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Perennial ryegrass is an outbreeding forage species and is one of the most widely

used forage grasses in temperate regions. The aim of this study was to investigate the

possibility of implementing genomic prediction in tetraploid perennial ryegrass, to study

the effects of different sequencing depth when using genotyping-by-sequencing (GBS),

and to determine optimal number of single-nucleotide polymorphism (SNP) markers

and sequencing depth for GBS data when applied in tetraploids. A total of 1,515 F2
tetraploid ryegrass families were included in the study and phenotypes and genotypes

were scored on family-pools. The traits considered were dry matter yield (DM), rust

resistance (RUST), and heading date (HD). The genomic information was obtained in

the form of allele frequencies of pooled family samples using GBS. Different SNP filtering

strategies were designed. The strategies included filtering out SNPs having low average

depth (FILTLOW), having high average depth (FILTHIGH), and having both low average

and high average depth (FILTBOTH). In addition, SNPs were kept randomly with different

data sizes (RAN). The accuracy of genomic prediction was evaluated by using a “leave

single F2 family out” cross validation scheme, and the predictive ability and bias were

assessed by correlating phenotypes corrected for fixed effects with predicted additive

breeding values. Among all the filtering scenarios, the highest estimates for genomic

heritability of family means were 0.45, 0.74, and 0.73 for DM, HD and RUST, respectively.

The predictive ability generally increased as the number of SNPs included in the analysis

increased. The highest predictive ability for DM was 0.34 (137,191 SNPs having average

depth higher than 10), for HD was 0.77 (185,297 SNPs having average depth lower

than 60), and for RUST was 0.55 (188,832 SNPs having average depth higher than 1).

Genomic prediction can help to optimize the breeding of tetraploid ryegrass. GBS data

including about 80–100K SNPs are needed for accurate prediction of additive breeding

values in tetraploid ryegrass. Using only SNPs with sequencing depth between 10 and

20 gave highest predictive ability, and showed the potential to obtain accurate prediction

from medium-low coverage GBS in tetraploids.
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INTRODUCTION

Perennial ryegrass (Lolium perenne L.) is one of the most widely
sown forage grasses in temperate regions (Humphreys, 2005).
Low production costs and the perennial character provide high
agronomic value, and it is widely used for feeding ruminants
(Jensen et al., 2001). The popularity of cultivating perennial
ryegrass is mainly due to its re-growth capacity after defoliation
and its palatability, digestibility, and nutrient content as feed for
ruminants compared with other forage species (Wilkins, 1991).

Compared to diploid ryegrass, the tillers and seed heads of
tetraploid ryegrass are longer and the leaves are wider. Tetraploid
ryegrass is more open and more prone to wear, but is less
susceptible to snow mold and has a better drought tolerance,
leading to better performance under continental conditions with
frequent dry periods. Palatability and digestibility are better
in tetraploid varieties than in diploid varieties, and tetraploids
perform better than diploids during grazing (Wilkins, 1991) and
lead to a higher animal production (Lantinga and Groot, 1996;
O’Donovan and Delaby, 2005).

Perennial ryegrass is an allogamous species (Cornish et al.,
1979) due to a gametophytic self-incompatibility system (Cornish
et al., 1979). For this reason, it is generally bred, maintained
and commercialized as heterogeneous families. Evaluation of F2
families is frequently used in breeding programs for outcrossing
species such as perennial ryegrass. An F2 family consists of the
offspring from random interbreeding a full-sib F1 family, which
are the offspring from an initial bi-parental cross. F2 families are
evaluated in plot experiments over several locations and years
to obtain measurements on yield, agronomic traits, and disease
resistance.

Perennial ryegrass breeding has mainly relied on prediction
of genetic merit using phenotypic information only (Conaghan
and Casler, 2011; Hayes et al., 2013). Using this system, relevant
improvements for yield and quality-related traits have been
achieved (Wilkins and Humphreys, 2003; McDonagh et al.,
2016). However, compared with traits such as rust resistance
and spring growth, gains for yield traits like dry matter and
seed yield were not as high as expected (Sampoux et al., 2011).
In addition, phenotypic selection is costly and time consuming,
needing up to 10 years to complete a selection cycle (Wilkins
and Humphreys, 2003; Lin et al., 2016). In recent decades, the
development of marker technology allowed adoption of genomic
prediction (GP) strategies, which have been highly beneficial and
led to a reduction of cost in practical animal and plant breeding
programs (Hickey et al., 2017). In GP, dense markers distributed
across the whole genome can be used simultaneously to predict

Abbreviations: CV, cross-validation; DM, dry matter yield; FILTBOTH, the

strategy filtering out SNPs having both low average and high average depth;

FILTHIGH, the strategy filtering out SNPs having high average depth; FILTLOW,

the strategy filtering out SNPs having low average depth; GBS, genotyping-by-

sequencing; GEBVs, genomic breeding values; GP, genomic prediction; GSLM,

family × sowing year × location × management effects; GSLMF, family ×

sowing year × location ×management × farming year effects; G×E, genotype by

environment; HD, heading date; LD, linkage disequilibrium; QTLs, quantitative

trait loci; RAN, the strategy keeping SNPs randomly with different data sizes;

RUST, rust resistance; SNP, single-nucleotide polymorphism.

breeding values (Meuwissen et al., 2001). The quantitative trait
loci (QTLs) affecting the traits of interest are assumed in
linkage disequilibrium (LD) with one or more single-nucleotide
polymorphism (SNP) markers. Thus, a sufficiently dense and
well-distributed set of markers allows all QTLs to be in LD with
at least one marker, and this LD can be exploited in GP to ensure
accurate prediction of breeding values as a basis for selection
decisions.

The prospects for implementing GP in forage grass breeding
were recently reviewed by Hayes et al. (2013). Several GP studies
have been reported for crops such as maize and wheat (Crossa
et al., 2010, 2014), and the first investigations in diploid perennial
ryegrass also demonstrated great potential for using GP (Fè et al.,
2015a, 2016). However, GP studies for tetraploid ryegrass, to our
knowledge, have not yet been carried out. The implementation
of GP in tetraploid ryegrass may be more challenging than
in diploid ryegrass, because families of tetraploids will show a
higher heterozygosity than families of diploids. This may hamper
accurate estimation of genomic relationships and genomic
breeding values.

Genotyping-by-sequencing (GBS) was developed by Elshire
et al. (2011) as a robust genotyping approach. GBS uses
methylation sensitive restriction enzymes to reduce genome
complexity. GBS is a good approach to estimate genome-
wide allele frequency profiles in pooled samples for outbred
heterogeneous varieties (Byrne et al., 2013). Moreover, for
association studies and GP studies, calling of genotypes can be
avoided by directly using allele frequencies from GBS, which
facilitates measurements on family pools (Ashraf et al., 2014). Use
of GBS data also poses some challenges; in particular, sequencing
depth needs to be optimized carefully. At low depth, genotyping
errors and missing values are an issue (Poland and Rife, 2012),
and result in biased estimates of allele-effect and heritability
(Ashraf et al., 2014, 2016). At higher sequencing depth the
accuracy of genotype estimates is improved (Sims et al., 2014),
but under a fixed budget, the number of samples that can be
sequenced would be reduced, which reduces power of the entire
experiment (Ashraf et al., 2014). Several investigations on how
sequencing depth affects association studies and estimation of
genomic heritability have been conducted (Garner, 2011; Sims
et al., 2014; Ashraf et al., 2016). As reviewed by Poland and Rife
(2012), GBS has become a flexible and low cost tool for plant
genetics and breeding. It has been demonstrated that GBS can
effectively generate high-density genome wide markers in a range
of species (Elshire et al., 2011; Poland and Rife, 2012; Poland et al.,
2012; Beissinger et al., 2013; Crossa et al., 2013; Zhang et al., 2015;
Fè et al., 2016; Cericola et al., 2018). With GBS, an accurate GP
model was derived for the large, complex, and polyploid wheat
genome (Poland et al., 2012). In addition, GBS also has been
applied on diploid ryegrass for genomic prediction (Fè et al.,
2015a, 2016). However, to our knowledge the optimization of
sequencing depth for GP in tetraploid ryegrass has not been
reported yet.

The aims of this study were: (1) to investigate the possibility
of implementing genomic prediction in tetraploid perennial
ryegrass, (2) to study the effects of different sequencing depth
when using GBS, and (3) to determine the optimal number of
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SNPs to include in genomic prediction when GBS are applied in
tetraploid ryegrass.

MATERIALS AND METHODS

Plant Material
Both phenotype and genotype data were derived from 1,515 F2
families from a commercial breeding program from DLF A/S,
Denmark. F2 families originated from a pair-cross between two
parents; F1 seeds from both parent plants were pooled; F1 families
were sown in small protected plots to cross-fertilize; and finally
F2 seeds were harvested and used for field-testing of F2 families.
A detailed description of testing procedures was provided by Fè
et al. (2015b).

Phenotypic records, defined below, consisted of historical
data from F2 families, which were sown between 2004 and
2016 at 8 locations in Denmark, the Netherlands, France,
and United Kingdom, and cultivated according to the local
management schemes. In all locations, F2 families were tested
in trials including 12 families in a randomized experiment with
two replicates for each family. Details of testing and recording
procedures were the same as for diploid ryegrass as described
previously (Fè et al., 2015b). The dataset analyzed included
records of three traits:

(1) Dry matter yield (DM), expressed in kg/m2 and obtained
from multiple cuts over 2 years. For analyses, the total yield
during the first year and the total yield during the second
year were used so that each family had yield measurements
from two years; to validate genomic predictions, the average
yield of the two years was predicted.

(2) Heading date (HD), defined as the day on which spikes are
visible over the general plots, and expressed in days since
January 1st. HD was scored in plots for seed multiplication,
which were farmed for one cropping season only.

(3) Rust resistance (RUST), measured during the period of
maximum infection, both in regular yield plots, and in mini
plots, which were cultivated only for 1 year. The level of
infection was determined by visual scoring from 1 (plants
completely covered by rust) to 9 (no sign of rust infection).
Plots were cut between the different scoring time points to
make the scores independent.

Descriptive statistics including mean value, standard deviation,
minimum, maximum, number of families, number of records,
number of plots, and number of sowing year × location ×

management levels are listed in Table 1.

Filtering of GBS Data and Calculation of
Allele Frequencies for Each Family
Genotypic data was produced as described previously (Fè et al.,
2015a). In total, 1,515 F2 families were sequenced. A total of
51 libraries were prepared, with up to 96 families per library.
Each library was sequenced on multiple lanes of an Illumina
HiSeq2000 (single-end). On average, 12.9 million 100 bp single-
end reads were produced per sample. A draft sequence assembly
(Byrne et al., 2015) was used for the alignment of data for each
family, and initially 18.6 million SNPs were identified. A first,
quite liberal, filtering of the raw SNP data was performed by
removing: (1) SNPs with missing rate higher than 50%; (2) SNPs
with allele frequencies lower than 0.01 or higher than 0.99; (3)
SNPs with average read depth smaller than 1. This left 188,832
SNPs available for our analysis, which included further, more
stringent, filtering steps for the SNPs. The average read depth
for the 188,832 SNPs ranged from 1 to 278, with mean of 19.
The distribution of average read depth for each SNP is shown in
Figure 1.

Differently from SNP chip data, where genotypes are explicitly
called, the genotype of a SNP is obtained here in the form of
an allele frequency (ĝij), which is estimated as the ratio between

FIGURE 1 | Distribution of average read depth for each SNP before filtering by

different strategies.

TABLE 1 | Descriptive statisticsa for three traits.

Traitb No. Fam No. Rec No. Plot No. YLM Mean SD Min Max

DM 1,188 5,312 3,414 27 1.33 0.37 0.41 2.5

HD 979 1,810 1,810 7 155.64 7.51 136 178

RUST 1,506 13,545 5,368 22 5.64 1.99 1 9

aNo. Fam, number of families; No. Rec, number of records; No. Plot, number of plots; No. YLM, number of sowing year × location × management levels; Mean, mean value; SD,

standard deviation; Min, minimum value; Max, maximum value.
bDM, dry matter yield; HD, heading date; RUST, rust resistant.
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number of reads for alternative allele (S1ij ) and the total number
of reads (STij ), which is the sum of number of reads for the
reference allele (S2ij ) and S1ij , for each sample:

ĝij =
S1ij

STij
=

S1ij

S1ij +S2ij
.

SNP Filtering Strategies
In order to study the effect of sequencing depth of GBS data,
additional SNP filtering was performed. First, SNPs having
average depth lower than a certain value were filtered out in
11 levels, with minimum depth from 1 to 90 (FILTLOW1 to
FILTLOW11); second, SNPs having average depth higher than
a certain value were filtered out in 11 levels, with maximum
depth from 100 to 5 (FILTHIGH1 to FILTHIGH11); third, SNPs
having average depth outside a certain range were filtered out
(equivalent to keeping SNPs with average depth within that
range), using 12 different ranges (FILTBOTH1 to FILTBOTH12);
finally, SNPs were kept randomly with 11 different data sizes
from 5 to 180 k (RAN5 to RAN180), and repeated for 10 times.
In summary, there were four filtering strategies, FILTLOW,
FILTHIGH, FILTBOTH, and RAN, and the number of scenarios
was, respectively, 11, 11, 12, and 11, where the latter (RAN) was
repeated 10 times. A summary of SNPs used in each filtering
scenario is shown in Figure 2 and the details are shown in
Supplementary Table 1.

Statistical Model and Methods
A single trait model was used to estimate variance components
and fixed effects, and to predict breeding values as well as other

random effects in the model:

y = Xb+ Zgg+ Zaa+ Zpp+ Zi1 i1 + Zi2 i2 + e,

in which y was the vector of phenotypic values of the trait DM,
HD or RUST; b was the vector of fixed effects (sowing year
× location × management × trial × farming year); g was the
vector of additive genomic family effects; a was the vector of
residual genetic family effects which were not explained by the
genomic information; p was the vector of random plot effects; i1
and i2 were vectors of genotype by environment (G×E) effects
[i1: family × sowing year × location × management (GSLM),
i2: family × sowing year × location × management × farming
year (GSLMF)]; and e was the vector of random residual effects.
X, Zg, Za , Zp, Zi1 , and Zi2were incidence matrices associating
b, g, a, p, i1, and i2 with y. The random effects were assumed
to be independent of each other and normally distributed, that
is, g∼N(0,G∗σ 2

g ), a∼N(0, Iσ 2
a ), p∼N(0, Iσ 2

p ), i1∼N(0, Iσ 2
i1
),

i2 ∼ N(0, Iσ 2
i2
), e ∼ N(0, Iσ 2

e ), in which G∗ was the corrected
G matrix of additive genomic relationships constructed based
on the genomic information, I was the identity matrix, and σ 2

g ,

σ 2
a , σ 2

p , σ 2
i1
, σ 2

i2
, and σ 2

e were the variances of additive genomic
effects, residual genetic effects, random plot effects, first genetic
by environment effects, second genetic by environment effects,
and residuals, respectively. For DM and RUST, the general model
was applied in the analysis, while for HD, the effects of p and
i2 were excluded since there was only one score and only one
environment in each family for HD.

The method to compute the G matrix was based on a
modification of VanRaden (2008) to use allele frequencies

FIGURE 2 | Numbers of SNPs retained for four different filtering strategies. (A) Number of SNPs in each FILTLOW dataset with different lower threshold; (B) Number

of SNPs in each FILTHIGH dataset with different upper threshold; (C) Number of SNPs in each FILTBOTH dataset with different lower and upper thresholds;

(D) Number of SNPs in each RAN dataset with different size. The y-axis is the number of SNPs after filtering. In (A–C), the x-axis is different subsets of SNPs with

various sequencing depth, and the x-axis in (D) is randomly selected subset with different size.
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(ranging between 0 and 1) instead of SNP genotype calls. A
matrix (F) with allele frequencies for each sample was centered
by the mean SNP frequencies to create matrixM (Mj = Fj − Fj).
Then, the G matrix was obtained by computing M multiplied
by its own transpose and scaled by the sum of expected SNP

variances across genotypes (G = MM
′

/K). The scale parameter
used for tetraploid F2 families is half that used for diploid F2
families as computed by Ashraf et al. (2014) and as applied in
the study by Fè et al. (2015a), because the number of alleles in F2
family pools is eight for tetraploid families, which is double that
of diploid families:

K = 0.125
∑

Fj(1− Fj).

Finally, the G matrix was corrected for the extra binomial
variance due to limited sequencing depth. The correction was
derived by Cericola et al. (2018) and simply can be done
according to ploidy number and the average depth of the sample.
Corrected G matrix (G∗) was calculated by scaling down the
diagonal elements of each individual as follows:

Dci = Dbi (1−
n− 1

STi + n− 1
),

where Dbi is the ith element of the biased diagonal element in
G and Dci is the corrected diagonal element in G∗, STi is the
average STij for each individual across all SNPs, and n is the ploidy
number, which is eight as mentioned before.

For each of the four filtering scenarios, single trait analyses
were run on the subsets of SNPs, which were previously
created according to different filtering strategies (Figure 2
and Supplementary Table 1). Variance components and their
standard errors (SE) were estimated by restricted maximum
likelihood (REML) using the DMU software package (Madsen
and Jensen, 2013).

The phenotypic variance of family means was calculated as the
sum of weighted variance components:

σ 2
Pf

= G∗σ 2
g + σ 2

a + σ 2
p /np + σ 2

i1
/ni1 + σ 2

i2
/ni2 + σ 2

e /ne,

where G∗ is the average diagonal of the corrected genomic
relationship matrix (G∗ matrix), np is the average number of
plots for each family, ni1 and ni2 are the average numbers of
environments for each family, and ne is average number of
replicates across all fields for each family. Accordingly, genomic
family heritability based on multiple plots was calculated as h2

f
=

G∗σ 2
g

σ 2
Pf

. To evaluate importance of each random effect in themodel,

phenotypic variance of a single plot was also calculated:

σ 2
Pp

= G∗σ 2
g + σ 2

a + σ 2
p + σ 2

i1
+ σ 2

i2
+ σ 2

e .

In the calculation of σ 2
Pf
, σ 2

Pp
and h2

f
, σ 2

p , and σ 2
i2

were not

considered for HD due to the reduced recording strategy for this
trait. This was used to compute the relative contribution of each
random effect to the total phenotypic plot variance.

Cross-Validation
To estimate the accuracy of genomic breeding values (GEBVs), a
leave-one-family-out cross-validation (CV) strategy was applied.
In each CV round, the phenotypes of one family weremasked and
then all other families were used to train the prediction model
and to predict the family with phenotypes masked.

Before CV, the whole dataset was used to estimate variance
components and fixed effects. Corrected phenotypes (yc)
were computed by subtracting the estimates of the fixed
effects. Predictive ability was measured as cor(yc, ĝ), which is
theoretically not larger than the square root of h2

f
(Legarra et al.,

2008) because breeding values predict genetic effects and not
environment. yc is the average yc for each family. Furthermore,
to assess bias of predictions, regression coefficient of yc on ĝ was
calculated. The deviation of this regression coefficient from 1
represents the level of bias.

RESULTS

In order to interpret the results from each scenario, Figures 2–8
were created. Figure 2 and Supplementary Table 1 show the
numbers of SNPs retained for four different filtering strategies.
Figure 2 shows four bar charts according to the data filtering
levels. Figures 3–5 show the estimated heritability, predictive
ability and bias in different SNP filtering scenarios for three traits,
DM, HD and RUST, respectively. In these figures, line charts
were plotted as a function of number of SNPs included in each
model. Figures 6–8 show the percentages of explained variance,
i.e., each variance components over the total phenotypic variance,
for three traits. In these three figures, bar charts were plotted for
all scenarios.

SNP Filtering Strategies
The first filtering strategy FILTLOW used an increasing lower
threshold for average SNP read depth, and the number of SNPs
included decreased from 188,832 for FILTLOW1 to 1,587 for
FILTLOW11. The second filtering strategy FILTHIGH used a
decreasing upper threshold for average SNP read depth, and
the number of SNPs included decreased from 187,516 for
FILTHIGH1 to 6,389 for FILTHIGH11. In this data, a large
proportion of SNPs had read depth between 10 and 20, which
caused large reductions in the numbers of SNP when either the
lower threshold for read depth increased to 20, or when the
upper threshold for read depth decreased to 10. For instance,
between FILTLOW >10 and FILTLOW >20, the number of
SNPs kept dropped from 73 to 30%, and between FILTHIGH
<20 and FILTHIGH <10, the number of SNPs kept dropped
from 70 to 27%. The SNPs with depth lower than 10 and 5
accounted for 27 and 3% of the full data, respectively. In the
third filtering strategy, SNPs were kept in a certain interval of
average read depth. The percentage of SNPs kept varied from
43% for FILTBOTH3 having average read depth from 10 to 20,
to 0.1% for FILTBOTH11 having average read depth from 90
to 100. In addition to three filtering strategies for average read
depth, the RAN filtering strategy kept random subsets from the
full dataset, ranging from 5K (RAN5) to 180K (RAN180) SNPs;
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FIGURE 3 | Estimated heritability, predictive ability and bias in different SNP filtering scenarios1 for dry matter yield. 1 FILTLOW, strategy filtering out SNPs having

low average depth; FILTHIGH, strategy filtering out SNPs having high average depth; FILTBOTH, strategy filtering out SNPs having both low average and high

average depth; RAN, strategy keeping SNPs randomly with different data size.

in percentages this corresponds to 3% of SNPs in RAN5 to 95%
of SNPs in RAN180.

Variance Components and Heritabilities
Figures 3–5 show the effects of different filtering strategies on
estimates of h2

f
for the traits DM, DH, and RUST, respectively.

For DM, the highest estimate of h2
f
was 0.45 (FILTLOW3). In

the FILTLOW scenarios, the estimated h2
f
increased slightly from

FILTLOW1 to FILTLOW3, and decreased fast afterwards. In the
FILTHIGH scenarios, the estimated h2

f
generally decreased from

FILTHIGH1 to FILTHIGH11, and the decrease wasmore obvious
from FILTHIGH8. In the FILTBOTH scenarios, the estimated
h2
f

was highest in FILTBOTH3, showed a small decrease

in FILTBOTH4, and larger reductions in other FILTBOTH
scenarios. In the RAN scenarios, the estimated h2

f
increased

along with the number of SNPs included in the model, i.e.,
increased from RAN5 to RAN180, with rate of increase gradually

reducing. For HD, the trends of heritability estimates within
the four filtering strategies were the same as for DM, and the
highest estimate of h2

f
was also for FILTLOW3 at 0.74. For

RUST, the highest estimate of h2
f
was 0.73 for FILTHIGH1.

In the FILTLOW scenarios, the estimated h2
f
were similar for

FILTLOW1 to FILTLOW3, and also decreased fast afterwards.
The trends for the other three filtering strategies (FILTHIGH,
FILTBOTH and RAN) were the same as for DM and HD.

In our analysis model, we also include a variance component
for residual genetic effects (σ 2

a ), i.e., the part of genetic effects that
cannot be explained by genomic markers. Figures 6–8 show that
the percentage of σ 2

a over σ 2
Pp

changed in the different scenarios.

When the number of SNPs increased, the percentage of additive
genetic variance explained by markers generally increased while
the percentage of residual genetic variance decreased, and the
percentage of total genetic variance (sum of G∗σ 2

g and σ 2
a ) over

σ 2
Pp

remained relatively similar for all scenarios.
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FIGURE 4 | Estimated heritability, predictive ability and bias in different SNP filtering scenarios1 for heading date. 1 FILTLOW, strategy filtering out SNPs having low

average depth; FILTHIGH, strategy filtering out SNPs having high average depth; FILTBOTH, strategy filtering out SNPs having both low average and high average

depth; RAN, strategy keeping SNPs randomly with different data size.

For the variance of plot effects estimated for DM and RUST,

the percentages of σ 2
p over σ 2

Pp
were consistent across all the

scenarios but different betweenDM and RUST. The percentage of

variance due to plot effects in DM was about twice as large as the

plot variance in RUST (Figure 6, 8). For DM, σ 2
p and total genetic

variance had similar magnitude, but for RUST, σ 2
p only accounted

for 29% of total genetic variance.

As shown in Figures 6, 8, the estimates of variance for G×E

interactions GSLM (σ 2
i1
) and GSLMF (σ 2

i2
) were similar among all

the scenarios, but different in DM and RUST. For DM, estimates
of σ 2

i1
were not significantly different from 0. However, for RUST,

estimates for both σ 2
i1
and σ 2

i2
were significantly different from 0,

with the average percentages of σ 2
i2
being slightly larger thanσ 2

i1
.

For HD, the estimates of σ 2
i1
varied more between scenarios than

for DM and RUST, and the percentage of σ 2
i1
over σ 2

Pp
ranged

from 11 to 28%. When the number of SNPs increased, this
percentage generally decreased. For HD, less phenotypic records

were available and therefore variance components were estimated
with lower accuracy.

The estimation of residual variance (σ 2
e ) was generally

consistent among all scenarios. The average percentage of σ 2
e

was 59, 22, and 25%, for DM, HD and RUST, respectively. The
largest difference between residual variance estimates for the
different scenarios was 5% for HD (24% in FILTHIGH5 vs. 19%
in FILTLOW11), 2% for DM (60% in FILTHIGH11 vs. 58% in
FILTLOW3), and 1% in RUST (26% in FILTHIGH11 vs. 25% in
FILTLOW11).

Details on estimated variance components and heritabilities,
together with their standard errors (SE), for three traits in
all F2 families are available in Supplementary Table 2 (DM),
Supplementary Table 3 (HD) and Supplementary Table 4
(RUST).

Cross-Validation
Detailed results from CV for three traits are available in
Supplementary Table 5 (HD).
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FIGURE 5 | Estimated heritability, predictive ability and bias in different SNP filtering scenarios1 for rust resistance. 1 FILTLOW, strategy filtering out SNPs having low

average depth; FILTHIGH, strategy filtering out SNPs having high average depth; FILTBOTH, strategy filtering out SNPs having both low average and high average

depth; RAN, strategy keeping SNPs randomly with different data size.

Figure 3 (DM), Figure 4 (HD), and Figure 5 (RUST), show
that the predictive ability generally increased when the number
of SNPs included in the analysis increased. The highest predictive
ability for DM was provided by dataset FILTLOW3 (0.34) with
137,191 SNPs having average depth higher than 10, the highest
predictive ability for HD was provided by dataset FILTHIGH5
(0.77) with 185,297 SNPs having average depth lower than 60, and
the highest predictive ability for RUST was provided by dataset
FILTLOW1 (0.55) with 188,832 SNPs having average depth
higher than 1, which was equivalent to including all markers.

Randomly filtering out SNPs and varying the number of SNPs
showed that predictive ability generally increased with increasing
number of SNPs included in the analysis. Above 80–100K SNPs,
effects of further increases were limited.

Overall, with an increase in the number of SNPs included
in the analysis, the bias, which is the deviation from 1 for the
regression of predictions on observed phenotypes, also increased.
For all three traits, the FILTLOW strategy showed more biased
predictions than RAN, whereas the FILTHIGH strategy showed

less biased prediction than RAN. In addition, larger bias was
always observed together with better predictive ability. For DM,
strategy FILTLOW3 provided best predictive ability, but the
bias when using this subset of SNPs was also high (regression
coefficient was 1.32). For HD, the most biased prediction was
also provided by dataset FILTLOW3 (regression coefficient was
1.26), though the best predictive ability was provided by the
dataset FILTHIGH5, the predictive ability when using dataset
FILTLOW3 was only 0.01 lower than FILTHIGH5. For RUST,
FILTLOW1 provided highest predictive ability, and the bias
provided by this dataset was slightly larger (regression coefficient
was 1.27) than other scenarios, except for models with few SNPs
included.

DISCUSSION

To investigate the potential for genomic prediction in tetraploid
ryegrass we analyzed data from 1,515 F2 families. All families
were genotyped using GBS with an average sequencing depth
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FIGURE 6 | Percentage of variance components1, 2 over the total phenotypic variance for dry matter yield. 1 Genom, Additive genomic variance; Gene, Residual

genetic variance; PLOT, random plot variance; GE1, family × sowing year × location × management variance; GE2, family × sowing year × location ×

management × farming year variance; E, residual environment variance. 2 GE1 is too small to be visible, so that there are only five variances can be observed in this

figure.

of 19. GBS data, with various strategies for filtering SNPs, were
used in GPmodels, and we compared heritabilities and predictive
abilities to determine optimal SNP numbers and sequencing
depth for genomic prediction in tetraploid ryegrass. Among
all the filtering scenarios, the highest estimates for genomic
heritability of family means were 0.45, 0.74 and 0.73 for DM, HD
and RUST, respectively. The predictive ability generally increased
as the number of SNPs included in the analysis increased. The
highest predictive ability for DM was 0.34 (137,191 SNPs having
average depth higher than 10), for HD was 0.77 (185,297 SNPs
having average depth lower than 60), and for RUST was 0.55
(188,832 SNPs having average depth higher than 1).

Heritabilities and Variance Components
Several studies have reported heritabilities in diploid ryegrass for
the same traits studied here. Fè et al. (2015b) reported analysis
of total DM in two years, and heritability ranged from 0.20 to
0.25, and the estimates of heritability of total DM over two years
were slightly higher than in first and second year separately. In
the current study, DMwas defined as the total dry matter yield in

each of two farming years, and modeled as a trait with repeated
records while the overall year effect was included in the fixed
effects. The estimate of h2

f
was higher than heritabilities reported

by Fè et al. (2015b). Compared with the heritability for HD in
diploids, where estimates ranged from 0.49 to 0.68 (Fè et al.,
2015a,b) and from 0.07 to 0.22 (Ashraf et al., 2016), the estimates
in the current study are higher. RUST was investigated in diploid
varieties by Ravel and Charmet (1996), Waldron et al. (1998),
Fè et al. (2015b), and Fè et al. (2016), and the estimates of h2

f
in

the current study were in the range reported for diploid ryegrass.
In the previous study on diploid ryegrass by Fè et al. (2015b),
estimated heritability for DMwas similar to that for RUST, but in
the current study we find a larger difference between estimated
heritabilities for DM and RUST.

G×E effects accounted for about 10% of total variance for HD
in diploid ryegrass (Fè et al., 2015a), which is similar to results in
the current study. Although the proportion of total phenotypic
variance explained by genetic marker information was much less
in DM than in HD and RUST, the variances of G×E effects were
also small in DM.
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FIGURE 7 | Percentage of variance components1 over the total phenotypic variance for heading date. 1 Genom, Additive genomic variance; Gene, Residual

genetic variance; GE, family × sowing year × location × management variance; E, residual environment variance.

The proportions of variances due to the two G×E effects
were different for DM and RUST. For DM, the second
G×E effect (GSLMF) was important, but the first G×E effect
(GSLM) explained only a small part, which indicated that
growth season had a large effect on DM and can modify the
ranking of different families. In diploid ryegrass, the genetic
and phenotypic correlation between DM in the two years
were 0.62 and 0.39 respectively (Fè et al., 2015b), which also
implies large G×E effects. Variance of G×E effects in RUST
was different from G×E in DM. For RUST, both the first
and the second G×E effects accounted for similar amount of
variances (around 12% of total phenotypic variance), which
is comparable to results from the previous study on diploids
(Fè et al., 2016).

The proportion of residual variance at the level of single
plots was different among the three traits. The residual variance
accounted for more than 50% of phenotypic variance in DM but
only around 25% in both HD and RUST. The large amount of
residual variance in DM indicates larger measurement errors in
DM, and necessarily leaves only relatively small proportions of
variance that can be attributed to the other effects.

SNP Filtering Strategies
Sequencing depth is an important factor when utilizing GBS
data. An increase of sequencing depth means that the average
number of times a locus been sequenced is increased, so that the
accuracy of measuring the frequency of the reference allele is also
increased. However, increasing sequencing depth also increases
the cost of sequencing. Therefore, it is crucial to investigate the
optimal sequencing depth when using GBS data. In the current
study, different SNP filtering scenarios were compared with
regard to parameter estimation and genomic prediction results.
Four SNP filtering strategies were applied on the full GBS dataset,
creating subsets of SNPs with different sequencing depth and/or
different numbers of SNPs.

A previous study on diploid ryegrass (Ashraf et al., 2016)
used GBS data with sequencing depth varying from 0 to 60,
and divided the SNPs in 5 groups with depth interval of
10. Ashraf et al. (2016) did not correct for low accuracy of
allele frequency estimates at low sequencing depth, and showed
this creates a general trend of increasing genomic heritability
with increasing sequencing depth. In the current study, we
corrected for the effects of low accuracy at low sequencing
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FIGURE 8 | Percentage of variance components1 over the total phenotypic variance for rust resistance. 1 Genom, Additive genomic variance; Gene, Residual

genetic variance; PLOT, random plot variance; GE1, family × sowing year × location × management variance; GE2, family × sowing year × location ×

management × farming year variance; E, residual environment variance.

depth, based on Cericola et al. (2018), and generally see no
more clear linear correlation between sequencing depth and
heritability. For instance, the FILTBOTH strategy also grouped
SNPs into different depth intervals, and highest estimates of
genomic heritability were found for the middle to lower levels
FILTBOTH2 (depth 5–10) and FILTBOTH3 (depth 10–20).
Comparable heritabilities were found between FILTBOTH 3
and RAN80, where both scenarios included similar amount of
SNPs while the later one covering a larger range of sequencing
depths (1–278). Hence, the corrections for bias from Cericola
et al. (2018) are removing obvious trends related to sequencing
depth, and seem to effectively remedy the problem of biased
heritabilities at low sequencing depth reported by Ashraf et al.
(2016).

For prediction accuracy, the impact from GBS sequencing
depth was investigated in simulated biparental segregating
populations (Gorjanc et al., 2017) as well as in outbred livestock
populations (Gorjanc et al., 2015). The results from these two
simulation studies showed that GBS data with low coverage
(∼1X) could provide prediction accuracy comparable to SNP
array data. When using field data, most of the studies were
focused on settings with inbred individuals, e.g., in wheat

(Poland et al., 2012) and maize (Crossa et al., 2013). The
accuracy of genomic prediction using low-coverage GBS data
were comparable with SNP array or diversity array technology
data in inbred populations (Poland et al., 2012; Crossa et al.,
2013). Different from these simulation studies or studies
on inbred populations, the current study is based on the
commercial tetraploid data using family-pools. In our data,
we cannot confirm that GBS data with low sequencing depth
of about 1X already gives accurate predictions. As expected,
high heterozygosity in tetraploid ryegrass, combined with use
of family-pools, requires higher sequencing depth for accurate
genomic prediction. In the current study, SNPs with sequencing
depth between 10 and 20 (FILTBOTH3) delivered desirable
predictive ability.

In the current study, by filtering out SNPs with either
low sequencing depth (FILTLOW) or with high sequencing
depth (FILTHIGH), the optimal sequencing depth for practical
genomic prediction in tetraploid ryegrass was investigated.
In FILTLOW groups, FILTLOW1 to FILTLOW3 gave most
accurate predictions. The number of SNPs included in the
models with highest predictive ability was about 140–180 k.
The lowest sequencing depth for SNPs in FILTLOW3 was 10.
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The similar high predictive ability provided by FILTLOW1 to
FILTLOW3 indicated that excluding low sequencing depth (1–
10) SNPs did not affect the predictive ability significantly. In
FILTHIGH groups, FILTHIGH1 to FILTHIGH9 gave similar
predictive abilities, which indicated that accurate predictions
can be reached even by including only SNPs with sequencing
depth lower than 20. This can simply be an effect of still having
sufficiently large numbers of SNPs with depth lower than 20,
and removing SNPs with high depth may reduce some noise
caused by repetitive sequences. Hence, filtering out SNPs with
high depth can increase the proportion of useful information
without reducing the prediction accuracy. Compared with the
RAN strategy, filtering out SNPs with low depth provided higher
predictive ability than using a similar number of randomly
chosen SNPs, and when comparing the FILTHIGH strategy with
the RAN strategy, filtering out SNPs with high depth provided
similar predictive ability as using a similar number of randomly
chosen SNPs. For the three traits investigated in the current
study, the best predictive abilities were not achieved with exactly
the same filtering strategy, however, differences between the best
filtering strategies were small. In practical breeding, single trait
evaluation can be carried out by using G matrices built from
different sets of SNPs. It is also feasible to apply index selection
on a combination of traits with different weights by using a same
set of SNPs, which can provide globally accurate predictions.
For example, in the current study, even though the highest
predictive ability was provided by FILTLOW3, FILTHIGH5, and
FILTLOW1 for DM, HD, and RUST, respectively, FILTLOW3
can be chosen as a scenario that provided accurate predictions
for all the three traits analyzed. In addition, applying different
sets of SNPs at the same time is also achievable by using random
regression models disregarding the higher demand of computing
resources.

In addition to genomic prediction accuracy, bias was also
investigated in this study. In general, it was observed that
predictions were biased, and with increasing number of SNPs
included in the model, more biased predictions were observed.
This can be due to many factors. The definition of the G matrix
could be one of the reasons. When using GBS data, the allele
frequencies can suffer from inaccuracy due to low sequencing
depth, which can induce bias into the prediction. However, in the
current study, biases due to low sequencing depth was corrected
for using the method reported by Cericola et al. (2018). In
addition, G×E interactions were modeled in a rather simple way,
and bias of predictionmay be reduced by bettermodeling of G×E
effects (Fè et al., 2015b).

For diploid heterozygotic species, a minimum sequencing
depth of around 10X is needed to obtain accurate calling
(Chenuil, 2012). However, for tetraploid species, the requirement
of sequencing depth for accurate calling of tetraploid genotypes
was reported to be 60–80X (Uitdewilligen et al., 2013). For
genomic prediction, however, it is not necessary to obtain
accurate calling for each individual sample. The results in the
current study indicate that high predictive ability can be obtained
using much lower sequencing depth because only the frequency
and not the individual genotypes needs to be called.

CONCLUSIONS

In the current study, phenotypic records for three traits dry
matter yield (DM), rust resistance (RUST), and heading date
(HD), as well as GBS data were used to obtain genomic
predictions for 1,515 tetraploid F2 ryegrass families. Different
SNP filtering strategies by filtering out SNPs according to average
depth and number of SNPs were compared. The estimates of
genomic heritability of family means were 0.45, 0.74, and 0.73
for DM, HD and RUST, respectively. The predictive ability for
DM was 0.34, for HD was 0.77, and for RUST was 0.55. The
estimation of genomic heritability and the predictive ability for
DM, HD and RUST clearly showed that genomic prediction can
be implemented in tetraploid perennial ryegrass. Comparison of
different filtering strategies showed that using only SNPs with
sequencing depth between 10 and 20 would not reduce predictive
ability, and showed the potential to obtain accurate prediction
from medium-low coverage GBS in tetraploids. Adding SNPs
with sequencing depth lower than 10 in the model also lead to
accurate predictions. The predictive ability generally increased
as the number of SNPs included in the analysis increased.
GBS data including 80–100K SNPs were needed for accurate
prediction of additive breeding values in tetraploid ryegrass.
The results clearly illustrate that genomic prediction using GBS
data can help to optimize the breeding program for tetraploid
ryegrass.
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