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Soil organic carbon (SOC) has a vital role to enhance agricultural productivity and for
mitigation of climate change. To quantify SOC effects on productivity, process models
serve as a robust tool to keep track of multiple plant and soil factors and their interactions
affecting SOC dynamics. We used soil-plant-atmospheric model viz. DAISY, to assess
effects of SOC on nitrogen (N) supply and plant available water (PAW) under varying
N fertilizer rates in winter wheat (Triticum aestivum) in Denmark. The study objective
was assessment of SOC effects on winter wheat grain and aboveground biomass
accumulation at three SOC levels (low: 0.7% SOC; reference: 1.3% SOC; and high:
2% SOC) with five nitrogen rates (0–200 kg N ha−1) and PAW at low, reference, and
high SOC levels. The three SOC levels had significant effects on grain yields and
aboveground biomass accumulation at only 0–100 kg N ha−1 and the SOC effects
decreased with increasing N rates until no effects at 150–200 kg N ha−1. PAW had
significant positive correlation with SOC content, with high SOC retaining higher PAW
compared to low and reference SOC. The mean PAW and SOC correlation was given
by PAW% = 1.0073 × SOC% + 15.641. For the 0.7–2% SOC range, the PAW
increase was small with no significant effects on grain yields and aboveground biomass
accumulation. The higher winter wheat grain and aboveground biomass was attributed
to higher N supply in N deficient wheat production system. Our study suggested that
building SOC enhances agronomic productivity at only 0–100 kg N ha−1. Maintenance
of SOC stock will require regular replenishment of SOC, to compensate for the
mineralization process degrading SOC over time. Hence, management can maximize
realization of SOC benefits by building up SOC and maintaining N rates in the range
0–100 kg N ha−1, to reduce the off-farm N losses depending on the environmental
zones, land use and the production system.

Keywords: grain yield, DAISY model, nitrogen, plant available water, pedotransfer functions, long-term
experiment, crop productivity
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INTRODUCTION

Soil organic carbon (SOC) supports multiple soil functions
determining soil physical, chemical and biological quality
parameters (Reeves, 1997; Pan et al., 2009) contributing to
the productive capacity of soils for food, fodder, and energy
production (Lal, 2004). A number of factors influence SOC
stocks and flows, spatially and temporally, in an ecosystem
due to climate, land use, soil management, and cropping
systems (Canadell et al., 2007). Building up SOC stock
through agricultural measures (e.g., cover cropping, residue
incorporation, reduced tillage) can affect soil properties, soil
water retention and nutrient storage, affecting the productive
capacity of soils (Ingram et al., 2016; Paustian et al., 2016).
Decomposition of SOC releases mainly N, which can increase
crop yields where crop N supply is limited (Palmer et al., 2017).
Maintenance or build-up of SOC will require regular inputs
of organic matter (OM) into the soil as the mineralization
process will continually deplete the SOC over time, especially in
environmental zones, where soil moisture and temperature are
conducive for the mineralization process. The other effects of
increased SOC content are decrease in the bulk density (Chen
et al., 2017; Palmer et al., 2017; Minasny and McBratney, 2018)
and small increase in volumetric water holding capacity (Rawls
et al., 2003). Due to these multiple effects, there is a great interest
to quantify SOC effects in agro-ecosystems. SOC increase can
have positive and negative effects (Palmer et al., 2017; Minasny
and McBratney, 2018). Among the multiple SOC effects, crop
productivity and soil water retention are the priorities of the
farmers to maintain sustainable agro-ecosystems. As European
arable cropping systems are estimated to lose 300 Tg C (1012)
year−1 (Janssens et al., 2003), it is necessary to segregate the SOC
effects on crop yields and soil water retention and their combined
synergistic benefits on crop productivity. Hence, quantification
of SOC effects on N supply, soil water retention and crop
productivity under varying fertility production system provides a
science-based evidence of SOC benefits for making management
decisions by farmers.

Winter wheat is one of the most widely cultivated arable
crops, and the assessment of SOC-productivity relationship
can generate insights into wheat crop management at field
scale (Hansen et al., 2000; Christensen et al., 2009). An earlier
study assessed SOC effects in winter wheat agro-ecosystem
in seven sites representing diverse soil types, SOC content,
management and climate including Netherlands (Palmer et al.,
2017) found that SOC benefits are tangible in N deficient
wheat production systems, whereas the benefits disappear in
wheat agro-ecosystems, with surplus N. To add to this body of
knowledge, this study provided insights into SOC effects under
a context-specific set of soil type, SOC content, management
and climate regimes in Denmark. Further, this study provided
additional value to the findings of Palmer et al. (2017) because
the range of SOC used in our study (0.7–2% SOC) is different
than the SOC considered in Netherlands (2.8% and 4.3% SOC).
SMARTSOIL1 consortium had access to the SOC and agronomic

1http://smartsoil.eu/

data on winter wheat from a long-term field trial in Askov from
1929 to 2008 and the field data provided us a unique opportunity
to carry out the calibration and validation of DAISY model, to
assess the productivity and SOC dynamics under winter wheat
cultivation over 80 years. Hence, the study objective was to
determine winter wheat productivity at three SOC ranges viz.
low: 0.7% SOC; reference: 1.3% SOC; and high: 2% SOC with
five nitrogen rates (0–200 kg N ha−1) and plant available water
(PAW) at the low, reference, and high SOC levels.

MATERIALS AND METHODS

Long-Term Field Trial in Askov
The long-term trial site in Askov (LTE-Askov; 55◦28′N, 09◦06′E)
was established in 1923 and cropping system was 4-year
crop rotation cycle of winter wheat, root crop, spring cereal
and grass-clover from 1929 to 2008. In the 0–0.20 m plow
layer, SOC was 1.3% and sand, silt and clay contents were
76%, 13%, and 11%, respectively, and the bulk density at
plow layer was 1.5 g cm−3 (Christensen et al., 2006). LTE-
Askov treatments consisted of two treatments, viz: Askov_0N
and Askov_1.5NPK, implemented in a 4-year crop rotation
cycle. Askov_0N treatment received no input of farmyard
manure, nitrogen (N), phosphorus (P), and potassium (K)
and crop residues were removed and Askov_1.5NPK treatment
received 150 kg N, 28.5 kg P and 131.4 kg K ha−1.
The measured field data from Askov_0N and Askov_1.5NPK
winter wheat plots for the period 1929–2008, were split
into calibration dataset (1929–1969) and validation dataset
(1970–2008).

DAISY Model Initialization and SOC
Simulations
To assess long-term SOC dynamics in arable production systems,
process models serve as a robust tool to keep track of
multiple plant and soil factors and their interactions affecting
SOC dynamics. The soil-plant-atmospheric model, DAISY, was
implemented, due to its robustness for simulation of SOC
dynamics and crop productivity in diverse climatic and cropping
systems (Abrahamsen and Hansen, 2000). DAISY is a dynamic
and deterministic soil-plant-atmosphere system model with
separate sub-models for crop growth, C and N dynamics,
heat, soil water and fate of pesticide use (Abrahamsen and
Hansen, 2000). In the model, OM is constituted by added
organic matter (AOM), soil microbial biomass (SMB), and
soil organic matter (SOM) pool. AOM and SMB constitute
relatively fast and slow turnover pools, whereas SOM is split
into three pools; inert (SOM3), fast (SOM2), and slow turnover
pools (SOM1), characterized by fixed C:N ratios and first-
order decomposition rate coefficients (Hansen et al., 1991).
AOM constitutes plant residues, added organic fertilizer or
compost, etc.; the SMB pool is driving the biodegradation
process and SOM is the recalcitrant humus fraction. Soil C
and N dynamics were modeled by assuming constant C:N
ratios in each pool (Bruun et al., 2003). The SOM pool,
at the start of the simulation period was initialized to a
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steady state by simulating the pre-experimental period for 10
years before the onset of the experiment (Bruun and Jensen,
2002).

Daisy model was implemented in two steps viz. calibration
and validation steps. For calibration step, DAISY model inputs
were soil, weather, and winter wheat management data from LTE-
Askov. The soil data on sand%, silt%, and clay%, bulk density
and 1.3% SOC (hereafter called the “reference”) was provided
to the model. The weather data was retrieved from the weather
database, a common database created by the SMARTSOIL project
(see footnote 1) to share and store information on long-term
trial sites in SMARTSOIL consortium. Where the weather data
was missing, the missing data was generated by the LARS-WG
5 weather generator (Semenov and Barrow, 2002; Semenov and
Stratonovitch, 2010) based on statistical characteristics of actual
sample of available measured weather data from LTE-Askov.
The winter wheat management data included land preparation,
sowing, fertilization and harvesting dates and application timing
of 0, 50, 100, 150, and 200 kg N ha−1. Every year, the winter wheat
was sown on 20th September and harvested on 20th August
in Askov_0N and Askov_1.5NPK plots. The same planting and
harvesting schedule was followed during the simulation period
to reduce the yield variability due to these two factors. The
N rates of 0, 50, and 100 kg N ha−1 was applied on 15th
March and the N rates of 150 and 200 kg N ha−1 was split
into two equal doses. The two equal dose consisted of basal
dose on 15th March (50% of application rate) and second dose
on 25th April (50% of application rate) to coincide with the
critical growth stages of winter wheat for maximum uptake of
N. In order to accommodate the residual nitrogen effect after
the preceding glass-clover in the 4-year crop rotation, the model
was provided with nitrogen dose of 40 kg N ha−1 (Høgh-
Jensen and Schjoerring, 1996) in Askov_0N and Askov_1.5NPK
plots.

In order to assess SOC effects on winter wheat productivity,
the validated DAISY model was run with 0.7% SOC (low)
and 2% SOC (high) in addition to model run with 1.3% SOC
during the calibration and validation steps. The low, reference,
and high SOC levels reflected the spectrum of SOC levels in
Danish soils from sandy to loamy soils and the N rate reflected
the standard N application rate in winter wheat production
in Denmark. Each SOC level (low, reference, and high) was
simulated under five different N rates. Each simulation run
sequence consisted of an initial 10 years of the pre-experimental
period followed by simulation of low, reference, and high
SOC content under five N rates (0–200 kg N ha−1) for the
period 1929–2008. The initial 10-year run was included in
every simulation run to stabilize the treatment effect to a
steady state. Each simulation was carried out with low, medium,
and high SOC and the same SOC was used for the entire
simulation period (1970–2008), which provided the SOC trends
over the years during the simulation period. However, after each
year of simulation, the same management practice was reset
into the model with same dates for land preparation, sowing,
fertilization, and harvest dates in each year, during the entire
simulation period. Each cycle of wheat production starts with
land preparation on 01 September, consisting of plowing the field,

followed by seedbed preparation, sowing, fertilizer application,
and harvesting.

Pedotransfer Functions (PTF) for
Determination of Plant Available
Water (PAW)
To assess the SOC effects on PAW (m3 m−3), the correlation
between the PAW and SOC was derived by regressing PAW
contents at the low, reference, and high SOC contents. LTE-
Askov soil data on clay%, silt%, OM%, and bulk density were
used in PTF functions to derive saturated moisture content
(θs), residual moisture content (θr), van Genuchten curve-
fitting parameter α (1/cm = α) and van Genuchten curve-
fitting parameter n and m = 1 – 1/n (Wösten et al., 2001).
Four different PTF functions calculated the PAW to compare
the differences and improve the reliability in estimation of
hydraulic properties. The PTF functions were (a) HYPRES
(Wösten et al., 1999), (b) hydraulic properties calculator (HPC)
(Saxton and Rawls, 2006), (c) Rosetta model (Schaap et al.,
1998), and (d) Danish PTF (Borgesen and Schaap, 2005).
HYPRES PTF functions were developed based on 5,521 soil
horizon profiles from different countries in Europe (Wösten
et al., 1998) whereas HPC was developed with data from
1,722 United States soil samples (Saxton et al., 1986). The
Rosetta model was built on the United States soil database
whereas the Danish PTF is based on 3,226 soil samples from
Denmark (Borgesen and Schaap, 2005). Subsequently, soil
water content was calculated at different soil water potentials
(kPa) by van Genuchten–Mualem model (VGM) (Vereecken
et al., 2010), and PAW was considered as the difference in
soil water content between the wilting point and the field
capacity. We defined field capacity at 10 kPa and wilting
point at 1,500 kPa and the difference of soil water content
between the field capacity and the wilting point was taken
as PAW.

Model Calibration, Validation, and
Statistics
The model validation was carried out with MODEVAL 2.0
(Smith et al., 1997) by comparative plotting of measured and
simulated SOC content in 0–0.20 m soil profile over 1970–2008
in winter wheat plots in Askov_0N (Figure 1A, RMSE = 4.05%)
and Askov_1.5NPK treatments (Figure 1C, RMSE = 7.9%)
and grain yields in Askov_0N (Figure 1B, RMSE = 5.83%).
Measured SOC and grain yields were available every 4 years
(4-year crop rotation) and so, 10 measured values were available
for 1970–2008 period and the corresponding simulated values
from the same 1970–2008 period were used for validation
(Figures 1A–C). ANOVA tests were run on to assess effect of
SOC, N and SOC × N on winter wheat grain and aboveground
biomass yields at low, reference, and high SOC under 0–200 kg
N ha−1. The standard error and LSD0.05 of the simulated values
were calculated in MS excel using the data analysis tool pack
and significant effects are denoted as ∗∗∗P < 0.001, ∗∗P < 0.01,
∗P < 0.05, ns, non-significant.
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FIGURE 1 | Validation of (A) SOC in Askov_0N, (B) winter wheat grain yield in Askov_0N, and (C) SOC in Askov_1.5NPK plots.

RESULTS

Validation of SOC Dynamics, Winter
Wheat Productivity, and PAW
The modeled and the measured values of SOC in 0–0.20 m soil
profile in Askov_0N (Figure 1A, R2 = 0.82∗ and Askov_1.5NPK
treatments (Figure 1C, R2 = 0.77∗), had significant positive
correlation coefficient. Similarly, significant positive correlation
coefficient was obtained for winter wheat grain yields in
Askov_0N (Figure 1B, R2 = 0.76∗). The validation on SOC
dynamics to 0.20 m soil depth under fertilized (Askov_1.5NPK,
RMSE = 7.9%) and non-fertilized treatments (Askov_0N,
RMSE = 4.05%) demonstrated that DAISY was robust in

simulation of winter wheat productivity at the tested SOC
range under 0–200 kg N ha−1 treatments. DAISY model has
been used in Denmark to quantify soil water balance (Salazar
et al., 2013) and SOC (Bruun et al., 2003). This provided the
scientific rationale for using DAISY for simulation of grain
yields and aboveground biomass (grain + straw) accumulation
at low, reference, and high SOC content under 0–200 kg N ha−1

treatments in this study.
The long-term change dynamics of SOC, presents challenges

to simulate the SOC dynamics over time due to unavailability of
data for calibration and validation of models. In this regard, we
had unique access to LTE-Askov data and simulation window of
80 years (1929–2008) to assess the long-term change dynamics
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of SOC and triangulate the field data with simulated data and
its effects on agronomic productivity. We chose DAISY, due
to its robustness to keep track of the SOC flows and stocks
in the soil, taking account of the plant and the management
factors. We validated the DAISY model SOC and grain yield
outputs with measured data from Askov_0N and Askov_1.5NPK.
The model considers only N as the limiting factor and the
grain yields and aboveground biomass are not affected by P
and K inputs. In similarity to our study, DAISY model had
been used for simulation of crop grain yield and aboveground
biomass accumulation in several model comparison exercises
(Dewilligen, 1991; Vereecken et al., 1991; Diekkrüger et al., 1995)
and validation of crop yield in winter wheat in three sites in the
Netherlands (Hansen et al., 1991). In a comparison of nine SOM
models to assess management effects (land use, fertilizer, manure,
and rotation treatments) on SOC dynamics in seven LTEs in
diverse climatic gradients, DAISY outputs were comparable, with
a similar margin of error among other models (DNDC, RothC,
CENTURY, CANDY, NCSOIL) and even better than the SOMM,
ITE, and Verberne models (Smith et al., 1997). This provides
a scientific rationale for use of DAISY model to assess SOC
dynamics.

Trend Comparisons of Measured and
Modeled SOC Data
The measurement of the SOC at the experimental site started
in 1923 in Askov_0N and in 1929 in Askov_NPK plot. In 1923,
Askov_0N plot had 1.6% SOC content, which decreased to 1.4%
by 1969 and to 1.1% by 2008. Similarly, the Askov_1.5NPK had
1.8% SOC in 1929 and it reduced to 1.5% by 1969 and to 1.2% by
2008. Bulk density measurements remained the same throughout
the measurement period and so the changes in SOC was due to
continuous removal of the crop residues and decomposition of
the available SOC in the soil. The measured and the modeled
SOC values during the calibration period (1969–2008) showed a
similar trend for Askov_0N and Askov_1.5NPK (Figure 2) and
the correlation between the measured and modeled SOC and
grain yield values are provided in Figure 1A (SOC), Figure 1B
(grain yield), and Figure 1C (SOC). The measured SOC value
provided from the experimental site showed that the SOC
range used for simulation is achievable in the soil and climate
conditions at the experimental site.

SOC and N Effects on Winter Wheat
Grain Yield and Aboveground Biomass
(Grain + Straw) Accumulation
Soil organic carbon levels and N rates had significant effects
(P < 0.001) on winter wheat grain yields and aboveground
biomass accumulation. In similarity, SOC × N effects were
significant (P < 0.01) for grain yields and aboveground biomass
accumulation. The SOC × N interactions implied that the SOC
level effects differed at varying N application rates from 0 to
200 kg N ha−1.

With 0 kg N ha−1, the winter wheat grain yield increased
significantly by 0.28 Mg ha−1 from low to reference SOC content
and by 0.30 Mg ha−1 from reference to high SOC content

(Table 1). Hence, the increase in grain yields from low to high
SOC content was 0.58 Mg ha−1, 31% increase in grain yield,
which was a significant improvement in grain yields over the
low SOC content. Similarly, at 0 kg N ha−1, the aboveground
biomass (straw + grain) increased significantly by 0.59 and 0.63
Mg ha−1 from low to reference and reference to high SOC levels,
respectively.

At 50 kg N ha−1, the winter wheat grain yield increase was
significant, with increase of 0.86 and 0.85 Mg ha−1 from low
to reference and reference to high SOC, respectively (Table 1),
whereas aboveground biomass increase was significant only
from low to reference SOC. Similarly, at 100 kg N ha−1, the
grain yield and aboveground biomass increase was significant
by 1.17 Mg ha−1 and 1.32 Mg ha−1, respectively, from low to
reference SOC. At 150 kg N ha−1 and 200 kg N ha−1, there was
no significant increase in grain yield and aboveground biomass
between low, reference, and high SOC contents.

In summary, there was relatively higher SOC effects on both
grain yields and aboveground biomass at 0–100 kg N ha−1 and
the effects decreased with increasing N rates until there was no
SOC effects at 150–200 kg N ha−1. With higher SOC content,
lower N rate is required to attain a locally relevant yield ‘plateau’
compared to the soils with lower SOC content and in contrast,
higher N rate will be required to attain the same yield ‘plateau’
with lower SOC content.

SOC Effects on Plant Available
Water (PAW)
A highly significant positive correlation between PAW and SOC
was obtained with Danish PTF, given by Y = 1.3094x + 21.319
(R2 = 0.99∗∗∗) (Y = PAW andX = SOC) (Figure 3). The measured
PAW at LTE-Askov was 21%, in close proximity to calculated
value of 23%, demonstrating the robustness and reliability of
the Danish PTF to predict PAW, validating the highly positive
correlation between SOC and PAW.

Soil organic carbon and calculated PAW content had
significant positive correlation (R2 = 0.99–1∗∗∗), and higher
SOC content retained correspondingly higher PAW in LTE-
Askov soils (Figure 3). The PAW calculated by VGM, based on
generated hydraulic parameters by the four PTFs, demonstrated
a similar trend of significant positive correlation between SOC
and PAW. PAW based on Danish PTF (Borgesen and Schaap,
2005) resulted in highest calculated PAW content compared to
the three other PTFs (HPC, Rosetta, and HYPRES). HYPRES
PTF calculated the second highest PAW content followed by
HPC and Rosetta PTFs. When the mean of PAW was averaged
across the four PTFs at different SOC contents, there was
positive correlation between PAW and SOC given by the linear
relationship PAW (%) = 1.007× SOC (%)+ 15.641.

The regression relationship showed that the increase in PAW
within the tested SOC range (0.7–2% SOC) was only 1.4%, which
is not large enough change to affect yields. The effect of such
a small change in PAW is difficult to verify in the field and is
unlikely to have any significant change in yields and biomass
accumulation. Hence, PAW did not have any significant role in
yield and aboveground biomass accumulation.
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FIGURE 2 | Comparison of modeled and measured SOC values in Askov_0N and Askov_1.5NPK plots. Sampling frequency is 4 years and the timeline of sampling
period is 40 years.

DISCUSSION

SOC and Provision of Ecosystem
Services
Soil organic carbon affects multiple ecosystem services, and
SOC build-up and management can pose different challenges
depending on the environmental zones and the context-specific
production systems (Palm et al., 2014). SOC maintenance is a
challenge, as the mineralization processes continuously degrade
SOC over time. Where the arable farming systems are integrated
with livestock, the manure from livestock are good sources of
OM to build up SOC whereas it can be a challenge in other
arable production systems unless dedicated practices like cover
crops, no-till or mulch farming are practiced to replenish the
SOC (Lehtinen et al., 2014). SOC can have both positive and
negative effects, and the management have huge influences on
the benefits from SOC. Under N non-limiting wheat production
systems, nutrients released through the decomposition of the
SOC especially mobile N can leach beyond the root zone
and pollute the groundwater, contaminating the water supply
for human consumption (Palmer et al., 2017). The losses of
N downstream can induce algal bloom and eutrophication,
which can have devastating impacts on the aquatic and other
fish species. In addition, some of the nitrogen forms can be
lost as nitrous oxides, which have global warming potential
of 300 times more than the carbon dioxide (Burgin et al.,
2013). In contrast, under N deficient wheat production systems,
building and maintaining SOC can provide wider benefits with
provision of multiple ecosystem services like supply of macro
and micronutrients, carbon sequestration, food and fodder
production, mitigation of soil erosion and support habitat for

biodiversity (Ghaley et al., 2014). Hence, the benefits accrued
from SOC increase is evident only in N deficient wheat
production system, an important management decision for the
wheat producing farmers.

SOC Effects on Grain Yield and
Aboveground Biomass
The range of SOC values used for the simulation at the LTE-
Askov is within the ranges reported for the trial site, as evident
from the measured SOC values in Askov_0N and Askov_1.5NPK
plots (LTE-Askov, Figure 2). Similar SOC range of 1.2–1.7% was
reported from another study at the same trial site (Thomsen and
Christensen, 2004). The reduction of SOC content during the
experimental period was attributed to decomposition of the SOC
releasing N and other macro and micronutrients, and the SOC
effects are only transient if efforts are not put into replenishment
of OM to maintain the SOC stock.

Our study demonstrated that, at N application rates of
0–100 kg N ha−1, SOC had benefits in terms of enhancing winter
wheat productivity (Table 1). Similar positive correlations in
grain yield-SOC relationships were reported in several field
studies (Thomsen and Christensen, 2004; Persson et al., 2008;
Seremesic et al., 2011; Yang et al., 2011; Mikanova et al., 2012)
and one simulation study across seven sites and pedo-climatic
zones (Palmer et al., 2017). In our simulations, winter wheat
grain and straw yields increased with increases in SOC (low,
reference, and high), which is supported by findings from another
field experiment at LTE-Askov, where increased SOC increased
spring barley yields (Christensen et al., 2009). Spring barley
grain and straw yields increased with increase in SOC indicating
a positive relationship between SOC and yield (Christensen
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FIGURE 3 | Relationship between plant available water content and SOC at
0.7%, 1.3%, and 2% SOC at LTE-Askov in Denmark. All four PTF functions
exhibited linear relationship given by Y = 0.945x + 14.52, R2 = 0.99∗∗∗

(Hypres), Y = 1.309x + 21.319, R2 = 0.99∗∗∗ (Danish), Y = 0.991x + 13.109,
R2 = 1∗∗∗ (HPC), and Y = 0.783x + 13.617, R2 = 0.99∗∗∗ (Rosetta).

et al., 2009) in conformity to our study. However, application
of more than 90 kg N ha−1 nullified the SOC effects on grain
and straw yield (Christensen et al., 2009) which conforms to
our decreasing SOC effects on winter wheat with increasing
N fertilizer with significant effect only up to 100 kg N ha−1

(Table 1). The benefits of SOC on spring wheat grain yields
was reported from a 24 years trial at Jyndevad in Denmark,
where an N substitution rate of 15–27 kg N ha−1 was attained
with long term catch crops building up higher SOC in the soil
(Hansen et al., 2000). This increase in yield is similar to the
winter wheat yields in our study, where significant increase in
grain and biomass yields were obtained with increasing SOC
content at 0–100 kg N ha−1 (Table 1), providing evidence
of SOC × N effects on winter wheat productivity. Higher
SOC content had a significant influence on grain yield and
aboveground biomass increase only at 0–100 kg N ha−1, which
demonstrated the benefits of building up SOC to compensate
for the fertilizer N inputs. This indicated that the maximum
SOC benefits can be realized only at 0–100 kg N ha−1 input
under the Danish wheat production agro-ecosystems and the
benefits were non-existent as the N rates are increased to
more than 100 kg N ha−1 due to N losses into groundwater,
eutrophication and algal blooms downstream and nitrous oxide
losses as greenhouse gas. Hence, SOC benefits are contextual
and multiple benefits are only realized in N deficient wheat
production systems.

SOC Effects on PAW (m3 m−3)
Our study demonstrated that the four PTFs are robust enough to
predict PAW based on the minimum soil parameters collected in
the field trials, which can provide insights into water availability
(m3 m−3) in the soil. In line with our study, significant positive
correlations (Figure 3) between SOC and PAW, have been
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reported in other studies in volumetric (Rawls et al., 2003) and
gravimetric basis (Emerson, 1995) under diverse environments
(Bationo et al., 2013) including a study (gravimetric) on 41
Danish soils (Resurreccion et al., 2011). A study in North Dakota
in sandy, medium and fine textured soils demonstrated that
soils with higher SOC retained more soil water (gravimetric)
irrespective of the soil types (Bauer and Black, 1992) supporting
the outcome of this study that SOC has positive effects on
soil water retention. An exhaustive investigation of soil type-
PAW correlation, based on the soil samples collected from
across United States (Hudson, 1994), demonstrated a significant
positive SOM-PAW correlation (volumetric) across three soil
types (sandy, silty clay, and silty loamy clay), in line with our
findings. Some recent studies (Palmer et al., 2017; Minasny and
McBratney, 2018) also reported SOC positive effects on PAW
in line with our study. Hence, our study supports the positive
relationship between SOC and PAW. However, the PAW increase
was too small to affect the crop yields and aboveground biomass
accumulation. Moreover, the underlying mechanisms of SOC-
PAW relationship need to be further explored.

CONCLUSION

The benefits of SOC can be positive and negative and
maintenance of SOC will require regular inputs of OM into
the soil. The efforts to maintain the SOC and reap the benefits,
are contextual depending on the land use, environmental
zones, and management practices. In our study, increasing SOC
content had significant positive effects on winter wheat grain
yield and aboveground biomass at only 0–100 kg N ha−1

and the SOC effects were non-significant with increasing
N inputs at 150–200 kg N ha−1. SOC and PAW were
positively correlated but the increase in PAW was minimal
with no significant effects on grain yields and aboveground
biomass accumulation. Our study findings were similar to other

studies (Minasny and McBratney, 2018) carried out in diverse
environments (Palmer et al., 2017), which lends credence to this
study in confirming that the earlier results from Netherlands and
other six sites were equally applicable in Denmark and other
relevant environments. In order to improve our analysis, future
investigations should include quantification of dis-benefits viz. N
leaching, N loss downstream and nitrous oxide loss, to provide
additional insights into the extent of dis-benefits with increasing
N input. Hence, benefits and dis-benefits parameters need to
be measured in future studies in order to generate a complete
analysis of SOC effects for improved management decision by
farmers, agricultural advisors and policy makers.
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