016b
Cypara cardunculu	ist var scolumus				
	Terom	Glomus mosseae AZ 225C and/or Glomus intraradices IMA6	Total phenolics (FW) and DPPH	Increased concentration and activity with dual inoculation and <i>G.intraradices</i>	Ceccarelli et al., 2010
Allium cepa L.	Centurion	Mix of: Glomus mosseae, Glomus intraradices, Glomus claroideum, Glomus microaggregatum (Plantworks, UK)	Organosulfur compounds (as total pyruvic acid) and total phenolics (DW)	No effect	Perner et al., 2008
			Quercetin monoglycoside (DW) Quercetin diglycoside (DW)	Increased concentration when NO_3^- -N predominant No effect	
			ABTS and ESR ^d (DW)	Increased activity when	
	Nasik red N-53	Mix of: Glomus intraradices, Glomus mosseae	Total phenolics (FW)	Increased concentration	Lone et al., 2015
	Alice	Mix of: Glomus etunicatum, Glomus microaggregatum, Glomus intraradices, Glomus claroideum, Glomus mosseae, Glomus geosporum (Symbivit, Czech Rep.) or Glomus intraradices BEG140	FRAP ^e Ascorbic acid (FW)	Increased activity with Mix No effect	Albrechtova et al., 2012
	Stuttgarter Riesen	Mix of: Funneliformis mosseae and Rhizophagus irregularis (INOQ, Germany)	Quercetin-diglucoside and quercetin- monoglucoside	Increased concentration at high inoculation amount and when NH_4^+ -N predominant	Mollavali et al., 2018
			Isorhamnetin-glucoside	No effect	
lpomea batatas L.	not available	<i>Glomus intraradices</i> (IFP Glintra, INOQ) and/or <i>Glomus mosseae</i> (IFP Glm, INOQ)	β-carotene (DW)	Increased concentration	Tong et al., 2013

Plant species	Variety or cultivar	AMF species	Measured metabolites/antioxidant activity assay method	Effect of AMF inoculation	References
(B) FIELD EXPERIM	MENTS				
Solanum lycopersi	сит L. РКМ-1	Glomus intraradices # TNAU 120-02	Ascorbic acid (FW)	Increased concentration	Subramanian et al., 2006
	es Variety or cultivar AMF species es Variety or cultivar AMF species ELD EXPERIMENTS unlycopersicum L. PKM-1 Glomus intraradices # TNAU 120-02 Vitella F1 Glomus sp. (Amykor, Germany) Nemo-Netta Glomus mosseae (Biocult Ltd., South Africa) TC 2000 Mix of: Rhizophagus intraradices, Glomus aggregatum, Glomus aggregatum	<i>Glomus</i> sp. (Amykor, Germany)	Lycopene (FW) β-carotene and Total phenols (FW)	Increased concentration Increased concentration, under organic management	Ulrichs et al., 2008
	Nemo-Netta	<i>Glomus mosseae</i> (Biocult Ltd., South Africa)	Ascorbic acid (FW)	Increased concentration	Nzanza et al., 2012a
	TC 2000	Mix of: Rhizophagus intraradices, Glomus aggregatum, Glomus viscosum, Claroideoglomus etunicatum and Claroideoglomus claroideum (Mybasol, Italy)	Lycopene β-carotene (FW) Ascorbic acid (FW)	No effect No effect Decreased concentration	Bona et al., 2017
	Perfect Peel, Roma, Rio Grande	Mix of: Rhizoglomus irregulare IMA6 (formerly Glomus intraradices), Funneliformis mosseae IMA1	Lycopene (FW)	No effect	Njeru et al., 2017
Cynara cardunculu	ıs L. var. scolymus				
403	Terom	Glomus mosseae AZ 225C and/or Glomus intraradices IMA6	Total phenolics (FW) DPPH	Increased concentration Increased activity, only with dual inoculation in the second year	Ceccarelli et al., 2010
	Romanesco' type cv. C3	Mix of: <i>Glomus mosseae,</i> <i>Glomus intraradices</i> (Italpollina, Italy) (Aeg) or <i>Glomus intraradices</i> (Tecnologiás Naturales Internacional, Mexico) (End)	ABTS (DW) Total phenolics (DW)	No effect Increased concentration with End; variation in phenolic acids and flavonoid profiles	Palermo et al., 2013
	Violetto di Sicilia	Glomus viscosum (syn. Septoglomus viscosum)	Caffeoylquinic acids, apigenin and luteolin (DW)	Increased concentration in receptacles, compared to traditional vegetative reproduced plants	Pandino et al., 2017
	Romolo and Istar	Mix of: <i>Rhizophagus</i> <i>intraradices</i> BEG72, <i>Funneliformis mosseae</i> (Italpollina, Italy)	Total phenolics (DW) ABTS (DW) DPPH (DW)	Increased concentration in primary heads, decreased in secondary heads Increased activities Increased activities in primary heads, no effect or reduced activity in secondary heads depending on cultivar	Rouphael et al., 2017
Allium cepa L.	Hyskin	Vaminoc (MicroBio, UK) or <i>Glomus intraradices</i> BEG87	Quercetin (FW)	No effect	Mogren et al., 2007

Plant species	Variety or cultivar	AMF species	Measured metabolites/antioxidant activity assay method	Effect of AMF inoculation	References
Ipomea batatas L.					
CH	Hongxin	Glomus etunicatum BEG 168, Glomus etunicatum HB-Bd45-Gsp4, Glomus intraradices BEG 141, and a mix of them (M3); Glomus mosseae BEG 167, a mix of M3 and BEG 167 (M4); mix of : Glomus intraradices and Glomus mosseae (Biorize, France)	Carotene	No effect	Farmer et al., 2007

Data are reported on a fresh weight (FW) or dry weight (DW) basis; where unspecified, no information was available. The binomial nomenclature of AMF reported in the quoted papers has been maintained. ^aDPPH, 2,2-Diphenyl-1-picrylhydrazyl assay; ^bABTS, 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) assay; ^cORAC, oxygen radical absorbance capacity assay; ^dESR, electron spin resonance spectroscopy; ^eFRAP, ferric reducing ability of plasma assay.

and new varieties currently grown worldwide, which could be investigated and selected on the basis of their ability to produce beneficial compounds upon mycorrhizal inoculation. Such a selection would be particularly important for some vegetable species considered functional foods, i.e., globe artichoke, for its hepatoprotective, anticarcinogenic, antioxidative and antibacterial activities, and tomato, for its ability to reduce the risks of cancer and cardiovascular diseases (Canene-Adams et al., 2005). Indeed, artichoke and tomato showed higher antioxidant activity and enhanced levels of health-promoting compounds when produced by AMF-inoculated plants (**Table 1**).

The mechanistic explanation of the differential biosynthesis of secondary metabolites in mycorrhizal plants involves the activity of diverse enzymes leading to the production of terpenoids, flavonoids and the aminoacids tyrosine and phenylalanine, precursors of polyphenols in the phenylpropanoid pathway (Peipp et al., 1997; Walter et al., 2000; Lambais et al., 2003; Ponce et al., 2004; Herre et al., 2007; Pozo and Azcon-Aguilar, 2007; López-Ráez et al., 2010a). Such molecules, often accumulated in plant resistance reaction to biotic and abiotic stresses, may be modulated by plant hormones such as ABA or jasmonates possibly involved in long distance signaling and in mycorrhizal priming of defense responses (Cameron et al., 2013; Adolfsson et al., 2017). Several gene expression studies showed a differential modulation of genes encoding for key enzymes of biochemical pathways leading to the production of healthpromoting secondary metabolites in food plants (Table 2) and model plant species (Harrison and Dixon, 1993, 1994; Bonanomi et al., 2001; Liu et al., 2007; Handa et al., 2015). In food plants, the use of the RNA-Seq technology, allowing investigations of whole transcripts, revealed that many genes, belonging to different functional classes, i.e., post-translational regulation, signaling, transport, biotic and abiotic stresses and hormone metabolism, were upregulated upon AMF inoculation and differentially expressed in fruits, leaves and roots, compared with controls (Table 2). Unfortunately, most of currently available RNA-Seq data assessing mycorrhizal regulated genes derive only from roots of the investigated plants, such as *Citrus sinensis*, *Cucumis sativus*, *Helianthus annuus*, *Litchi chinensis*, *Oryza sativa*, and *Vitis vinifera* (**Table 2**). Since the different genes may be differentially expressed in the diverse plant organs, further works should focus on the edible parts of food plants, in order to obtain information on the genes regulating the production of health-promoting compounds, modulated by mycorrhizal symbioses. In addition, the functional significance of fungal symbiont identity in the modulation of phytochemicals production should be deeply investigated, as large variations in gene expression were detected in model plants inoculated with different AMF (Burleigh et al., 2002; Hohnjec et al., 2005; Deguchi et al., 2007; Massoumou et al., 2007).

FUNCTIONAL DIVERSITY OF AMF

A number of studies have been carried out in order to select the optimal host/fungus combinations leading to the best plant performance, in terms of growth and nutrition. Different strategies have been proposed to detect the criteria for the selection of infective and efficient strains to be used for inoculation in diverse host plants and soil conditions. The possibility of implementing AMF inoculation depends first and foremost on the availability of strains able to establish rapidly an extensive colonization in the roots of a host plant and to compete for infection sites with indigenous AMF endophytes. Despite the obligately biotrophic status of AMF, involving labor-intensive experiments, progress has been done in the determination of the parameters that, in many different AMF isolate, affect spore dormancy and germination, pre-symbiotic mycelial growth, appressorium formation and intraradical development (Giovannetti et al., 2010). As to the selection of efficient isolates, the great majority of studies assessed their efficiency in terms of host growth responses, nutrient uptake, in particular P and N, and consequently considered the relevant fungal parameters, such as the extent and viability of TABLE 2 | Genes involved in the biosynthesis of health-promoting secondary metabolites, which are upregulated in above- or belowground cell tissues of mycorrhizal food plants.

Plant	Effective AMF	Plant tissue	Assay method	Upregulated gene/enzyme family	Involved pathway	References
Citrus sinensis	Glomus versiforme (BGC HUN02B)	Leaves	RNA- Seq	12-oxophytodienoate reductase Acyl-CoA oxidase Enoyl-CoA hydratase Jasmonate O-methyltransferase Linoleate 13S-lipoxygenase OPC-8:CoA ligase	Secondary metabolites biosynthesis	Gao et al., 2016
Cucumis sativus	Funneliformis mosseae	Leaves	RT-qPCR	Caffeoyl CoA 3-O-methyltransferase Cinnamyl alcohol dehydrogenase-like protein Cytochrome P450 C4H cinnamate-4-hydroxylase Phenylalanine ammonia-lyase	Phenylpropanoid biosynthesis	Chen et al., 2013
Cucumis sativus	Rhizophagus irregularis (PH5, formerly Glomus intraradices)	Roots	RNA- Seq	Allene oxide synthase 1 Cinnamyl alcohol dehydrogenase (6-like) Cytochrome P450 (734A6-like) Gibberellin 2-beta-dioxygenase	Secondary metabolites biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Diterpenoid biosynthesis	Ma et al., 2018
Glycine max	Rhizophagus irregularis (49, formerly Glomus intraradices)	Roots	Microarray	9-cis-epoxycarotenoid dioxygenase Cytochrome P450 monooxygenase (CYP 701) Geranylgeranyl diphosphate or pyrophosphate synthase Gibberellin 2-beta-dioxygenase Gibberellin 3-beta (20)-dioxygenase Isoflavone-O-methyltransferase Trihydroxyisoflavanone-O- methyltransferase Tropinone reductase	Carotenoid biosynthesis Terpenoid backbone biosynthesis Terpenoid backbone biosynthesis Diterpenoid biosynthesis Diterpenoid biosynthesis Isoflavonoid biosynthesis Isoflavonoid biosynthesis	Schaarschmidt et al., 2013
Helianthus annuus	Rhizoglomus irregulare (IMA6, formerly Glomus intraradices)	Roots	RNA- Seq	Anthocyanidin 3-O-glucosyltransferase 2-like Anthocyanin 6"-O-malonyltransferase Bahd acyltransferase at5g47980-like Beta-amyrin 28-oxidase-like Beta-carotene isomerase Bifunctional I-3-cyanoalanine synthase cysteine synthase Caffeoyl CoA 3-O-methyltransferase Cinnamoyl-CoA reductase 1-like Cinnamyl alcohol dehydrogenase 9 4-coumarate CoA ligase-like (5 and 9) Cytochrome p450 (CYP71-like) Cytochrome p450 (CYP78) Cytochrome p450 (CYP81-like) Cytochrome p450 (CYP82-like)	Anthocyanidin biosynthesis Anthocyanin biosynthesis Secondary metabolites biosynthesis Triterpenoid biosynthesis Carotenoid biosynthesis Secondary metabolites biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Flavonol biosynthesis Isoflavonoid biosynthesis Terpenoid biosynthesis	

Plant	Effective AMF	Plant tissue	Assay method	Upregulated gene/enzyme family	Involved pathway	References
				Cytochrome p450 (CYP93A-like) Ent-kaurene oxidase cyp701a5 Flavanone 3-hydroxylase Flavonoid glucosyltransferase Flavonoid peroxidase 1 Geraniol 8-hydroxylase-like Gibberellin 2-beta-dioxygenase Gibberellin 3-beta (20)-dioxygenase	Isoflavonoid biosynthesis Diterpenoid biosynthesis Flavonoid biosynthesis Flavonoid biosynthesis Flavonoid biosynthesis Monoterpenoid biosynthesis Diterpenoid biosynthesis Diterpenoid biosynthesis	Vangelisti et al., 2018
				Hydroxycinnamoyl transferase Hyoscyamine 6-dioxygenase Isoleucine N-monooxygenase	Phenylpropanoid biosynthesis	
				Pelargonidin 3-o-(6-caffeoylglucoside)	Glucosinolate biosynthesis Anthocyanin biosynthesis	
				5-o-(6-o-malonylglucoside) 4-malonyltransferase-like Shikimate o-	Flavonoid biosynthesis	
				hydroxycinnamoyltransferase-like Tetrahydrocannabinolic acid synthase-like	Cannabinoid biosynthesis	
				Tropinone reductase homolog Valine N-monooxygenase (CYP79D1-2)	Alkaloids biosynthesis Glucosinolate biosynthesis	
				Zeatin-O-xylosyltransferase-like	Secondary metabolites biosynthesis	
Litchi chinensis	native AMF community	Roots	RNA- Seq	Anthocyanidin reductase Bifunctional dihydroflavonol 4-reductase/flavanone 4-reductase	Flavonoid biosynthesis Flavonoid biosynthesis	Shu et al., 2016
				Caffeic acid 3-O-methyltransferase	Phenylpropanoid biosynthesis	
				dioxygenase 7	Carotonola biosynthosis	
				Chalcone synthase Coumarate-CoA ligase 2 Cytochrome P450 (CYP73A) Elavanone 3-dioxygenase	Flavonoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Flavonoid biosynthesis	
				Flavonoid 3'-monooxygenase	Flavonoid, flavone, flavonol biosynthesis	
				Leucoanthocyanidin reductase Naringenin,2-oxoglutarate	Flavonoid biosynthesis Flavonoid biosynthesis	
				3-oloxygenase Peroxidase 53 Tropinone reductase	Phenylpropanoid biosynthesis Alkaloid biosynthesis	
Ocimum basilicum	Rhizoglomus irregulare (IMA6, formerly Glomus intraradices)	Leaves	RT-qPCR	Tyrosine amino-transferase	Tyrosine metabolism	Battini et al., 2016a
Oryza sativa	Glomus intraradices (DAOM197198)	Leaves	Macroarray	Ascorbate peroxidase (APX8) Cytochrome P450	Ascorbate and aldarate metabolism Phenylpropanoid biosynthesis	Campos-Soriano et al., 2012
				Denydroascorbate reductase	Ascorbate and aldarate metabolism Secondary metabolites biosynthesis	

Plant	Effective AMF	Plant tissue	Assay method	Upregulated gene/enzyme family	Involved pathway	References
	Rhizophagus irregularis (DAOM197198)	Roots	RNA- Seq	Anthocyanidin 3-O-glucosyltransferase Cinnamoyl-CoA reductase cytochrome P450 Ent-kaurene synthase Flavonol synthase/flavanone 3-hydroxylase Laccase precursor protein Mannose-6-phosphate isomerase Oxidoreductase, aldo/keto reductase family protein Phytoene synthase Terpene synthase	Anthocyanin biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Diterpenoid biosynthesis Flavonoid biosynthesis Ascorbate and aldarate metabolism Ascorbate and aldarate metabolism Retinoic acid biosynthesis Diterpenoid biosynthesis	Fiorilli et al., 2015
	Glomus intraradices	Roots	Microarray	Cinnamoyl-CoA reductase 4-coumarate CoA ligase Cycloartenol synthase Cytochrome p450 Flavonoid 3',5'-hydroxylase Geranylgeranyl diphosphate synthase	Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Secondary metabolites biosynthesis Phenylpropanoid biosynthesis Flavonoid biosynthesis Terpenoid backbone biosynthesis	Güimil et al., 2005
	Rhizophagus irregularis	Roots	Microarray	4-coumarate-CoA ligase Caffeoyl CoA 3-O-methyltransferase Gibberellin 2-beta-dioxygenase p-coumaroyl-CoA:caffeoyl-CoA 3-hydroxylase	Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Diterpenoid biosynthesis Phenylpropanoid biosynthesis	Gutjahr et al., 2015
Pisum sativum	Glomus mosseae (BB-E-Sc-02; Biorize, Dijon, FR)	Roots	SSH	Beta-cyanoalanine synthase Neoxanthin (clavage enzyme) synthase	Secondary metabolites biosynthesis Carotenoid biosynthesis	Grunwald et al., 2004
Solanum lycopersicum	Rhizophagus irregularis	Leaves	RNA- Seq	4-coumarate CoA ligase Acyltransferase-like protein Caffeoyl CoA 3-O-methyltransferase Cinnamoyl CoA-reductase-like Cytochrome P450 NADPH-reductase Hydroxycinnamoyl transferase Hydroxycinnamoyl-CoA shikimate/quinate hydroxycinnamoyltransferase Mevalonate kinase Phenylalanine ammonia-lyase Undecaprenyl pyrophosphate synthase	Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Flavonoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Terpenoid backbone biosynthesis Phenylpropanoid biosynthesis Terpenoid backbone biosynthesis	Cervantes-Gámez et al., 2016
	Glomus intraradices (BEG141)	Roots	Microarray	Carotenoid cleavage dioxygenase Cytochrome P450 Mevalonate disphosphate decarboxylase Phytoene dehydrogenase	Carotenoid biosynthesis Phenylpropanoid biosynthesis Carotenoid biosynthesis Carotenoid biosynthesis	Dermatsev et al., 2010

Plant	Effective AMF	Plant tissue	Assay method	Upregulated gene/enzyme family	Involved pathway	References
	Glomus mosseae (BEG12)	Roots	RNA- Seq	 ()-a-terpineol synthase (+-)-delta-cadinene synthase 4-coumarate CoA ligase Anthocyanidin synthase Carotenoid cleavage dioxygenase 1 Cytochrome P450 Cytochrome p450 Cytochrome p450 monooxygenase cyp72a59 Monoterpene glucosyltransferase Phenylalanine ammonia-lyase Phytoene synthase Sesquiterpene synthase 	Terpenoid backbone biosynthesis Terpenoid backbone biosynthesis Phenylpropanoid biosynthesis Flavonoid biosynthesis Carotenoid biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Terpenoid backbone biosynthesis Phenylpropanoid biosynthesis Carotenoid biosynthesis Terpenoid backbone biosynthesis	Fiorilli et al., 2009
	Glomus mosseae (BEG12)	Shoots	RNA- Seq	Caffeic acid 3-O-methyltransferase Cytochrome p450 Tropinone reductase	Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Alkaloid biosynthesis	
_	Glomus irregulare (DAOM 197198)	Roots	Microarray	Allene oxide synthase 3 Gibberellin 3-beta-dioxygenase Phytoene desaturase	Secondary metabolites biosynthesis Carotenoid biosynthesis Carotenoid biosynthesis	Garrido et al., 2010
	Glomus intraradices	Roots	Microarray	Deoxy-D-xylulose-5-phosphate reductoisomerase Gibberellin 2-beta-dioxygenase Hydroxycinnamoyl/benzoyl transferase Lycopene b-cyclase Phytoene desaturase z-carotene desaturase	Terpenoid backbone biosynthesis Diterpenoid biosynthesis Phenylpropanoid biosynthesis Carotenoid biosynthesis Carotenoid biosynthesis Carotenoid biosynthesis	López-Ráez et al., 2010b
	Glomus intraradices/Glomu mosseae Glomus	Roots Roots	Microarray	Allene oxide synthase 1-3 Antocyanin acyltrasferase Cytochrome P450 monooxygenase (CYP 81, CYP721) 1-deoxy-D-xylulose 5-phosphate synthase Gibberellin 3-beta (20)-dioxygenase Polyphenol oxidase	Secondary metabolites biosynthesis Anthocyanidin biosynthesis Terpenoid backbone biosynthesis Terpenoid backbone biosynthesis Diterpenoid biosynthesis Secondary metabolites	
	Glomus mosseae	Fruit	Microarray	Histidine decarboxylase	Secondary metabolites biosynthesis	Salvioli et al., 2012
	Rhizophagus irregularis (DAOM 197198)	Roots	RNA- Seq	Carotenoid cleavage dioxygenase 8 Cytochrome P450 (CYP93A1)	Carotenoid biosynthesis Flavonoid biosynthesis	Sugimura and Saito, 2017
	Funneliformis mosseae (BEG12)	Fruit	RNA- Seq	Terpene synthase	Diterpenoid biosynthesis	Zouari et al., 2014

Plant	Effective AMF	Plant tissue	Assay method	Upregulated gene/enzyme family	Involved pathway	References
Solanum tuberosum	<i>Glomus</i> sp. MUCL 41833	Roots	Microarray	Anthocyanidin-3-glucoside rhamnosyltransferase Anthranilate N-hydroxycinnamoyl/	Anthocyanin biosynthesis Secondary metabolites biosynthesis	Gallou et al., 2012
				benzoyltransterase Benzyl alcohol benzoyl transferase	Phenylpropanoid biosynthesis	
				Carotenoid isomerase Catechol oxidase Chalcone reductase Coumarate-CoA ligase (2-4) Cytochrome p450 (CYP71-like) Flavanone 3-hydroxylase Flavonoid 1-2 rhamnosyltransferase Flavonoid 3'-monooxygenase Geranylgeranyl pyrophosphate	Carotenoid biosynthesis Isoquinoline alkaloid biosynthesis Flavonoid biosynthesis Phenylpropanoid biosynthesis Flavonoid biosynthesis Flavonoid biosynthesis Flavonoid, flavone, flavonol biosynthesis Terpenoid backbone	
				synthase 1 Gibberellin 2-beta-dioxygenase Hydroxycinnamoyl transferase Leucoanthocyanidin dioxygenase-like	biosynthesis Diterpenoid biosynthesis Phenylpropanoid biosynthesis Anthocyanidin biosynthesis	
				Orcinol O-methyltransferase Peroxidase (Class III) Phenylalanine ammonia-lyase Phytoene desaturase Hyoscyamine 6 beta-bydroxylase-like	Secondary metabolites biosynthesis Phenylpropanoid biosynthesis Phenylpropanoid biosynthesis Carotenoid biosynthesis Alkaloid biosynthesis	
				Sesquiterpene synthase 2 Tropinone reductase I Tyramine hydroxycinnamoyl	Terpenoid backbone biosynthesis Alkaloids biosynthesis Phenylpropanoid biosynthesis	
				transferase Vetispiradiene synthase z-carotene desaturase	Terpenoid backbone biosynthesis Carotenoid biosynthesis	
Vitis vinifera	Funneliformis mosseae (BEG12)	Roots	RNA- Seq	ABA 8'-hydroxylase CYP707A1 Alliin lyase precursor	Carotenoid biosynthesis Secondary metabolites biosynthesis	Balestrini et al., 2017
	Funneliformis mosseae (BEG12)/MICOSAT F® Vite (CCS-Aosta)	Roots	RNA- Seq	4-coumarate-CoA ligase ABA 8'-hydroxylase CYP707A1 Cinnamyl alcohol dehydrogenase Taxane 10-beta-hydroxylase Tropinone reductase Urophorphyrin III methylase	Terpenoid-quinone biosynthesis Carotenoid biosynthesis Phenylpropanoid biosynthesis Carotenoid biosynthesis Alkaloids biosynthesis Secondary metabolites biosynthesis	
	MICOSAT F® Vite (CCS-Aosta)	Roots	RNA- Seq	Methyl jasmonate esterase	Secondary metabolites biosynthesis	
Zea mays	Rhizophagus irregularis	Leaves	Microarray	1-aminocyclopropane-1- carboxylate oxidase 3-hydroxy-3-methylglutaryl- reductase Alliin Iyase	Cysteine and methionine metabolism Terpenoid backbone biosynthesis Secondary metabolites biosynthesis	Gerlach et al., 2015

Plant	Effective AMF	Plant tissue	Assay method	Upregulated gene/enzyme family	Involved pathway	References
				Anthocyanidin	Anthocyanin biosynthesis	
				3-O-glucosyltransferase 2		
				Beta-carotene hydroxylase 1	Carotenoid biosynthesis	
				Cytochrome p450 71a1	Phenylpropanoid biosynthesis	
				Farnesyl pyrophosphate	Terpenoid backbone	
				synthetase	biosynthesis	
				Gibberellin 2-beta-dioxygenase	Diterpenoid biosynthesis	
				Homogentisate phytyltransferase vte2-1	Terpenoid-quinone biosynthesis	
				Mevalonate kinase	Terpenoid backbone biosynthesis	
				Short-chain dehydrogenase reductase family protein	Retinoic acid biosynthesis	

The binomial nomenclature of arbuscular mycorrhizal fungi (AMF) reported in the quoted papers has been maintained. Assay methods: RNA sequencing (RNA-Seq), quantitative reverse transcription PCR (RT-qPCR), suppression subtractive hybridization (SSH).

ERM exploring the soil, the rate of absorption, translocation and transfer of mineral nutrients, from hyphae to plant root cells (Giovannetti and Avio, 2002; Ezawa and Saito, 2018).

Only few works studied the differential efficiency of the diverse AMF isolates in relation to the production of health-promoting phytochemicals. The first studies reported higher contents of essential oils in coriander shoots and fruits when inoculated with Rhizoglomus fasciculatum compared with Glomus macrocarpum, that modified also the essential oil profiles, with increased concentrations of linalool and geraniol, respectively (Kapoor et al., 2002b). By contrast, the same AMF species produced completely opposite results with dill and carum plants, where G. macrocarpum was more efficient in enhancing essential oil concentrations, compared with R. fasciculatum (Kapoor et al., 2002a). Experiments with other AMF species confirmed the occurrence of differential activity, as shown by data on the stimulation of root thymol derivative production, which was higher upon inoculation with Rhizoglomus clarum in Inula ensifolia roots (Zubek et al., 2010), and on the enhancement of shoot hypericin and pseudohypericin contents in Hypericum perforatum by Rhizoglomus intraradices (Zubek et al., 2012). Single species inocula showed different results also in artichoke, basil, lettuce, pepper and tomato (Table 1). When AMF species other than Glomeraceae were used as inoculum, large variations were found in the concentration of basil leaves essential oils: Gigaspora rosea largely increased the concentration of camphor and alfa-terpineol, while Gigaspora margarita highly decreased eucalyptol, linalool, eugenol content, and the total content of essential oils (Copetta et al., 2006).

As in agricultural ecosystems many different AMF co-occur in individual plants, it is important to assess plant performance in response to inoculation with multiple AMF species and/or isolates, either originating from natural communities or laboratory assemblages. Only few authors adopted such an approach, revealing the enhancement of some beneficial compounds by AMF mixtures, compared with single-isolate inoculation (**Table 1**). For example, total phenolic content (TPC) and antioxidant activity increased in leaf extracts and in flower heads of artichoke plants inoculated with a mixed inoculum, compared with single species inocula, both in microcosm and in the field, suggesting a synergistic effect and/or a functional complementarity between the AMF species (Ceccarelli et al., 2010). In another study the antioxidant activity expressed as the ferric reducing ability of plasma assay (FRAP) was enhanced in onion by a mixed commercial inoculum containing Claroideoglomus etunicatum, Rhizoglomus microaggregatum, R. intraradices, Claroideoglomus claroideum, F. mosseae, Funneliformis geosporus compared with a single species (R. intraradices) inoculum (Albrechtova et al., 2012). The use of mixed inocula vs. single species-inoculum showed in tomato contrasting results, depending on the active molecule involved in the modulation: the mixed AMF species F. mosseae BEG12 and *R. irregulare* BB-E increased β-carotene and total carotenoids levels with no effects on lycopene content, while an opposite result was obtained using the two species individually (Hart et al., 2015).

One possible mechanism by which AMF stimulate phytochemical production could be through enhanced nutrient uptake, especially P. Basil plants inoculated with *Funneliformis caledonius* and *F. mosseae* showed higher levels of rosmarinic acid (RA) in the shoots, compared with control plants of the same P status, suggesting that the increased RA concentrations were not exclusively the results of a better P nutrition (Toussaint et al., 2008). However, the effects of an improved N nutrition remain to be investigated, as the higher N assimilation in mycorrhizal plants could contribute to the synthesis of the aminoacids tyrosine and phenylalanine and to a higher production of phenylalanine ammonia-lyase, an enzyme involved in the production of RA (Petersen and Simmonds, 2003).

The parameters to be taken into account in order to select the best performing AMF isolates, species or communities, should refer not only to the content of the health-promoting secondary metabolites, but also to the levels of transcripts encoding the enzymes of the relevant pathways. Only two studies, related to the trascriptome of tomato (López-Ráez et al., 2010b) and grapevine (Balestrini et al., 2017) roots, used different AMF inocula. In tomato, *R. intraradices* was able to positively regulate a larger number of genes related to health bioactive molecules, compared

with *F. mosseae*, whereas no differences in the modulation of genes by the two inoculants were observed in grapevine (**Table 2**). The ability of different AMF species and isolates to regulate genes related to beneficial phytochemicals should be further investigated by wide transcriptome studies, which could also provide insights into P and N nutrition-dependent effects. In particular, in the years to come metabolomic and transcriptomic analyses should be performed in experiments carried out under commercial production conditions—the normal way to grow plants used for human consumption—in order to avoid false positive responses.

CONCLUSION AND FUTURE PERSPECTIVES

The role played by AMF in the production of health-promoting phytochemicals by host plants has been widely investigated, using multimodal approaches. Although most of the studies showed increases in the levels of several phytochemicals in inoculated plants, some drawbacks hinder the implementation of these beneficial fungi for the production of high quality foods.

One of the main weakness concerning the data obtained so far entails the use of a low number of AMF species (about 24), generally the same ones utilized all over the world, that has limited the full exploitation of their wide physiological and genetic diversity. As the AMF species described so far are about 300, future studies should be performed utilizing the highest possible range of diverse AMF, not only at the species level, but also at the level of isolates and lineages within isolates (Chen et al., 2018; Savary et al., 2018), in order to select the best performing symbionts. Indeed, most of the physiological and functional characteristics of microorganisms, from bacteria to fungi, are properties of each individual strain. Unfortunately, the studies discussed so far often reported just the name of the AMF species utilized, and not always described the isolates, either with their number/name or with the name of the collection where they originated from.

Moreover, some of the studies analyzing the efficiency of laboratory-selected or commercial AMF strains when inoculated in the fields, found that their establishment and persistence were limited, due to the competition with well-adapted indigenous communities (Pellegrino et al., 2012; Loján et al., 2017). Such

REFERENCES

- Adolfsson, L., Nziengui, H., Abreu, I. N., Šimura, J., Beebo, A., Herdean, A., et al. (2017). Enhanced secondary- and hormone metabolism in leaves of arbuscular mycorrhizal *Medicago truncatula*. *Plant Physiol*. 175, 392–411. doi: 10.1104/pp.16.01509
- Alaux, P. L., César, V., Naveau, F., Cranenbrouck, S., and Declerck, S. (2018). Impact of *Rhizophagus irregularis* MUCL 41833 on disease symptoms caused by *Phytophthora infestans* in potato grown under field conditions. *Crop Protect.* 107, 26–33. doi: 10.1016/j.cropro.2018.01.003
- Albrechtova, J., Latr, A., Nedorost, L., Pokluda, R., Posta, K., and Vosatka, M. (2012). Dual inoculation with mycorrhizal and saprotrophic fungi applicable in sustainable cultivation improves the yield and nutritive value of onion. *Sci. World J.* 2012:374091. doi: 10.1100/2012/374091

findings suggest that the selection of native AMF isolates could lead to more successful results. In order to scale up mesocosm experiments, as the success of AMF field inoculation is affected by many factors (Berruti et al., 2016), a more feasible and broadspectrum approach is represented by nursery inoculation of fruit trees or vegetable plant species before field transplant, which may allow early AMF establishment in roots and field persistence (Ceccarelli et al., 2010; Alaux et al., 2018).

Considering that in nature many different species and strains coexist in the same field, it is crucial to increase studies on the different AMF mixtures for detecting possible synergistic effects and functional complementarities among them, leading to a further selection of the best AMF combinations. Moreover, additional works should be performed on the effects of the combined inoculation of AMF with biostimulants and other beneficial microorganisms, such as plant growth promoting bacteria and fungi (i.e., *Trichoderma* spp.), whose metabolic activities could affect the outcome of the mixed inoculum (Lingua et al., 2013; Colla et al., 2015; Rouphael et al., 2015).

So far, RNA-Seq technology, together with a mechanistic approach, has been utilized for investigating the differential gene expression, mostly in root tissues. Further transcriptomic studies should explore the differential expression of genes involved in the biosynthesis of health-promoting plant compounds in edible tissues of mycorrhizal plants. Such a powerful technology should be applied in order to unravel the mechanisms encompassing the enhancement of health-promoting phytochemicals biosynthesis, as affected by the widest possible range of AMF. This will increase our knowledge on the specific role played by each strain, in order to utilize sound criteria for a finely tuned, targeted selection of the best performing symbionts, to be used as sustainable biotechnological tools for the production of safe and healthy plant foods.

AUTHOR CONTRIBUTIONS

All authors listed have made a substantial, direct and intellectual contribution to the work, and approved it for publication.

FUNDING

The authors gratefully acknowledge the financial support by the University of Pisa (Fondi di Ateneo) and C.N.R.

- Avio, L., Sbrana, C., Giovannetti, M., and Frassinetti, S. (2017). Arbuscular mycorrhizal fungi affect total phenolics content and antioxidant activity in leaves of oak leaf lettuce varieties. *Sci. Hortic.* 224, 265–271. doi: 10.1016/j.scienta.2017.06.022
- Balestrini, R., Salvioli, A., Dal Molin, A., Novero, M., Gabelli, G., Paparelli, E., et al. (2017). Impact of an arbuscular mycorrhizal fungus versus a mixed microbial inoculum on the transcriptome reprogramming of grapevine roots. *Mycorrhiza* 27, 417–430. doi: 10.1007/s00572-016-0754-8
- Baslam, M., Garmendia, I., and Goicoechea, N. (2011). Arbuscular mycorrhizal fungi (AMF) improved growth and nutritional quality of greenhousegrown lettuce. J. Agric. Food Chem. 59, 5504–5515. doi: 10.1021/ jf200501c
- Baslam, M., Garmendia, I., and Goicoechea, N. (2013). The arbuscular mycorrhizal symbiosis can overcome reductions in yield and nutritional quality in

greenhouse-lettuces cultivated at inappropriate growing seasons. *Sci. Hortic.* 164, 145–154. doi: 10.1016/j.scienta.2013.09.021

- Battini, F., Bernardi, R., Turrini, A., Agnolucci, M., and Giovannetti, M. (2016a). *Rhizophagus intraradices* or its associated bacteria affect gene expression of key enzymes involved in the rosmarinic acid biosynthetic pathway of basil. *Mycorrhiza* 26, 699–707. doi: 10.1007/s00572-016-0707-2
- Battini, F., Turrini, A., Sgherri, C., Malorgio, F., and Quartacci, M. F. (2016b). Dual inoculation with AMF and associated bacteria improves nutraceutical value of sweet basil grown under commercial conditions. *Agrochimica* 60, 81–99. doi: 10.12871/0021857201623
- Berruti, A., Lumini, E., Balestrini, R., and Bianciotto, V. (2016). Arbuscular mycorrhizal fungi as natural biofertilizers: let's benefit from past successes. *Front. Microbiol.* 6:1559. doi: 10.3389/fmicb.2015.01559
- Bhattacharya, U., Halder, B., Mukhopadhyay, S., and Giri, A. K. (2009). Role of oxidation-triggered activation of JNK and p38 MAPK in black tea polyphenols induced apoptotic death of A375 cells. *Cancer Sci.* 100, 1971–1978. doi: 10.1111/j.1349-7006.2009.01251.x
- Bona, E., Cantamessa, S., Massa, N., Manassero, P., Marsano, F., Copetta, A., et al. (2017). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads improve yield, quality and nutritional value of tomato: a field study. *Mycorrhiza* 27, 1–11. doi: 10.1007/s00572-016-0727-y
- Bona, E., Lingua, G., Manassero, P., Cantamessa, S., Marsano, F., Todeschini, V., et al. (2015). AM fungi and PGP pseudomonads increase flowering, fruit production, and vitamin content in strawberry grown at low nitrogen and phosphorus levels. *Mycorrhiza* 25, 181–193. doi: 10.1007/s00572-014-0599-y
- Bonanomi, A., Oetiker, J. H., Guggenheim, R., Boller, T., Wiemken, A., and Vögeli-Lange, R. (2001). Arbuscular mycorrhiza in mini-mycorrhizotrons: first contact of *Medicago truncatula* roots with *Glomus intraradices* induces chalcone synthase. *New Phytol.* 150, 573–582. doi: 10.1046/j.1469-8137.2001.00135.x
- Burleigh, S. H., Cavagnaro, T., and Jakobsen, I. (2002). Functional diversity of arbuscular mycorrhizas extends to the expression of plant genes involved in P nutrition. J. Exp. Bot. 53, 1593–1601. doi: 10.1093/jxb/erf013
- Butt, M. S., Sultan, M. T., Butt, M. S., and Iqbal, J. (2009). Garlic: nature's protection against physiological threats. *Crit. Rev. Food Sci. Nutr.* 49, 538–551. doi: 10.1080/10408390802145344
- Cameron, D. D., Neal, A. L., van Wees, S. C., and Ton, J. (2013). Mycorrhizainduced resistance: more than the sum of its parts? *Trends Plant Sci.* 18, 539–545. doi: 10.1016/j.tplants.2013.06.004
- Campos-Soriano, L., García-Martínez, J., and San Segundo, B. (2012). The arbuscular mycorrhizal symbiosis promotes the systemic induction of regulatory defence-related genes in rice leaves and confers resistance to pathogen infection. *Mol. Plant Pathol.* 13, 579–592. doi: 10.1111/j.1364-3703.2011.00773.x
- Canene-Adams, K., Campbell, J. K., Zaripheh, S., Jeffery, E. H., and Erdman, J. W. Jr. (2005). The tomato as a functional food. J. Nutr. 135, 1226–1230. doi: 10.1093/jn/135.5.1226
- Castellanos Morales, V., Villegas, J., Wendelin, S., Vierheilig, H., Eder, R., and Cárdenas Navarro, R. (2010). Root colonisation by the arbuscular mycorrhizal fungus *Glomus intraradices* alters the quality of strawberry fruits (*Fragaria× ananassa* Duch.) at different nitrogen levels. *J. Sci. Food Agric.* 90, 1774–1782. doi: 10.1002/jsfa.3998
- Castillo, C., Sotomayor, L., Ortiz, C., Leonelli, G., Borie, F., and Rubio, R. (2009). Effect of arbuscular mycorrhizal fungi on an ecological crop of chili peppers (*Capsicum annuum* L.). *Chilean J. Agric. Res.* 69, 79–87. doi: 10.4067/S0718-58392009000100010
- Cecatto, A. P., Ruiz, F. M., Calvete, E. O., Martínez, J., and Palencia, P. (2016). Mycorrhizal inoculation affects the phytochemical content in strawberry fruits. *Acta Sci. Agron.* 38, 227–237. doi: 10.4025/actasciagron.v38i2.27932
- Ceccarelli, N., Curadi, M., Martelloni, L., Sbrana, C., Picciarelli, P., and Giovannetti, M. (2010). Mycorrhizal colonization impacts on phenolic content and antioxidant properties of artichoke leaves and flower heads two years after field transplant. *Plant Soil* 335, 311–323. doi: 10.1007/s11104-010-0417-z
- Cervantes-Gámez, R. G., Bueno-Ibarra, M. A., Cruz-Mendívil, A., Calderón-Vázquez, C. L., Ramírez-Douriet, C. M., Maldonado-Mendoza, I. E., et al. (2016). Arbuscular mycorrhizal symbiosis-induced expression changes in *Solanum lycopersicum* leaves revealed by RNA-seq analysis. *Plant Mol. Biol. Rep.* 34, 89–102. doi: 10.1007/s11105-015-0903-9

- Chaudhary, V., Kapoor, R., and Bhatnagar, A. K. (2008). Effectiveness of two arbuscular mycorrhizal fungi on concentrations of essential oil and artemisinin in three accessions of *Artemisia annua L. Appl. Soil Ecol.* 40, 174–181. doi: 10.1016/j.apsoil.2008.04.003
- Chen, E. C., Morin, E., Beaudet, D., Noel, J., Yildirir, G., Ndikumana, S., et al. (2018). High intraspecific genome diversity in the model arbuscular mycorrhizal symbiont *Rhizophagus irregularis*. *New Phytol.* doi: 10.1111/nph.14989. [Epub ahead of print].
- Chen, S., Jin, W., Liu, A., Zhang, S., Liu, D., Wang, F., et al. (2013). Arbuscular mycorrhizal fungi (AMF) increase growth and secondary metabolism in cucumber subjected to low temperature stress. *Sci. Hortic.* 160, 222–229. doi: 10.1016/j.scienta.2013.05.039
- Colla, G., Rouphael, Y., Di Mattia, E., El-Nakhel, C., and Cardarelli, M. (2015). Co-inoculation of *Glomus intraradices* and *Trichoderma atroviride* acts as a biostimulant to promote growth, yield and nutrient uptake of vegetable crops. *J. Sci. Food Agric.* 95, 1706–1715. doi: 10.1002/jsfa.6875
- Copetta, A., Bardi, L., Bertolone, E., and Berta, G. (2011). Fruit production and quality of tomato plants (*Solanum lycopersicum* L.) are affected by green compost and arbuscular mycorrhizal fungi. *Plant Biosyst.* 145, 106–115. doi: 10.1080/11263504.2010.539781
- Copetta, A., Lingua, G., Bardi, L., Masoero, G., and Berta, G. (2007). Influence of arbuscular mycorrhizal fungi on growth and essential oil composition in *Ocimum basilicum* var. *Genovese. Caryol.* 60, 106–110. doi: 10.1080/00087114.2007.10589555
- Copetta, A., Lingua, G., and Berta, G. (2006). Effects of three AM fungi on growth, distribution of glandular hairs, and essential oil production in Ocimum basilicum L. var. Genovese. Mycorrhiza 16, 485–494. doi: 10.1007/s00572-006-0065-6
- Deguchi, Y., Banba, M., Shimoda, Y., Chechetka, S. A., Suzuri, R., Okusako, Y., et al. (2007). Transcriptome profiling of *Lotus japonicus* roots during arbuscular mycorrhiza development and comparison with that of nodulation. *DNA Res.* 14, 117–133. doi: 10.1093/dnares/dsm014
- Dermatsev, V., Weingarten-Baror, C., Resnick, N., Gadkar, V., Wininger, S., Kolotilin, I., et al. (2010). Microarray analysis and functional tests suggest the involvement of expansins in the early stages of symbiosis of the arbuscular mycorrhizal fungus *Glomus intraradices* on tomato (*Solanum lycopersicum*). Mol. Plant Pathol. 11, 121–135. doi: 10.1111/j.1364-3703.2009. 00581.x
- Dillard, C. J., and German, J. B. (2000). Phytochemicals: nutraceuticals and human health. J. Sci. Food Agric. 80, 1744–1756. doi: 10.1002/1097-0010(20000915)80:12<1744::AID-JSFA725>3.0.CO;2-W
- Durán, P., Acuña, J. J., Armada, E., López-Castillo, O. M., Cornejo, P., Mora, M. L., et al. (2016). Inoculation with selenobacteria and arbuscular mycorrhizal fungi to enhance selenium content in lettuce plants and improve tolerance against drought stress. J. Soil Sci. Plant Nutr. 16, 211–225. doi: 10.4067/S0718-95162016005000017
- Duthie, S. J. (2000). Plant polyphenols in cancer and heart disease: implications as nutritional antioxidants. Nut. Res. Rev. 13, 79–106. doi: 10.1079/095442200108729016
- Ezawa, T., and Saito, K. (2018). How do arbuscular mycorrhizal fungi handle phosphate? New insight into fine-tuning of phosphate metabolism. *New Phytol.* doi: 10.1111/nph.15187. [Epub ahead of print].
- Farmer, M. J., Li, X., Feng, G., Zhao, B., Chatagnier, O., Gianinazzi, S., et al. (2007). Molecular monitoring of field-inoculated AMF to evaluate persistence in sweet potato crops in China. *Appl. Soil Ecol.* 35, 599–609. doi: 10.1016/j.apsoil.2006.09.012
- Fester, T., and Hause, G. (2005). Accumulation of reactive oxygen species in arbuscular mycorrhizal roots. *Mycorrhiza* 15, 373–379. doi: 10.1007/s00572-005-0363-4
- Fiorilli, V., Catoni, M., Miozzi, L., Novero, M., Accotto, G. P., and Lanfranco, L. (2009). Global and cell-type gene expression profiles in tomato plants colonized by an arbuscular mycorrhizal fungus. *New Phytol.* 184, 975–987. doi: 10.1111/j.1469-8137.2009.03031.x
- Fiorilli, V., Vallino, M., Biselli, C., Faccio, A., Bagnaresi, P., and Bonfante, P. (2015). Host and non-host roots in rice: cellular and molecular approaches reveal differential responses to arbuscular mycorrhizal fungi. *Front. Plant Sci.* 6:636. doi: 10.3389/fpls.2015.00636

- Gallou, A., Declerck, S., and Cranenbrouck, S. (2012). Transcriptional regulation of defence genes and involvement of the WRKY transcription factor in arbuscular mycorrhizal potato root colonization. *Funct. Integr. Genomic.* 12, 183–198.
- doi: 10.1007/s10142-011-0241-4 Gao, X., Zhao, S., Xu, Q. L., and Xiao, J. X. (2016). Transcriptome responses of grafted *Citrus sinensis* plants to inoculation with the arbuscular mycorrhizal fungus *Glomus versiforme*. *Trees* 30, 1073–1082. doi: 10.1007/s00468-015-1345-6
- Garrido, J. M., Morcillo, R. J. L., Rodríguez, J. Á. M., and Bote, J. A. O. (2010). Variations in the mycorrhization characteristics in roots of wild-type and ABAdeficient tomato are accompanied by specific transcriptomic alterations. *Mol. Plant-Microbe Interact.* 23, 651–664. doi: 10.1094/MPMI-23-5-0651
- Gerlach, N., Schmitz, J., Polatajko, A., Schlueter, U., Fahnenstich, H., Witt, S., et al. (2015). An integrated functional approach to dissect systemic responses in maize to arbuscular mycorrhizal symbiosis. *Plant Cell Environ*. 38, 1591–1612. doi: 10.1111/pce.12508
- Gianinazzi, S., Gollotte, A., Binet, M. N., van Tuinen, D., Redecker, D., and Wipf, D. (2010). Agroecology: the key role of arbuscular mycorrhizas in ecosystem services. *Mycorrhiza* 20, 519–530. doi: 10.1007/s00572-010-0333-3
- Giovannetti, M., and Avio, L. (2002). "Biotechnology of arbuscular mycorrhizas," in Applied Mycology and Biotechnology, Vol. 2 Agriculture and Food Production, eds G. G. Khachatourians and D. K. Arora (Amsterdam, NL: Elsevier), 275–310.
- Giovannetti, M., Avio, L., Barale, R., Ceccarelli, N., Cristofani, R., Iezzi, A., et al. (2012). Nutraceutical value and safety of tomato fruits produced by mycorrhizal plants. Br. J. Nutr. 107, 242–251. doi: 10.1017/S000711451100290X
- Giovannetti, M., Avio, L., and Sbrana, C. (2010). "Fungal spore germination and pre-symbiotic mycelial growth: physiological and genetic aspects," in *Arbuscular Mycorrhizas: Physiology and Function*, eds H. Koltai and Y. Kapulnik (Amsterdam, NL: Springer), 3–32.
- Giovannetti, M., Fortuna, P., Citernesi, A. S., Morini, S., and Nuti, M. P. (2001). The occurrence of anastomosis formation and nuclear exchange in intact arbuscular mycorrhizal networks. *New Phytol.* 151, 717–724. doi: 10.1046/j.0028-646x.2001.00216.x
- Goicoechea, N., Garmendia, I., Fabbrin, E. G., Bettoni, M. M., Palop, J. A., and Sanmartín, C. (2015). Selenium fertilization and mycorrhizal technology may interfere in enhancing bioactive compounds in edible tissues of lettuces. *Sci. Hortic.* 195, 163–172. doi: 10.1016/j.scienta.2015.09.007
- Grunwald, U., Nyamsuren, O., Tamasloukht, M. B., Lapopin, L., Becker, A., Mann, P., et al. (2004). Identification of mycorrhiza-regulated genes with arbuscule development-related expression profile. *Plant Mol. Biol.* 55, 553–566. doi: 10.1007/s11103-004-1303-y
- Güimil, S., Chang, H. S., Zhu, T., Sesma, A., Osbourn, A., Roux, et al. (2005). Comparative transcriptomics of rice reveals an ancient pattern of response to microbial colonization. *Proc. Natl. Acad. Sci.* 102, 8066–8070. doi: 10.1073/pnas.0502999102
- Gutjahr, C., Sawers, R. J., Marti, G., Andrés-Hernández, L., Yang, S. Y., Casieri, L., et al. (2015). Transcriptome diversity among rice root types during asymbiosis and interaction with arbuscular mycorrhizal fungi. *Proc. Natl. Acad. Sci.* 112, 6754–6759. doi: 10.1073/pnas.1504142112
- Handa, Y., Nishide, H., Takeda, N., Suzuki, Y., Kawaguchi, M., and Saito, K. (2015). RNA-seq transcriptional profiling of an arbuscular mycorrhiza provides insights into regulated and coordinated gene expression in *Lotus japonicus* and *Rhizophagus irregularis*. *Plant Cell Physiol*. 56, 1490–1511. doi: 10.1093/pcp/pcv071
- Harrison, M. J., and Dixon, R. A. (1993). Isoflavonoid accumulation and expression of defense gene transcripts during the establishment of vesicular-arbuscular mycorrhizal associations in roots of *Medicago truncatula*. *Mol. Plant Microbe Interact*. 6, 643–654. doi: 10.1094/MPMI-6-643
- Harrison, M. J., and Dixon, R. A. (1994). Spatial patterns of expression of flavonoid/isoflavonoid pathway genes during interactions between roots of *Medicago truncatula* and the mycorrhizal fungus *Glomus versiforme*. *Plant J.* 6, 9–20. doi: 10.1046/j.1365-313X.1994.6010009.x
- Hart, M., Ehret, D. L., Krumbein, A., Leung, C., Murch, S., Turi, C., et al. (2015). Inoculation with arbuscular mycorrhizal fungi improves the nutritional value of tomatoes. *Mycorrhiza* 25, 359–376. doi: 10.1007/s00572-014-0617-0
- Herre, E. A., Mejia, L. C., Kyllo, D. A., Rojas, E., Maynard, Z., Butler, A., et al. (2007). Ecological implications of antipathogen effects of tropical fungal endophytes and mycorrhizae. *Ecology* 88, 550–558. doi: 10.1890/05-1606

- Hohnjec, N., Vieweg, M. E., Pühler, A., Becker, A., and Küster, H. (2005). Overlaps in the transcriptional profiles of *Medicago truncatula* roots inoculated with two different *Glomus* fungi provide insights into the genetic program activated during arbuscular mycorrhiza. *Plant Physiol.* 137, 1283–1301. doi: 10.1104/pp.104.056572
- Jakobsen, I., Abbott, L. K., and Robson, A. D. (1992). External hyphae of vesicular arbuscular mycorrhizal fungi associated with *Trifolium subterraneum*. 1. spread of hyphae and phosphorus inflow into roots. *New Phytol*. 120, 371–380. doi: 10.1111/j.1469-8137.1992.tb01077.x
- Johnson, I. T. (2002). Glucosinolates: bioavailability and importance to health. *Int. J. Vitam. Nutr. Res.* 71, 26–31. doi: 10.1024/0300-9831.72.1.26
- Jurkiewicz, A., Ryszka, P., Anielska, T., Waligorski, P., Białonska, D., Goralska, K., et al. (2010). Optimization of culture conditions of *Arnica montana* L: effects of mycorrhizal fungi and competing plants. *Mycorrhiza* 20, 293–306. doi: 10.1007/s00572-009-0280-z
- Kapoor, R., Giri, B., and Mukerji, K. G. (2002a). Glomus macrocarpum: a potential bioinoculant to improve essential oil quality and concentration in Dill (Anethum graveolens L.) and Carum (Trachyspermum ammi (Linn.) Sprague). World J. Microbiol. Biotechnol. 18, 459–463. doi: 10.1023/A:1015522100497
- Kapoor, R., Giri, B., and Mukerji, K. G. (2002b). Mycorrhization of coriander (*Coriandrum sativum L*) to enhance the concentration and quality of essential oil. J. Sci. Food Agric. 82, 339–342. doi: 10.1002/jsfa.1039
- Karagiannidis, N., Thomidis, T., Lazari, D., Panou- Filotheou, E., and Karagiannidou, C. (2011). Effect of three Greek arbuscular mycorrhizal fungi in improving the growth, nutrient concentration, and production of essential oils of oregano and mint plants. *Sci. Hortic.* 129, 329–334. doi: 10.1016/j.scienta.2011.03.043
- Khaosaad, T., Krenn, L., Medjakovic, S., Ranner, A., Lössl, A., Nell, M., et al. (2008). Effect of mycorrhization on the isoflavone content and the phytoestrogen activity of red clover. *Plant Physiol.* 165, 1161–1167. doi: 10.1016/j.jplph.2007.08.015
- Lambais, M. R., Rios-Ruiz, W. F., and Andrade, R. M. (2003). Antioxidant responses in bean (*Phaseolus vulgaris*) roots colonized by arbuscular mycorrhizal fungi. *New Phytol.* 160, 421–428. doi: 10.1046/j.1469-8137.2003.00881.x
- Lazzè, M. C., Pizzala, R., Gutiérrez Pecharromán, F. J., Gatòn Garnica, P., Antolín Rodríguez, J. M., Fabris, N., et al. (2009). Grape waste extract obtained by supercritical fluid extraction contains bioactive antioxidant molecules and induces antiproliferative effects in human colon adenocarcinoma cells. J. Med. Food 12, 561–568. doi: 10.1089/jmf.2008.0150
- Lee, J., and Scagel, C. F. (2009). Chicoric acid found in basil (*Ocimum basilicum* L.) leaves. *Food Chem.* 115, 650–656.
- Lehmann, A., and Rillig, M. C. (2015). Arbuscular mycorrhizal contribution to copper, manganese and iron nutrient concentrations in crops-A meta-analysis. *Soil Biol. Biochem.* 81, 147–158. doi: 10.1016/j.soilbio.2014.11.013
- Lingua, G., Bona, E., Manassero, P., Marsano, F., Todeschini, V., Cantamessa, S., et al. (2013). Arbuscular mycorrhizal fungi and plant growth-promoting pseudomonads increases anthocyanin concentration in strawberry fruits (*Fragaria x ananassa var. Selva*) in conditions of reduced fertilization. *Int. J. Mol. Sci.* 14, 16207–16225. doi: 10.3390/ijms140816207
- Liu, J., Maldonado-Mendoza, I., Lopez-Meyer, M., Cheung, F., Town, C. D., and Harrison, M. J. (2007). Arbuscular mycorrhizal symbiosis is accompanied by local and systemic alterations in gene expression and an increase in disease resistance in the shoots. *Plant J.* 50, 529–544. doi: 10.1111/j.1365-313X.2007.03069.x
- Lohse, S., Schliemann, W., Ammer, C., Kopka, J., Strack, D., and Fester, T. (2005). Organisation and metabolism of plastids and mitochondria in arbuscular mycorrhizal roots of *Medicago truncatula*. *Plant Physiol*. 139, 329–340. doi: 10.1104/pp.105.061457
- Loján, P., Senés-Guerrero, C., Suárez, J. P., Kromann, P., Schüßler, A., and Declerck, S. (2017). Potato field-inoculation in Ecuador with *Rhizophagus irregularis*: no impact on growth performance and associated arbuscular mycorrhizal fungal communities. *Symbiosis* 73, 45–56. doi: 10.1007/s13199-016-0471-2
- Lone, R., Shuab, R., Wani, K. A., Ganaie, M. A., Tiwari, A. K., and Koul, K. K. (2015). Mycorrhizal influence on metabolites, indigestible oligosaccharides, mineral nutrition and phytochemical constituents in onion (*Allium cepa* L.) plant. *Sci. Hortic.* 193, 55–61. doi: 10.1016/j.scienta.2015.06.032

- López-Ráez, J. A., Flors, V., Garcia, J. M., and Pozo, M. J. (2010a). AM symbiosis alters phenolic acid content in tomato roots. *Plant Signal. Behav.* 5, 1138–1140. doi: 10.4161/psb.5.9.12659
- López-Ráez, J. A., Verhage, A., Fernández, I., García, J. M., Azcón-Aguilar, C., Flors, V., et al. (2010b). Hormonal and transcriptional profiles highlight common and differential host responses to arbuscular mycorrhizal fungi and the regulation of the oxylipin pathway. *J. Exp. Bot.* 61, 2589–2601. doi: 10.1093/jxb/erq089
- Lund, E. (2003). Non-nutritive bioactive constituents of plants: dietary sources and health benefits of glucosinolates. *Int. J. Vitam. Nutr. Res.* 73, 135–143. doi: 10.1024/0300-9831.73.2.135
- Ma, J., Sun, C., Bai, L., Dong, R., Yan, Y., Yu, X., et al. (2018). Transcriptome analysis of cucumber roots reveals key cold-resistance genes induced by AM fungi. *Plant Mol. Biol. Rep.* 36, 135–148. doi: 10.1007/s11105-018-1066-2
- Massoumou, M., van Tuinen, D., Chatagnier, O., Arnould, C., Brechenmacher, L., Sanchez, L., et al. (2007). *Medicago truncatula* gene responses specific to arbuscular mycorrhiza interactions with different species and genera of Glomeromycota. *Mycorrhiza* 17, 223–234. doi: 10.1007/s00572-006-0099-9
- Maurich, T., Iorio, M., Chimenti, D., and Turchi, G. (2006). Erybraedin C and bitucarpin A, two structurally related pterocarpans purified from *Bituminaria bituminosa*, induced apoptosis in human colon adenocarcinoma cell lines MMR-and p53-proficient and-deficient in a dose-, time-, and structure-dependent fashion. *Chem-Biol. Interact.* 159, 104–116. doi: 10.1016/j.cbi.2005.10.103
- Mena-Violante, H. G., Ocampo-Jiménez, O., Dendooven, L., Martínez-Soto, G., González-Castañeda, J., Davies, F. T., et al. (2006). Arbuscular mycorrhizal fungi enhance fruit growth and quality of Chile ancho (*Capsicum annuum* L. *cv San Luis*) plants exposed to drought. *Mycorrhiza* 16, 261–267. doi: 10.1007/s00572-006-0043-z
- Mimica-Dukić, N., Bugarin, D., Grbovic, S., Mitic-Culafic, D., Vukovic-Gacic, B., Orcic, D., et al. (2010). Essential oil of *Myrtus communis* L. as a potential antioxidant and antimutagenic agents. *Molecules* 15, 2759–2770. doi: 10.3390/molecules15042759
- Mogren, L. M., Caspersen, S., Olsson, M. E., and Gertsson, U. E. (2007). Organically fertilized onions (*Allium cepa* L.): effects of the fertilizer placement method on quercetin content and soil nitrogen dynamics. J. Agric. Food Chem. 56, 361–367. doi: 10.1021/jf071813a
- Mollavali, M., Perner, H., Rohn, S., Riehle, P., Hanschen, F. S., and Schwarz, D. (2018). Nitrogen form and mycorrhizal inoculation amount and timing affect flavonol biosynthesis in onion (*Allium cepa L.*). *Mycorrhiza* 28, 59–70. doi: 10.1007/s00572-017-0799-3
- Njeru, E. M., Bocci, G., Avio, L., Sbrana, C., Turrini, A., Giovannetti, M., et al. (2017). Functional identity has a stronger effect than diversity on mycorrhizal symbiosis and productivity of field grown organic tomato. *Eur. J. Agron.* 86, 1–11. doi: 10.1016/j.eja.2017.02.007
- Nzanza, B., Marais, D., and Soundy, P. (2012a). Response of tomato (Solanum lycopersicum L.) to nursery inoculation with *Trichoderma harzianum* and arbuscular mycorrhizal fungi under field conditions. Acta Agric. Scand. Sect. B 62, 209–215. doi: 10.1080/09064710.2011.598544
- Nzanza, B., Marais, D., and Soundy, P. (2012b). Yield and nutrient content of tomato (*Solanum lycopersicum* L.) as influenced by *Trichoderma harzianum* and *Glomus mosseae* inoculation. *Sci. Hortic.* 144, 55–59. doi: 10.1016/j.scienta.2012.06.005
- Ordookhani, K., Khavazi, K., Moezzi, A., and Rejali, F. (2010). Influence of PGPR and AMF on antioxidant activity, lycopene and potassium contents in tomato. *Afr. J. Agric. Res.* 5, 1108–1116. doi: 10.5897/AJAR09.183
- Ososki, A. L., and Kennelly, E. J. (2003). Phytoestrogens: a review of the present state of research. *Phytother. Res.* 17, 845–869. doi: 10.1002/ptr.1364
- Palermo, M., Colla, G., Barbieri, G., and Fogliano, V. (2013). Polyphenol metabolite profile of artichoke is modulated by agronomical practices and cooking method. *J. Agric. Food Chem.* 61, 7960–7968. doi: 10.1021/ jf401468s
- Pandino, G., Lombardo, S., Antonino, L. M., Ruta, C., and Mauromicale, G. (2017). *In vitro* micropropagation and mycorrhizal treatment influences the polyphenols content profile of globe artichoke under field conditions. *Food Res. Int.* 99, 385–392. doi: 10.1016/j.foodres.2017.05.037
- Peipp, H., Maier, W., Schmidt, J., Wray, V., and Strack, D. (1997). Arbuscular mycorrhizal fungus-induced changes in the accumulation

of secondary compounds in barley roots. *Phytochemistry* 44, 581–587. doi: 10.1016/S0031-9422(96)00561-4

- Pellegrino, E., Turrini, A., Gamper, H. A., Cafà, G., Bonari, E., Young, J. P. W., et al. (2012). Establishment, persistence and effectiveness of arbuscular mycorrhizal fungal inoculants in the field revealed using molecular genetic tracing and measurement of yield components. *New Phytol.* 194, 810–822. doi: 10.1111/j.1469-8137.2012.04090.x
- Perner, H., Rohn, S., Driemel, G., Batt, N., Schwarz, D., Kroh, L. W., et al. (2008). Effect of nitrogen species supply and mycorrhizal colonization on organosulfur and phenolic compounds in onions. J. Agric. Food Chem. 56, 3538–3545. doi: 10.1021/jf073337u
- Petersen, M., and Simmonds, M. S. (2003). Rosmarinic acid. *Phytochemistry* 62, 121–125. doi: 10.1016/S0031-9422(02)00513-7
- Philippot, L., Raaijmakers, J. M., Lemanceau, P., and Van Der Putten, W. H. (2013). Going back to the roots: the microbial ecology of the rhizosphere. *Nat. Rev. Microbiol.* 11, 789–799. doi: 10.1038/nrmicro3109
- Pistelli, L., Ulivieri, V., Giovanelli, S., Avio, L., Giovannetti, M., and Pistelli, L. (2017). Arbuscular mycorrhizal fungi alter the content and composition of secondary metabolites in *Bituminaria bituminosa* L. *Plant Biol.* 19, 926–933. doi: 10.1111/plb.12608
- Ponce, M. A., Scervino, J. M., Erra-Balsells, R., Ocampo, J. A., and Godeas, A. M. (2004). Flavonoids from shoots and roots of *Trifolium repens* (white clover) grown in presence or absence of the arbuscular mycorrhizal fungus *Glomus intraradices*. *Phytochemistry* 65, 1925–1930. doi: 10.1016/j.phytochem.2004.06.005
- Pozo, M. J., and Azcon-Aguilar, C. (2007). Unraveling mycorrhiza-induced resistance. Curr. Opin. Plant Biol. 10, 393–398. doi: 10.1016/j.pbi.2007.05.004
- Rasouli-Sadaghiani, M., Hassani, A., Barin, M., Danesh, Y. R., and Sefidkon, F. (2010). Effects of AM fungi on growth, essential oil production and nutrients uptake in basil. J. Med. Plant Res. 4, 2222–2228. doi: 10.5897/ JMPR10.337
- Rouphael, Y., Colla, G., Graziani, G., Ritieni, A., Cardarelli, M., and De Pascale, S. (2017). Phenolic composition, antioxidant activity and mineral profile in two seed-propagated artichoke cultivars as affected by microbial inoculants and planting time. *Food Chem.* 234, 10–19. doi: doi: 10.1016/j.foodchem.2017.04.175
- Rouphael, Y., Franken, P., Schneider, C., Schwarz, D., Giovannetti, M., Agnolucci, M., et al. (2015). Arbuscular mycorrhizal fungi act as biostimulants in horticultural crops. *Sci. Hortic.* 196, 91–108. doi: 10.1016/j.scienta.2015.09.002
- Sailo, G. L., and Bagyaraj, D. J. (2005). Influence of different AM-fungi on the growth, nutrition and forskolin content of *Coleus forskohlii*. *Mycol. Res.* 109, 795–798. doi: 10.1017/S0953756205002832
- Salvioli, A., Zouari, I., Chalot, M., and Bonfante, P. (2012). The arbuscular mycorrhizal status has an impact on the transcriptome profile and amino acid composition of tomato fruit. *BMC Plant Biol.* 12:44. doi: 10.1186/1471-2229-12-44
- Savary, R., Masclaux, F. G., Wyss, T., Droh, G., Corella, J. C., Machado, et al. (2018). A population genomics approach shows widespread geographical distribution of cryptic genomic forms of the symbiotic fungus *Rhizophagus irregularis*. *ISME J*. 12, 17–30. doi: 10.1038/ismej.2017.153
- Sbrana, C., Avio, L., and Giovannetti, M. (2014). Beneficial mycorrhizal symbionts affecting the production of health-promoting phytochemicals. *Electrophoresis* 35, 1535–1546. doi: 10.1002/elps.201300568
- Scagel, C. F., and Lee, J. (2012). Phenolic composition of basil plants is differentially altered by plant nutrient status and inoculation with mycorrhizal fungi. *Hort. Sci.* 47, 660–671.
- Schaarschmidt, S., Gresshoff, P. M., and Hause, B. (2013). Analyzing the soybean transcriptome during autoregulation of mycorrhization identifies the transcription factors GmNF-YA1a/b as positive regulators of arbuscular mycorrhization. *Genome Biol.* 14:R62. doi: 10.1186/gb-2013-14-6-r62
- Schliemann, W., Ammer, C., and Strack, D. (2008). Metabolic profiling of mycorrhizal roots of *Medicago truncatula*. *Phytochemistry* 69, 112–146. doi: 10.1016/j.phytochem.2007.06.032
- Schweiger, R., and Müller, C. (2015). Leaf metabolome in arbuscular mycorrhizal symbiosis. *Curr. Opin. Plant Biol.* 26, 120–126. doi: 10.1016/j.pbi.2015.06.009
- Shu, B., Li, W., Liu, L., Wei, Y., and Shi, S. (2016). Transcriptomes of arbuscular mycorrhizal fungi and litchi host interaction after tree girdling. *Front. Microbiol.* 7:408. doi: 10.3389/fmicb.2016.00408

- Sikes, B. A., Kottenie, K., and Klironomos, J. N. (2009). Plant and fungal identity determines pathogen protection of plant roots by arbuscular mycorrhizas. J. Ecol. 97, 1274–1280. doi: 10.1111/j.1365-2745.2009.01557.x
- Smith, S. E., and Read, D. J. (2008). *Mycorrhizal Symbiosis*. 3rd Edn. London: Academic Press.
- Spatafora, J. W., Chang, Y., Benny, G. L., Lazarus, K., Smith, M. E., Berbee, M. L., et al. (2016). A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. *Mycologia* 108, 1028–1046. doi: 10.3852/16-042
- Subramanian, K. S., Santhanakrishnan, P., and Balasubramanian, P. (2006). Responses of field grown tomato plants to arbuscular mycorrhizal fungal colonization under varying intensities of drought stress. *Sci. Hortic.* 107, 245–253. doi: 10.1016/j.scienta.2005.07.006
- Sugimura, Y., and Saito, K. (2017). Comparative transcriptome analysis between Solanum lycopersicum L. and Lotus japonicus L. during arbuscular mycorrhizal development. Soil Sci. Plant Nutr. 63, 127–136. doi: 10.1080/00380768.2017.1280378
- Tang, L., Zirpoli, G. R., Jayaprakash, V., Reid, M. E., McCann, S. E., Nwogu, C. E., et al. (2010). Cruciferous vegetable intake is inversely associated with lung cancer risk among smokers: a case-control study. *BMC Cancer* 10:162. doi: 10.1186/1471-2407-10-162
- Tavarini, S., Passera, B., Martini, A., Avio, L., Sbrana, C., Giovannetti, M., et al. (2018). Plant growth, steviol glycosides and nutrient uptake as affected by arbuscular mycorrhizal fungi and phosphorous fertilization in *Stevia rebaudiana* Bert. *Ind. Crop. Prod.* 111, 899–907. doi: 10.1016/j.indcrop.2017.10.05
- Teiten, M. H., Gaascht, F., Dicato, M., and Diederich, M. (2013). Anticancer bioactivity of compounds from medicinal plants used in European medieval traditions. *Biochem. Pharmacol.* 86, 1239–1247. doi: 10.1016/j.bcp.2013.08.007
- Tong, Y., Gabriel-Neumann, E., Ngwene, B., Krumbein, A., Baldermann, S., Schreiner, M., et al. (2013). Effects of single and mixed inoculation with two arbuscular mycorrhizal fungi in two different levels of phosphorus supply on β-carotene concentrations in sweet potato (*Ipomoea batatas* L.) tubers. *Plant Soil* 372, 361–374. doi: 10.1007/s11104-013-1708-y
- Toussaint, J. P., Kraml, M., Nell, M., Smith, S. E., Smith, F. A., Steinkellner, S., et al. (2008). Effect of *Glomus mosseae* on concentrations of rosmarinic and caffeic acids and essential oil compounds in basil inoculated with *Fusarium oxysporum f. sp. basilici. Plant Pathol.* 57, 1109–1116. doi: 10.1111/j.1365-3059.2008.01895.x
- Ulrichs, C., Fischer, G., Büttner, C., and Mewis, I. (2008). Comparison of lycopene, β-carotene and phenolic contents of tomato using conventional and ecological horticultural practices, and arbuscular mycorrhizal fungi (AMF). *Agron. Colomb.* 26, 40–46.

- Vangelisti, A., Natali, L., Bernardi, R., Sbrana, C., Turrini, A., Hassani-Pak, K., et al. (2018). Transcriptome changes induced by arbuscular mycorrhizal fungi in sunflower (*Helianthus annuus* L.) roots. *Sci. Rep.* 8:4. doi: 10.1038/s41598-017-18445-0
- Walter, M. H., Fester, T., and Strack, D. (2000). Arbuscular mycorrhizal fungi induce the non-mevalonate methylerythritol phosphate pathway of isoprenoid biosynthesis correlated with accumulation of the 'yellow pigment' and other apocarotenoids. *Plant J.* 21, 571–578. doi: 10.1046/j.1365-313x.2000.00708.x
- Wang, S. Y., Lewers, K. S., Bowman, L., and Ding, M. (2007). Antioxidant activities and anticancer cell proliferation properties of wild strawberries. J. Am. Soc. Hortic. Sci. 132, 647–658.
- Wipf, D., Mongelard, G., Van Tuinen, D., Gutierrez, L., and Casieri, L. (2014). Transcriptional responses of *Medicago truncatula* upon sulfur deficiency stress and arbuscular mycorrhizal symbiosis. *Front. Plant Sci.* 5:680. doi: 10.3389/fpls.2014.00680
- Zhang, X., Zhu, Y., Duan, W., Feng, C., and He, X. (2015). Allicin induces apoptosis of the MGC-803 human gastric carcinoma cell line through the p38 mitogen-activated protein kinase/caspase-3 signaling pathway. *Mol. Med. Rep.* 11, 2755–2760. doi: 10.3892/mmr.2014.3109
- Zouari, I., Salvioli, A., Chialva, M., Novero, M., Miozzi, L., Tenore, G. C., et al. (2014). From root to fruit: RNA-Seq analysis shows that arbuscular mycorrhizal symbiosis may affect tomato fruit metabolism. *BMC Genomics* 15:221. doi: 10.1186/1471-2164-15-221
- Zubek, S., Mielcarek, S., and Turnau, K. (2012). Hypericin and pseudohypericin concentrations of a valuable medicinal plant *Hypericum perforatum L.* are enhanced by arbuscular mycorrhizal fungi. *Mycorrhiza* 22, 149–156. doi: 10.1007/s00572-011-0391-1
- Zubek, S., Stojakowska, A., Anielska, T., and Turnau, K. (2010). Arbuscular mycorrhizal fungi alter thymol derivative contents of *Inula ensifolia L. Mycorrhiza* 20, 497–504. doi: 10.1007/s00572-010-0306-6

Conflict of Interest Statement: The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Copyright © 2018 Avio, Turrini, Giovannetti and Sbrana. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.