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Auxin response factors (ARFs) compose a family of transcription factors and have been
found to play major roles in the process of plant growth and development. However,
their roles in plant carotenoid biosynthesis and responses to abiotic stresses are rarely
known to date. In the present study, we found that the IbARF5 gene from sweetpotato
(Ipomoea batatas (L.) Lam.) line HVB-3 increased the contents of carotenoids and
enhanced the tolerance to salt and drought in transgenic Arabidopsis. The transgenic
Arabidopsis plants exhibited the increased abscisic acid (ABA) and proline contents and
superoxide dismutase (SOD) activity and the decreased H2O2 content. Furthermore, it
was found that IbARF5 positively regulated the genes associated with carotenoid and
ABA biosynthesis and abiotic stress responses. These results suggest that IbARF5
is involved in carotenoid biosynthesis and salt and drought tolerance in transgenic
Arabidopsis. This study provides a novel ARF gene for improving carotenoid contents
and salt and drought tolerance of sweetpotato and other plants.
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INTRODUCTION

In nature, more than 750 kinds of carotenoids are characterized structurally, which are widely
found in bacteria, fungi, algae, and plants (Hirschberg, 2001; Takaichi, 2011). The biosynthesis
pathway of carotenoids has been extensively studied in plants, and nearly all of the key genes
have been isolated and characterized (Cunningham and Gantt, 1998; Fraser and Bramley, 2004;
Colasuonno et al., 2017; Kang et al., 2018). Abiotic stresses, especially salt and drought, seriously
affect the productivity and cultivation expansion of crop plants worldwide, accordingly, to develop
their high tolerance to salt and drought is highly desirable (Zhu, 2002; Lindemose et al., 2013; Zhai
et al., 2016; Li et al., 2017). As the precursor of abscisic acid (ABA), carotenoids have functional
roles in development and environmental adaptation of plants (Schwartz et al., 2003; Nambara
and Marion-Poll, 2005; Mehrotra et al., 2014; Li, 2015; Moreno et al., 2016). Thus, increasing the
contents of carotenoids helps to enhance the adaptation of plants to harsh environments.

Auxin response factors (ARFs) constitute a family of plant specific transcription factors.
A typical ARF protein contains a B3-DNA binding domain in the highly conserved N-terminal
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region (Ulmasov et al., 1997; Hagen and Guilfoyle, 2002; Mei
et al., 2018). ARFs mediate responses to auxin and have been
shown to be implicated in senescence (Ellis et al., 2005), hormone
signaling (Li et al., 2006) and developmental programs (Krogan
et al., 2012). In rice, OsARF1 was auxin-regulated and classified
as a primary auxin responsive gene (Waller et al., 2002).
In Arabidopsis, ARF2 mediated ABA response (Wang et al.,
2011); MP/ARF5 regulated embryo and flower patterning and
vascular differentiation (Hardtke and Berleth, 1998; Krogan et al.,
2012); ARF6 and ARF8 promoted jasmonic acid production and
flower maturation (Nagpal et al., 2005); NPH4/ARF7 and ARF19
controlled leaf expansion and lateral root growth (Okushima
et al., 2005; Wilmoth et al., 2005). In tomato, SlARF2 regulated
lateral root formation and flower senescence (Ren et al., 2017);
ARF4 controlled sugar metabolism (Sagar et al., 2013); ARF10
increased chlorophyll and sugar accumulation during fruit
development (Mei et al., 2018); ARF5 regulated fruit set and
development (Liu et al., 2018). However, the roles of ARFs in
plant carotenoid biosynthesis and abiotic stress responses are
rarely known to date.

Sweetpotato (Ipomoea batatas (L.) Lam.) is an important
food crop worldwide, which provides rich carbohydrates and
carotenoids for human consumption (Teow et al., 2007; Zhai
et al., 2016). This crop can also be used for bioenergy production
on marginal lands due to its high adaption to harsh environments
(Liu et al., 2014). Sweetpotato breeders are focusing on improving
carotenoid contents and abiotic stresses tolerance of this crop.

Kang et al. (2017) summarized the improvement of carotenoids
by gene engineering in sweetpotato. Overexpression of the genes
related to carotenoid biosynthesis have been shown to increase
the contents of carotenoids and enhance the tolerance to abiotic
stresses in sweetpotato (Kim et al., 2012, Kim et al., 2013b; Yu
et al., 2013; Kim et al., 2014; Li et al., 2017; Kang et al., 2018).
To date, ARFs have not been reported in sweetpotato. In this
study, we found that the IbARF5 gene from storage roots of
sweetpotato is involved in carotenoid biosynthesis and salt and
drought tolerance in transgenic Arabidopsis.

MATERIALS AND METHODS

Plant Materials
Sweetpotato line HVB-3 with high carotenoid content was
employed to clone the IbARF5 gene in this study. The
expressed sequence tag (EST) for IbARF5 was obtained from
the transcriptome data of HVB-3 developed by Li et al.
(2015). Arabidopsis wild type (Columbia-0, WT) was used for
characterizing the IbARF5 gene.

Isolation and Sequence Analysis of
IbARF5
Total RNA was extracted from freshly harvested storage roots
of HVB-3 and transcribed into first-strand cDNA according to
the method of Kang et al. (2018). The full-length cDNA of

FIGURE 1 | Phylogenetic tree of ARF5 in different plant species (A) and comparison of exon and intron constituents between IbARF5 and NtARF5 (B). Exons are
represented by boxes and introns by lines.
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FIGURE 2 | Subcellular localization of IbARF5 in onion leaf hypodermal cells. Confocal scanning microscopic images show localizations of IbARF5-GFP fusion
proteins to nuclei in the right column vs. GFP as control in the left column. Bars = 20 µm.

FIGURE 3 | Transactivation activity of IbARF5 in the yeast. (A) the pBD-GAL4 vector as positive control; pBD-IbARF5; pBD-IbARF5-1; pBD-IbARF5-2;
pBD-IbARF5-3; the empty pBD vector as negative control. The culture solution of the transformed yeast was drawn onto SD plate without tryptophan and histidine.
(B) Different portions of IbARF5.
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IbARF5 was amplified with specific primers (Supplementary
Table S1) by rapid amplification of cDNA ends (RACE) method.
Genomic DNA isolated from in vitro-grown plants of HVB-
3 was used to amplify the genomic sequence of IbARF5. The
IbARF5 cDNA was analyzed by an online BLAST1. The open-
reading frame (ORF) Finder2 was used to predict the ORF of
IbARF5. The DNAMAN software was applied to align the amino
acid sequence of IbARF5 with those of ARF proteins from
different plant species. The MEGA 7.0 software was employed to
conduct the phylogenetic analysis with the neighbor-joining (NJ)
method. Exon–intron structure was constructed using Splign
tool3. The molecular weight and theoretical isoelectric point (pI)
of IbARF5 were calculated at http://web.expasy.org/compute_
pi/.

Subcellular Localization of IbARF5
The IbARF5 ORF amplified with specific primers
(Supplementary Table S1) was ligated into pMDC83. pMDC83-
IbARF5-GFP and pMDC83-GFP (as control) were transiently
expressed in the onion epidermal cells with a GeneGun
(HeliosTM, Biorad, United States). After co-cultivation on
Murashige and Skoog (MS) medium (pH 5.8) at 28◦C for
24 h, the onion cells were examined under a laser scanning
confocal fluorescence microscope (Nikon Inc., Melville, NY,
United States).

Transactivation Activity Assay of IbARF5
in Yeast
Transactivation activity of IbARF5 in yeast (Saccharomyces
cerevisiae) was assayed as described by Jiang et al. (2014). The
corresponding regions of IbARF5 were PCR-amplified using
specific primers (Supplementary Table S1) and integrated into
the yeast expression vector pGBKT7 (pBD). Expression vectors
pBD-IbARF5, pBD-IbARF5-1, pBD-IbARF5-2, pBD-IbARF5-3,
pGAL4 (as positive vector), and pBD (as negative vector)
were transferred into the yeast strain AH109, respectively. The
transactivation activity was determined as described in the yeast
protocols handbook (PT3024-1; Clontech, Mountain View, CA,
United States).

Expression Analysis of IbARF5 in
Sweetpotato
Total RNA was isolated from storage root, stem, and leaf tissues
of the 100-day-old HVB-3 and used to analyze the expression
of IbARF5 by quantitative real-time PCR (qRT-PCR) with its
specific primers (Supplementary Table S1). Ibactin (AY905538)
was served as an internal control. Comparative CT method was
employed to quantify the gene expression (Schmittgen and Livak,
2008).

After cultured on MS medium for 4 weeks, the HVB-3 plants
were treated in liquid MS media containing H2O (as control),
200 mM NaCl, 20% PEG6000 and 100 µM ABA, respectively, and

1https://blast.ncbi.nlm.nih.gov/Blast.cgi
2https://www.ncbi.nlm.nih.gov/orffinder/
3https://www.ncbi.nlm.nih.gov/sutils/splign/splign.cgi?textpage=online&level=
form

sampled at 0, 2, 4, 6, 12, 24, and 48 h after treatment for analyzing
the expression of IbARF5.

Production of the Transgenic
Arabidopsis Plants
The overexpression vector pC3301-121-IbARF5 was constructed
through inserting 35S-IbARF5-NOS into pCAMBIA3301. The
recombinant vector was introduced into the Agrobacterium
tumefaciens strain GV3101. The dipping flower method was
applied to transform Arabidopsis and putatively transgenic
Arabidopsis seeds were sown on MS medium with 12.5 mg L−1

phosphinothricin (PPT) for selecting transgenic plants.
Histochemical GUS assay (Jefferson et al., 1987) and PCR
analysis were used to identify the transgenic Arabidopsis
plants. Transgenic Arabidopsis was planted in pots with a soil,
vermiculite and humus mixture (1:1:1, v/v/v) to obtain T3
seeds.

Measurement of Carotenoid Contents
Leaves (2-week-old) and seeds of the transgenic Arabidopsis
plants were applied to extract α-carotene, lutein, β-carotene,
β-cryptoxanthin, and zeaxanthin. High performance liquid
chromatography (HPLC) system was used to determine their
contents (Li et al., 2017).

Assay for Salt and Drought Tolerance
One-week-old in vitro-grown seedlings of transgenic Arabidopsis
and WT were treated on MS media with 200 mM NaCl and
300 mM mannitol, respectively. After 2 weeks, their root length
and fresh weight (FW) were investigated. Furthermore, the
transgenic and WT seedlings were planted for 2 weeks in pots
with a soil, vermiculite and humus mixture (1:1:1, v/v/v) and
subsequently irrigated with a 33 mL of 300 mM NaCl solution for
each pot once every 2 days for 2 weeks, or stressed by drought
for 4 weeks followed by 2 days re-watering. The transgenic
plants and WT grown for 6 weeks under normal condition
were used as control. The proline and H2O2 contents and
superoxide dismutase (SOD) activity in the transgenic plants and
WT grown in pots for 4 weeks under normal condition, 1 week
under 300 mM NaCl stress after 2 weeks of normal treatment,

FIGURE 4 | Expression analysis of IbARF5 in storage root, stem, and leaf
tissues of HVB-3. Data are presented as means ± SE (n = 3). Different capital
letters indicate a significant difference at P < 0.01 by Student’s t-test.
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and 2 weeks under drought stress after 2 weeks of normal
treatment, respectively, were determined with Assay Kits (Comin
Biotechnology Co., Ltd. Suzhou, China). The ABA content was
measured as described by Gao et al. (2011). Twenty-seven plants
in three pots with nine plants per pot were treated for each
line.

For ABA sensitivity assay, the transgenic and WT seeds were
sown on MS media with 0, 0.5, and 1 µM ABA, respectively. After
1 week, their germination and cotyledon opening and greening
rates were investigated. Fifty seeds of each line on a plate were
analyzed.

Expression Analysis of the Related
Genes
Leaves (2-week-old) and seeds of the transgenic Arabidopsis
plants and WT were applied to analyze the expression of the key
genes in carotenoid biosynthesis. The leaves of the transgenic
plants and WT potted for 4 weeks under normal condition,
1 week under 300 mM NaCl stress after 2 weeks of normal
treatment, and 2 weeks under drought stress after 2 weeks
of normal treatment, respectively, were used for analyzing
the expression of the genes associated with ABA biosynthesis
and abiotic stress responses. The specific primers of Atactin

FIGURE 5 | Expression analysis of IbARF5 in the in vitro-grown plants of HVB-3 after different times (h) in response to H2O, 200 mM NaCl, 20% PEG6000 and
100 µM ABA, respectively. Data are presented as means ± SE (n = 3). ∗ and ∗∗ indicate a significant difference from that of WT at P < 0.05 and P < 0.01,
respectively, by Student’s t-test.

TABLE 1 | Carotenoid contents in leaves of the IbARF5-overexpressing Arabidopsis plants.

Carotenoids content (µg g−1 FW)

Lines α-carotene Lutein β-carotene β-cryptoxanthin Zeaxanthin Total

WT 0.149 ± 0.005 13.275 ± 0.581 7.601 ± 0.467 n.d. 0.044 ± 0.010 21.070 ± 1.020

L1 0.166 ± 0.011 17.475 ± 0.694∗∗ 6.751 ± 0.552 n.d. 0.119 ± 0.007∗∗ 24.511 ± 1.038∗∗

L4 0.151 ± 0.004 16.750 ± 1.221∗∗ 6.849 ± 0.330 n.d. 0.147 ± 0.016∗∗ 23.896 ± 0.949∗

L5 0.145 ± 0.006 16.775 ± 0.315∗∗ 6.657 ± 0.755 n.d. 0.147 ± 0.004∗∗ 23.993 ± 0.854∗

L6 0.153 ± 0.007 17.532 ± 1.210∗∗ 6.717 ± 0.111 n.d. 0.126 ± 0.009∗∗ 24.529 ± 1.109∗∗

Leaves from 2-week-old Arabidopsis plants were sampled for the quantification of carotenoids. FW, fresh weight; n.d., not detectable. Data are presented as mean ± SE
(n = 3). ∗ and ∗∗ indicate a significant difference from that of WT at P < 0.05 and P < 0.01, respectively, by Student’s t-test.

TABLE 2 | Carotenoid contents in seeds of the IbARF5-overexpressing Arabidopsis plants.

Carotenoids content (µg g−1 DW)

Lines α-carotene Lutein β-carotene β-cryptoxanthin Zeaxanthin Total

WT n.d. 1.470 ± 0.041 0.178 ± 0.003 0.020 ± 0.005 0.089 ± 0.009 1.755 ± 0.048

L1 n.d. 1.907 ± 0.028∗∗ 0.270 ± 0.031∗ 0.023 ± 0.006 0.119 ± 0.010∗∗ 2.318 ± 0.051∗∗

L4 n.d. 2.519 ± 0.207∗∗ 0.262 ± 0.035∗ 0.038 ± 0.006 0.153 ± 0.008∗∗ 2.972 ± 0.241∗∗

L5 n.d. 2.625 ± 0.150∗∗ 0.309 ± 0.057∗∗ 0.046 ± 0.002∗ 0.143 ± 0.005∗∗ 3.123 ± 0.194∗∗

L6 n.d. 2.303 ± 0.287∗∗ 0.386 ± 0.059∗∗ 0.052 ± 0.003∗∗ 0.144 ± 0.023∗∗ 2.885 ± 0.313∗∗

Seeds from Arabidopsis plants were harvested for the quantification of carotenoids. DW, dry weight; n.d., not detectable. Data are presented as mean ± SE (n = 3).
∗ and ∗∗ indicate a significant difference from that of WT at P < 0.05 and P < 0.01, respectively, by Student’s t-test.
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(NM112764) as internal control and the related genes were listed
in Supplementary Table S1.

Statistical Analysis
All experiments were conducted with three biological
replicates. Data presented as the mean ± SE were analyzed
with Student’s t-test (two-tailed analysis) at P < 0.05 and
P < 0.01.

RESULTS

Cloning and Sequence Analysis of
IbARF5
The 3757-bp cDNA of the IbARF5 gene contained a 2841-
bp ORF encoding a 946-aa polypeptide with a molecular
weight of 104.84 kDa and a predicted pI of 5.17. The IbARF5
protein shared a high sequence identity with ARF5 proteins in
Nicotiana tabacum (XP_016465083.1, 74%), Capsicum annuum
(XP_016568464.1, 72%), Sesamum indicum (XP_011083507.1,
72%), Solanum lycopersicum (NP_001234545.1, 72%), Solanum
tuberosum (XP_006342026.1, 72%) and Vitis vinifera
(XP_003634382.2, 68%). It contained one plant-specific
B3-DNA binding domain, one Auxin_resp and one AUX_IAA

(Supplementary Figure S1). Phylogenetic analysis showed
that IbARF5 had a close relationship with that of N. tabacum
(Figure 1A). The 4794-bp genomic DNA of IbARF5 contained
13 exons and 12 introns (Figure 1B).

IbARF5 Is Localized to Nuclei
The images from onion epidermal cells indicated that the green
fluorescence emitted by IbARF5-GFP was exclusively distributed
over the nuclei of the cells (Figure 2). These results showed that
IbARF5 was localized to nuclei.

IbARF5 Shows Transactivation Activity in
Yeast
The yeast two-hybrid system was applied to identify a possible
transactivation activity of IbARF5. The yeast cells harboring
pBD-GAL4, pGBKT7-IbARF5 and pGBKT7-IbARF5-2,
respectively, grew well on synthetic dropout (SD) plate without
tryptophan and histidine and exhibited β-galactosidase activity,
but the cells bearing pBD, pGBKT7-IbARF5-1, and pGBKT7-
IbARF5-3, respectively, failed to grow (Figure 3A). These results
demonstrated that IbARF5 might act as a transcription activator,
and its transactivation activity was determined by the middle
region, IbARF5-2 (Figure 3B).

FIGURE 6 | Responses of the transgenic Arabidopsis seedlings and WT cultured for 2 weeks on MS medium with 200 mM NaCl and 300 mM mannitol, respectively.
Data are presented as mean ± SE (n = 3). ∗∗ indicates a significant difference from that of WT at P < 0.01 by Student’s t-test.
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FIGURE 7 | Responses of the transgenic Arabidopsis plants and WT grown in pots under salt and drought stresses. (A) Phenotypes of transgenic plants vs. WT
grown for 6 weeks under normal condition, 2 weeks under 300 mM NaCl stress after 2 weeks of normal treatment, and 4 weeks under drought stress followed by
2 days re-watering after 2 weeks of normal treatment, respectively. (B) ABA, proline and H2O2 contents and SOD activity in the transgenic plants and WT grown for
4 weeks under normal condition, 1 week under 300 mM NaCl stress after 2 weeks of normal treatment, and 2 weeks under drought stress after 2 weeks of normal
treatment, respectively. Data are presented as mean ± SE (n = 3). ∗∗ indicates a significant difference from that of WT at P < 0.01 by Student’s t-test.
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Expression Patterns of IbARF5 in
Sweetpotato
Quantitative real-time PCR analysis revealed that IbARF5
exhibited higher expression level in the storage roots of HVB-3
than in its leaves and stems (Figure 4). Its expression in HVB-3
was strongly induced by NaCl, PEG6000 and ABA, and peaked
(5.03-fold) at 4 h, (9.68-fold) at 24 h, and (12.18-fold) at 24 h,
respectively (Figure 5).

Production of the Transgenic
Arabidopsis Plants
Putatively transgenic Arabidopsis seeds formed the plants on
MS medium with 12.5 mg L−1 PPT. GUS assay and PCR
analysis confirmed that 6 of the randomly sampled 60 plants
were transgenic plants, named L1, L2, . . ., L6, respectively, from
which T3 were generated. IbARF5 showed high expression levels
in the transgenic Arabidopsis plants, especially L1, L4, L5, and L6
(Supplementary Figure S2).

IbARF5 Increases Carotenoid Contents
The lutein and zeaxanthin contents were significantly increased,
but α-carotene and β-carotene contents were not changed

and β-cryptoxanthin was not detected in leaves of L1, L4,
L5, and L6 (Table 1). In seeds of these four transgenic
plants, the lutein, β-carotene, and zeaxanthin contents were
significantly increased, but α-carotene was not detected and
β-cryptoxanthin content was significantly increased only in L5
and L6 (Table 2). The total carotenoid contents in leaves and
seeds were increased by 1.13–1.16 folds and 1.32–1.78 folds,
respectively (Tables 1 and 2).

IbARF5 Enhances Salt and Drought
Tolerance
Four transgenic Arabidopsis plants, L1, L4, L5, and L6, and WT
seedlings showed no significant differences in rooting and FW on
MS medium without stresses (Figure 6). However, the transgenic
plants exhibited good rooting and increased FW in contrast to
WT on MS media with 200 mM NaCl and 300 mM mannitol,
respectively (Figure 6).

The transgenic plants and WT grown in pots showed similar
growth trends under normal conditions (Figure 7A). Under NaCl
and drought stresses, the transgenic plants showed good growth,
while WT almost died (Figure 7A). Furthermore, it was found
that the ABA and proline contents were increased, SOD activity

FIGURE 8 | Responses of the transgenic Arabidopsis and WT seeds sown on MS medium with 0, 0.5, and 1 µM ABA for 1 week. (A) Growth vigor of the transgenic
and WT seedlings. (B) Germination rates of the transgenic and WT seeds. (C) Cotyledon opening and greening rates of the transgenic and WT seeds.

Frontiers in Plant Science | www.frontiersin.org 8 September 2018 | Volume 9 | Article 1307

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01307 September 7, 2018 Time: 19:31 # 9

Kang et al. IbARF5 Is Involved in Carotenoid Biosynthesis

was enhanced and H2O2 content was decreased in the transgenic
plants (Figure 7B).

No obvious differences in seed germination were observed
between the transgenic plants and WT under normal
condition (Figure 8). Under the treatment with different
ABA concentrations, the germination of the transgenic seeds was
more sensitive to ABA-elicited inhibition than that of WT though
both germination rate and cotyledon opening and greening rate
of the transgenic and WT seeds declined (Figure 8). These
results demonstrated that IbARF5 might participate in the ABA
signaling pathway.

IbARF5 Up-Regulates the Genes
Involved in Carotenoid and ABA
Biosynthesis and Abiotic Stress
Responses
The genes encoding the key enzymes in carotenoid biosynthesis,
eranylgeranyl pyrophosphate (GGPS), ζ-carotene desaturase
(ZDS), phytoene synthase (PSY), ε-carotene hydroxylase
(ε-CHY), β-lycopene cyclase (β-LCY) and β-carotene
hydroxylase (β-CHY) except for phytoene desaturase (PDS)

and ε-lycopene cyclase (ε-LCY) were systematically up-
regulated in leaves of the transgenic Arabidopsis plants
(Figure 9). GGPS, ε-CHY, β-LCY, and β-CHY exhibited
the increased expression levels, but ZDS, PSY, and ε-LCY
showed no changes in expression level and PDS was down-
regulated in the transgenic seeds (Figure 9). Under NaCl
and drought stresses, the genes encoding the key enzymes
in ABA biosynthesis, zeaxanthin epoxidase (ZEP), 9-cis-
epoxycarotenoid dioxygenase (NCED), and xanthoxin
dehydrogenas (ABA2) were up-regulated, and abiotic
stress-responsive genes encoding pyrroline-5-carboxylate
synthase (P5CS), SOD, ascorbate peroxidase (APX), and
dehydroascorbate reductase (DHAR) were also found to be
up-regulated (Figure 10).

DISCUSSION

IbARF5 Increases Carotenoid Contents
and Salt and Drought Tolerance
In plants, ARFs encode important transcription factors which
regulate the expression of genes in response to auxin (Guilfoyle
and Hagen, 2007). Several ARF transcription factor genes have

FIGURE 9 | Transcript levels of IbARF5 and carotenoid biosynthesis genes in leaves and seeds of the transgenic Arabidopsis plants and WT. Data are presented as
means ± SE (n = 3). ∗ and ∗∗ indicate a significant difference from that of WT at P < 0.05 and P < 0.01, respectively, by Student’s t-test.
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been cloned from Arabidopsis, rice and tomato, and were found
to play crucial roles in plant growth and developmental processes
(Harper et al., 2000; Waller et al., 2002; Ellis et al., 2005;
Okushima et al., 2005; Wilmoth et al., 2005; Wang et al.,
2011; Ren et al., 2017; Liu et al., 2018). However, there is no
report on the ARF transcription factors in improving carotenoid
contents and abiotic stress tolerance in plants. Previous studies
demonstrated that AtARF5 affected lateral organ development,

primary root initiation, flower primordium initiation, and
cotyledon development in Arabidopsis (Krogan et al., 2012) and
SlARF5 controlled fruit set and development in tomato (Liu
et al., 2018). In the present study, the IbARF5 gene was isolated
from sweetpotato line HVB-3 with high carotenoid content. We
found that its overexpression significantly increased the content
of carotenoids and enhanced the tolerance to salt and drought in
transgenic Arabidopsis (Tables 1, 2 and Figures 6, 7).

FIGURE 10 | Transcript levels of salt and drought responsive genes in leaves of transgenic Arabidopsis plants and WT pot-grown for 4 weeks under normal
condition, 1 week under 300 mM NaCl stress after 2 weeks of normal treatment, and 2 weeks under drought stress after 2 weeks of normal treatment, respectively.
Data are presented as mean ± SE (n = 3). ∗∗ indicates a significant difference from that of WT at P < 0.01 by Student’s t-test.
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IbARF5 Up-Regulates the Genes
Involved in Carotenoid Biosynthesis
It has been shown that carotenoid biosynthesis is mainly
regulated at the transcript level of genes encoding the
biosynthetic enzymes (Römer and Fraser, 2005; Sandmann et al.,
2006; Li et al., 2017; Kang et al., 2018). In this study, we found
that the key genes in carotenoid biosynthesis, GGPS, ZDS, PSY,
ε-CHY, β-LCY, and β-CHY in leaves and GGPS, ε-CHY, β-LCY,
and β-CHY in seeds of transgenic Arabidopsis were significantly
up-regulated (Figure 9), which corresponded with the increase
of carotenoid contents in transgenic Arabidopsis (Tables 1 and
2). These findings suggest that IbARF5 positively controls the
expression of carotenoid biosynthetic genes, which resulted in
the increased carotenoid contents in transgenic Arabidopsis.
Overexpression of the Orange gene (IbOr) from sweetpotato
increased carotenoid accumulation and abiotic stress tolerance
in transgenic sweetpotato, potato, and alfalfa (Kim et al., 2013a;
Goo et al., 2015; Wang et al., 2015). Furthermore, it was proved
that similar to AtOr of Arabidopsis, IbOr directly interacted
with PSY and increased carotenoid accumulation (Park et al.,
2016; Kim et al., 2018). Therefore, the precise underlying
mechanisms of IbARF5 in plant carotenoid accumulation need
to be further investigated. In addition, we are developing the
IbARF5-overexpressing sweetpotato plants for further analyzing
its roles in carotenoid accumulation of the storage roots.

IbARF5 Up-Regulates the Genes
Involved in ABA Biosynthesis
Carotenoids, especially β-branch carotenoids, serve as precursors
for ABA biosynthesis and play a crucial role in plant tolerance
and adaptation to abiotic stresses (Demmigadams and Adams,
2002; Xiong and Zhu, 2003; Sah et al., 2016). ABA regulates the
expression of ABA-dependent stress-responsive genes and the
increased level of ABA has been found to enhance the tolerance
to salt and drought (Tuteja, 2007; Vishwakarma et al., 2017).
It was reported that overexpression of IbMIPS1, IbZDS, and
IbLCYB2 increased the level of ABA, which led to the enhanced
tolerance to salt and drought in sweetpotato (Zhai et al., 2016;
Li et al., 2017; Kang et al., 2018). In this study, the IbARF5-
overexpressing Arabidopsis seeds showed the increased sensitivity
to ABA in germination (Figure 8). The ABA biosynthetic
genes IbZEP, IbNCED, and IbABA2 were up-regulated and ABA
level was also significantly increased in transgenic Arabidopsis
(Figures 7B and 10). These results suggest that overexpression of
IbARF5 confers salt and drought tolerance by up-regulating the
ABA biosynthetic genes and increasing ABA level in transgenic
Arabidopsis.

IbARF5 Up-Regulates Abiotic
Stress-Responsive Genes and Changes
Abiotic Stress-Associated Components
It is reported that the high level of ABA increases the transcript
level of P5CS, which leads to more accumulation of proline
under abiotic stresses (Sripinyowanich et al., 2013). Proline
plays a pivotal role in maintaining osmotic balance, protecting
integrity membrane and increasing reactive oxygen species (ROS)

scavenging capacity, and its elevated level enhances salt and
drought tolerance in plants (Yoshiba et al., 1997; Maggio et al.,
2002; Neisiani et al., 2009; Gill and Tuteja, 2010; Kang et al.,
2018). SOD as the first line of defense against ROS is induced
by abiotic stresses to promote ROS scavenging (Wang et al.,
2009). In the present study, P5CS, SOD, APX, and DHAR were
up-regulated, proline level and SOD activity were increased and
H2O2 content was decreased in transgenic Arabidopsis under
salt and drought stresses (Figure 7B). Therefore, it is thought
that the enhanced tolerance to salt and drought is due to up-
regulation of abiotic stress-responsive genes and change of abiotic
stress-associated components in transgenic Arabidopsis.

CONCLUSION

This study reveals, for the first time, that the IbARF5 gene
from sweetpotato is involved in carotenoid biosynthesis and salt
and drought tolerance of plants. Its overexpression increased
the contents of carotenoids and conferred the tolerance to
salt and drought by up-regulating the key genes involved in
carotenoid and ABA biosynthesis and abiotic stress responses in
transgenic Arabidopsis. This study provides a novel ARF gene for
improving carotenoid contents and salt and drought tolerance of
sweetpotato and other plants.
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FIGURE S1 | Sequence alignment of IbARF5 with its homologs from other plants.
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FIGURE S2 | Expression analysis of IbARF5 in the transgenic Arabidopsis plants.
The Arabidopsis actin gene was used as an internal control. Data are presented
as means ± SE (n = 3). ∗∗ indicates a significant difference from that of WT at
P < 0.01 by Student’s t-test.

TABLE S1 | Primers used in this study.
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