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Maize starch plays a critical role in food processing and industrial application.
The pasting properties, the most important starch characteristics, have enormous
influence on fabrication property, flavor characteristics, storage, cooking, and baking.
Understanding the genetic basis of starch pasting properties will be beneficial for
manipulation of starch properties for a given purpose. Genome-wide association studies
(GWAS) are becoming a powerful tool for dissecting the complex traits. Here, we carried
out GWAS for seven pasting properties of maize starch with a panel of 230 inbred lines
and 145,232 SNPs using one single-locus method, genome-wide efficient mixed model
association (GEMMA), and three multi-locus methods, FASTmrEMMA, FarmCPU, and
LASSO. We totally identified 60 quantitative trait nucleotides (QTNs) for starch pasting
properties with these four GWAS methods. FASTmrEMMA detected the most QTNs
(29), followed by FarmCPU (19) and LASSO (12), GEMMA detected the least QTNs (7).
Of these QTNs, seven QTNs were identified by more than one method simultaneously.
We further investigated locations of these significantly associated QTNs for possible
candidate genes. These candidate genes and significant QTNs provide the guidance
for further understanding of molecular mechanisms of starch pasting properties. We
also compared the statistical powers and Type I errors of the four GWAS methods
using Monte Carlo simulations. The results suggest that the multi-locus method is more
powerful than the single-locus method and a combination of these multi-locus methods
could help improve the detection power of GWAS.

Keywords: maize, starch, pasting properties, GWAS, multi-locus

INTRODUCTION

Maize (Zea mays L.) is the world’s most important crop for food, feed and industrial materials.
Starch is the principal constituent of maize kernels, which accounts for approximately 70% of the
kernel weight (Liu N. et al., 2016). Benefitting from its characteristics such as slow tendency of
retrogradation and low pasting temperature (PTP), maize starch serves as an essential ingredient
for industrial production of food, and has been widely used to thicken sauces or soups and make
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corn syrup and other sugars (Yang Z. et al., 2014). Recently, great
progress has been made in dissection of starch content in maize
kernels (Wang et al., 2015; Li et al., 2018). However, further
improvements in starch quality are needed to meet demands
of food processing and industrial application. The pasting
properties are important characteristics of starch, determining
the starch quality and functionality. Dissection the genetic basis
of pasting properties will facilitate the improvement of starch
quality in maize.

Genome-wide association studies (GWAS) provide the
opportunity to decipher genetic architectures of complex traits
in crops (Zhu et al., 2008). Owing to the rapid linkage
disequilibrium (LD) decay and abundant diversity, maize is
an ideal species to perform GWAS. GWAS have successfully
analyzed many important traits, such as kernel oil biosynthesis,
plant height and disease resistance in maize (Kump et al.,
2011; Li et al., 2013). Some statistical models have been
developed to conduct GWAS. Mixed linear model (MLM) has
become the most popular approach with the ability to consider
population structure and family relatedness (Zhang et al., 2005;
Yu et al., 2006). Based on the MLM framework, some single-
locus approaches have been proposed to alleviate the heavy
computational burden, such as EMMAX (Kang et al., 2008),
P3D (Zhang et al., 2010), FaST-LMM (Lippert et al., 2011),
and genome-wide efficient mixed model association (GEMMA)
(Zhou and Stephens, 2012). However, the single-locus model
testing one locus at a time fails to match the true genetic
model of complex traits that are controlled by numerous loci
simultaneously. Additionally, multiple test corrections for critical
values are usually required to control false positive rates for
single-locus GWAS. The commonly used Bonferroni correction
is so conservative that lots of true loci may be neglected. To
overcome these problems, multi-locus GWAS methods have been
recommended because these methods consider the information
of all loci simultaneously and multiple test corrections are not
required because of the multi-locus nature (Wang et al., 2016).
Several multi-locus methods, such as FASTmrEMMA, ISIS EM-
BLASSO, FASTmrMLM, pLARmEB, pKWmEB, LASSO, and
FarmCPU, have been proved to be more powerful than single-
locus methods (Liu X.L. et al., 2016; Tamba et al., 2017; Xu et al.,
2017; Zhang et al., 2017; Ren et al., 2018; Wen et al., 2018).

There have been a few studies focusing on the genetic
basis of pasting properties in maize starch. Zhang et al. (2004)
suggested that SSIIa of maize affected the starch structure and
physiochemical properties. Wilson et al. (2004) used association
mapping to evaluate six candidate genes involved in starch
synthesis and found that ae1 and sh2 were associated with starch
pasting properties. Xu et al. (2014a) detected the associations
of sequence variants of the ZmBT1 gene with seven pasting
properties. Yang Z. et al. (2014) identified seven quantitative
trait nucleotides (QTNs) in coding regions of Zmisa2 underlying
pasting properties of maize starch and proposed that these
markers may be potentially utilized for marker-assisted selection.
However, all of the above studies were based on specific candidate
genes involved in kernel starch biosynthesis. Therefore, more
comprehensive studies are required to further understand the
molecular mechanisms of starch pasting properties. To our

knowledge, GWAS for pasting properties of maize starch have not
been reported up to now.

In this study, a worldwide collection of 230 inbred lines were
genotyped with 145,232 SNPs using genotyping-by-sequencing
(GBS) technology. Starch pasting properties including peak
viscosity (PV), trough viscosity (TV), final viscosity (FV),
breakdown viscosity (BD), setback viscosity (SB), pasting time
(PT), and PTP were measured for the 230 lines using the Rapid
Visco Analyser (RVA). The main objectives of this study were
to (i) identify loci that are significantly associated with pasting
properties of maize starch using single-locus and multi-locus
GWAS methods, and (ii) compare three multi-locus methods
(FASTmrEMMA, LASSO, and FarmCPU) with one single-locus
method (GEMMA) in terms of their detection powers and Type
I errors.

MATERIALS AND METHODS

Plant Materials
In this study, an association panel of 230 maize lines collected
from the tropical, subtropical or temperate zone, representing a
wide range of diversity, was used for GWAS. All the materials
were planted with a randomized block design of three repetitions
in the field of Sanya, Hainan province. At the four-leaf stage,
young leave tissues were collected from each line and preserved
at −80◦C. DNA was extracted from the freeze-dried leave tissues
with the modified CTAB method (Fulton et al., 1995). After
harvest, mature kernels of five randomly selected plants in each
line were collected and used for evaluation of starch pasting
properties.

Genotyping
The panel of 230 maize inbred lines was genotyped using a GBS
strategy. The ApeK1 restriction enzyme was used for library
preparation, and GBS was performed on an Illumina platform
by Novogene Bioinformatics Institute, Beijing, China. After
quality control, a total of 145,232 high-quality SNPs with minor
allele frequency (MAF) above 2% and missing rate below 20%
remained to perform GWAS.

Measurement of Starch Pasting
Properties
The pasting properties of maize starch were evaluated using RVA
(Model 3D, Newport Scientific, Sydney, NSW, Australia). Three
grams of starch obtained from each line was mixed with 25 ml
of distilled water in the RVA canister. The RVA profile took a
heat–hold–cool temperature cycle as follows: (1) set at 50◦C as
the starting temperature and maintained for 1 min; (2) heated to
95◦C and held at 95◦C for 2.5 min; and (3) cooled to 50◦C and
kept at 50◦C for 1.4 min. The total processing time was about
12 min. The pasting properties were determined using a fixed
paddle rotation at the speed of 160 r/m. The RVA parameters
were recorded in centipose (cP). The pasting parameters obtained
from the pasting curve including PV, TV, FV, PTP, PT and their
derived parameters, BD and SB were recorded for all the inbred
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lines. The average value of three biological replicates from each
line was obtained for data analysis.

Genome-Wide Association Analysis
In this study, GWAS were performed in the association panel
composed of 230 diverse maize inbred lines with 145,232 high-
quality SNPs. The decay distance of LD across the whole genome
was determined by software PopLDdecay1. Principle component
analysis (PCA) was used to control for population structure.
Both single-locus and multi-locus methods were used to identify
significant QTNs for seven starch properties. GEMMA was
used for single-locus GWAS, and FASTmrEMMA (Wen et al.,
2018), LASSO (Xu et al., 2017), and FarmCPU (Liu X.L. et al.,
2016) were used for multi-locus GWAS. GEMMA was developed
based on the framework of MLM, which takes advantage of
eigen decomposition to substantially increase the computational
speed. GEMMA was implemented in the software GEMMA.
FASTmrEMMA is a multi-locus two-stage GWAS method,
combining the MLM and the expectation and maximization
empirical Bayes (EMEB) method. In the first stage, the marker
effects were treated as random and a small number of markers
were selected, and then in the second stage, the selected markers
were fitted into a multi-locus model and estimated using the
EMEB method. FASTmrEMMA was implemented in the R
package mrMLM. LASSO is a powerful multi-locus approach,
but it lacks a default method to perform a significance test.
Here, we used our previously proposed Bayesian algorithm
to approximately estimate the variance of each marker effect
and then used a Wald test to obtain the significant test for
each marker. Details about this algorithm were given in Xu
et al. (2017). The LASSO method was implemented in the
R package glmnet and our own R program. The FarmCPU
method is a commonly used GWAS method at present, which
effectively eliminates confounding and improves statistical power
for MLM methods by using the fixed effect model and random
effect model iteratively. FarmCPU was implemented in the R
package FarmCPU. All parameters were set at default values. The
significantly associated QTNs were determined by the LOD value
exceeding three for FASTmrEMMA and LASSO, and the P-value
less than 1/m (m is the number of markers) for GEMMA and
FarmCPU. To mine candidate genes based on the detected QTNs
for the pasting properties, we used gene annotation and ontology
information available in maizeGDB2 and Phytozome database3.

Simulation Experiments
To investigate the powers and Type I errors of the single-
locus and multi-locus GWAS methods, we carried out a Monte
Carlo simulation experiment using the genotypic data of 230
maize inbred lines. We assigned eight QTL located on the first
eight chromosomes. The assigned QTL totally explained 56%
of the phenotypic variation. The detailed description of the
eight QTL is presented in Table 1. Both the polygenic variance
and residual error variance were set at one. The population

1https://github.com/BGI-shenzhen/PopLDdecay
2http://maizegdb.org
3https://phytozome.jgi.doe.gov

structure effect was added according to the first five principal
components determined from the genotypic data. These principal
components contributed to 10% of the phenotypic variance. The
phenotype was simulated with the contribution of the genetic
effect of simulated QTL, polygenic effect, residual effect, and
population structure effect. The simulations were replicated 200
times and the four GWAS methods, FASTmrEMMA, FarmCPU,
LASSO, and GEMMA, had been used to analyze the simulated
data. The statistical power for a simulated QTL was defined
as the fraction of the 200 replicates where the LOD score of
the QTL was larger than three for the FASTmrEMMA and
LASSO methods and the P-value of the QTL was less than 1/m
for GEMMA and FarmCPU. Type I error was defined as the
ratio of false positives out of all markers not assigned a QTL
effect. Each QTL within 1 kb of the assigned QTL was counted
as a real QTL.

RESULTS

Phenotypic Variations and Heritability
The descriptive statistics of the seven pasting properties for the
230 maize inbred lines are listed in Table 2. The average values for
PV, TV, BD, FV, SB, PT, and PTP are 1,200.22, 1,004.04, 196.18,
1,980.36, 976.33, 5.46, and 81.24 with the standard deviations
334.56, 225.29, 141.77, 427.17, 314.40, 0.42, and 2.14, respectively.
Substantial variations among genotypes are observed for the
seven pasting properties, and pasting properties vary significantly
among different lines. Also, variance components were estimated
using the restricted maximum likelihood (REML) analysis (Xu
et al., 2014b). The narrow sense heritability, defined as the ratio
of additive genetic variance to total phenotypic variance, ranges
from 0.46 for PT to 0.77 for TV (Table 2). These results indicate
that the phenotypic variations of starch pasting properties are
mainly affected by genetic factors, and therefore this panel can
be used for further genetic analyses. To determine the correlation
among the seven pasting properties, the Pearson’s correlation
coefficients were calculated. The results of the correlation analysis
are illustrated in Figure 1. All the pairwise correlations between
any two pasting properties exhibit significantly positive or
negative correlations except three correlations between PT and
TV, between PT and SB, and between SB and PTP.

TABLE 1 | Information for the eight simulated QTL.

QTL Chromosome Position (bp) MAF Effect R2,a (%)

QTL1 1 14898058 0.335 0.569 4

QTL2 2 19326559 0.16 0.842 4

QTL3 3 20532172 0.307 1.041 6

QTL4 4 13181343 0.452 0.667 6

QTL5 5 15819352 0.204 0.935 8

QTL6 6 27154881 0.378 0.766 8

QTL7 7 16672999 0.085 1.564 10

QTL8 8 22685122 0.217 1.028 10

aProportion of the total phenotypic variation explained by the QTL.
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TABLE 2 | Phenotypic performance, variance component, and heritability of seven pasting properties of maize starch.

Mean ± SD Range Genetic variance Residual variance Heritability F value

PV (cP) 1,200.22 ± 334.56 494.5–2,272 115,459.13 50,143.19 0.70 2.11∗∗

TV (cP) 1,004.04 ± 225.29 463.5–1,737 63,071.08 18,425.03 0.77 2.28∗∗

BD (cP) 196.18 ± 141.77 2.5–783.5 15,269.62 11,891.91 0.56 1.96∗∗

FV (cP) 1980.36 ± 427.17 920–3411 155519.10 99828.04 0.61 2.12∗∗

SB (cP) 976.33 ± 314.40 319–1930 108176.00 41637.66 0.72 2.40∗∗

PT (min) 5.46 ± 0.42 4.6–7 0.11 0.13 0.46 3.26∗∗

PTP (◦C) 81.24 ± 2.14 75.55–87.28 3.40 2.86 0.54 2.71∗∗

∗∗ Indicates significance level at P < 0.01. PV, peak viscosity; TV, trough viscosity; BD, breakdown viscosity; FV, final viscosity; SB, setback viscosity; PT, pasting time;
PTP, pasting temperature.

FIGURE 1 | The pairwise correlation analysis among seven pasting properties of maize starch. Upper diagonal: Pearson correlation coefficients between every two
traits; Lower diagonal: Scatter plots of correlations between every two traits. Asterisk (∗) indicates significance level at P < 0.05; Double asterisks (∗∗) indicates
significance level at P < 0.01. PV, peak viscosity; TV, trough viscosity; BD, breakdown viscosity; FV, final viscosity; SB, setback viscosity; PT, pasting time; PTP,
pasting temperature.

Population Structure and Linkage
Disequilibrium
In this study, PCA was used to correct for population structure.
PCA plots of this association population are illustrated in
Figure 2. According to the scree plot, the variance of principle
component score decreases quickly until the fifth principle
component (Figure 2B). Therefore, we selected the first five
principal components to control the population structure. All
filtered SNPs were used to determine LD decay. A monotonic
decrease in LD is found with increasing distance (Figure 3). At
r2 = 0.2, the overall LD decay decreases dramatically to 10 kb.

The genome-wide LD decay distance is about 250 kb at the cut-off
of r2 = 0.1.

GWAS for Starch Pasting Properties
In this study, GWAS were conducted for 230 maize inbred
lines with 145,232 SNPs using four methods and the results
are listed in Table 3. A total of 60 significant QTNs are
identified for seven starch properties from the four GWAS
methods. FASTmrEMMA detects the most QTNs (29), followed
by FarmCPU (19) and LASSO (12), GEMMA detected the least
QTNs (7). The numbers of significant QTNs detected for starch
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FIGURE 2 | Genetic structure of maize inbred lines. (A) Plot of the first two principal components of 230 inbred lines. (B) Scree plot showing the selection of
principal components for GWAS.

properties PV, TV, BD, FV, SB, PT, and PTP are 14, 10, 8, 12, 12, 6,
and 5, respectively, from all the four methods. The corresponding
numbers of the significant QTNs are 8, 6, 5, 3, 6, 1, and 4
from FASTmrEMMA; 2, 4, 2, 7, 4, 2, and 1 from FarmCPU;
2, 2, 0, 1, 3, 3, and 1 from LASSO; and 2, 0, 1, 1, 1, 2, and 0
from GEMMA. The largest QTN detected by FASTmrEMMA,
FarmCPU, LASSO, and GEMMA explains 9.35, 14.96, 1.03,
and 12.03(%) of the phenotypic variation, respectively. Among
these significant QTNs, seven QTNs appear to control more
than one trait (pleiotropic effect). For example, three QTNs
(SNP_2_190495578, SNP_9_138239683, and SNP_4_89429269)
have significant effects on PV and TV. Both SNP_6_109456130

and SNP_7_160060597 are associated with PV and BD. The
correlations between PV and TV as well as between PV and BD
are significant.

When comparing the results across different methods,
only seven common QTNs are identified by more than one
method simultaneously. Among these QTNs, SNP_2_9506602
is detected across three GWAS methods (FarmCPU, LASSO,
and GEMMA); SNP_9_103241537 and one pleiotropic QTN
(SNP_4_89429269) are identified by FASTmrEMMA and
FarmCPU simultaneously; SNP_4_144401228 is detected by
FASTmrEMMA and LASSO; SNP_9_109684667 is detected by
LASSO and GEMMA; SNP_3_12888452 is detected by FarmCPU
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FIGURE 3 | Linkage disequilibrium decay across the whole genome of the association panel. The blue horizontal line shows the LD threshold for the association
panel (r2 = 0.1).

and LASSO. SNP_7_173235732 associated with SB and FV are
detected by FASTmrEMMA and FarmCPU, respectively.
Note that the estimated effects and R2 values (proportion of
phenotypic variance explained by the QTL) of the co-identified
QTNs detected by different methods are completely different,
whereas the signs of effects for these co-identified QTNs for
the same trait are consistent. For example, the estimated effects
of SNP_2_9506602 are −0.177, −0.057, and −0.244, and the
corresponding R2 values are 5.14, 0.53, and 9.74(%) for trait PT
when using FarmCPU, LASSO, and GEMMA, respectively. All
the three methods demonstrate that this QTN has the negative
effect on PT.

Simulation Studies for GWAS
Simulation experiments were performed to compare the
statistical powers and Type I errors of the four GWAS methods.
The statistical powers of detecting the simulated QTL calculated
based on 200 simulations are given in Table 4. The average
powers for FASTmrEMMA, FarmCPU, LASSO, and GEMMA
were 55.19, 43.31, 53.69, and 40.44(%), respectively, indicating
the highest average power of FASTmrEMMA. However, different
methods may be suitable for detection of different QTL. For
example, FASTmrEMMA has the highest power for detecting

QTL1, QTL4, QTL5, QTL6, and QTL8 but the lowest power for
detecting QTL7. LASSO is the best method for detecting QTL2
and QTL3, whereas it is the worst method for detecting QTL1.
GEMMA has the lowest power of detecting all the simulated
QTL, but it is the most efficient method for detecting QTL7.
Type I errors for all the four methods are also listed in Table 4.
LASSO has the lowest Type I error, followed by GEMMA and
FASTmrEMMA, and FarmCPU has the highest Type I error. The
Type I errors of the four methods are under 0.0001 with the same
order of magnitude. Overall, the Type I errors are well controlled
for all the four approaches, and the three multi-locus approaches
are more powerful than the single-locus approach.

DISCUSSION

In this study, we compared statistical powers of FASTmrEMMA,
FarmCPU, LASSO, and GEMMA using real and simulation data.
Simulation experiments based on the genotypic data of 230 maize
inbred lines illustrate that the multi-locus approach is more
powerful than single-locus approach in most cases, especially
for loci with small effect that explain less than six percent of
phenotypic variance. Although single-locus methods have been
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TABLE 3 | Significantly associated QTNs identified by four GWAS methods for seven pasting properties of maize starch.

Trait Marker Alleles Chr Pos FASTmrEMMA FarmCPU LASSO GEMMA

Effect R2 (%) Effect R2 (%) Effect R2 (%) Effect R2 (%)

PV SNP_2_190495578# C/A 2 190495578 256.70 7.05

SNP_2_42359599 A/G 2 42359599 −131.53 2.87

SNP_2_51001688 A/C 2 51001688 −191.54 5.03

SNP_3_171824570# G/T 3 171824570 126.17 2.46

SNP_4_64845133 A/G 4 64845133 193.04 2.81

SNP_4_89429269# G/A 4 89429269 134.34 3.09

SNP_5_26160368 T/A 5 26160368 −234.93 11.13

SNP_5_26160478 C/A 5 26160478 −234.29 11.64

SNP_6_109456130# A/C 6 109456130 −116.84 7.12

SNP_6_164038368 C/A 6 164038368 −51.80 0.46

SNP_7_160060597# A/G 7 160060597 174.52 2.79

SNP_8_147208913 C/T 8 147208913 −133.38 5.05

SNP_9_138239683# C/A 9 138239683 −68.33 1.03

SNP_9_58569771 C/T 9 58569771 210.21 3.01

TV SNP_2_190495578# C/A 2 190495578 148.11 5.18

SNP_2_75175274 A/G 2 75175274 −163.45 3.19

SNP_4_144401228∗ A/G 4 144401228 −141.31 4.68 −30.63 0.88

SNP_4_89429269#∗ G/A 4 89429269 103.79 4.07 54.80 4.56

SNP_5_168661067 G/C 5 168661067 −76.75 4.19

SNP_8_104430223 T/C 8 104430223 163.65 7.19

SNP_9_138239602 G/C 9 138239602 −102.16 4.94

SNP_9_138239683# C/A 9 138239683 −44.03 0.94

SNP_10_12091187 A/G 10 12091187 −103.99 3.72

SNP_10_142948941 A/G 10 142948941 48.76 3.85

BD SNP_1_241610826 C/T 1 241610826 −33.08 4.33

SNP_1_825561 C/T 1 825561 93.47 3.56

SNP_4_146006182 G/A 4 146006182 73.78 3.74

SNP_6_109456130# A/C 6 109456130 −58.28 9.86

SNP_7_160060597# A/G 7 160060597 76.06 2.95

SNP_9_142242612 C/T 9 142242612 −49.54 2.53

SNP_10_138051694 G/C 10 138051694 82.38 10.28

SNP_10_9143566 G/T 10 9143566 −83.04 5.87

FV SNP_1_283390691 T/C 1 283390691 106.83 5.53

SNP_2_51001706 C/T 2 51001706 −273.07 6.02

SNP_5_160490300 A/G 5 160490300 −142.99 5.16

SNP_5_160866262 T/C 5 160866262 167.30 6.97

SNP_5_213796937 A/G 5 213796937 −96.09 3.71

SNP_6_107223456 G/C 6 107223456 −206.80 12.03

SNP_6_115373488 G/A 6 115373488 175.34 3.14

SNP_7_173235732# T/G 7 173235732 130.23 5.04

SNP_8_124259102 A/C 8 124259102 −64.27 0.51

SNP_8_154309867 G/T 8 154309867 150.77 6.61

SNP_9_113510544 G/A 9 113510544 264.83 3.48

SNP_9_83760699 A/T 9 83760699 143.42 3.60

SB SNP_1_168229057 C/T 1 168229057 −40.57 0.44

SNP_2_27401698 G/T 2 27401698 −37.77 0.31

SNP_2_46177221 G/A 2 46177221 147.63 2.52

SNP_6_104663091 A/C 6 104663091 115.82 9.30

SNP_6_124651063 G/A 6 124651063 −63.76 3.81

SNP_6_158401136 G/C 6 158401136 −72.23 3.41

SNP_7_173235732# T/G 7 173235732 186.23 4.73

SNP_7_48994000 A/G 7 48994000 −166.31 5.17

(Continued)
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TABLE 3 | Continued

Trait Marker Alleles Chr Pos FASTmrEMMA FarmCPU LASSO GEMMA

Effect R2 (%) Effect R2 (%) Effect R2 (%) Effect R2 (%)

SNP_8_38060255 T/C 8 38060255 −148.06 2.91

SNP_9_103241537∗ G/C 9 103241537 213.43 9.35 81.24 5.44

SNP_9_109684667∗ C/A 9 109684667 41.66 0.54 181.03 10.19

SNP_10_143879663 G/A 10 143879663 163.20 4.53

PT SNP_2_79885513 T/C 2 79885513 0.31 10.34

SNP_2_9506602∗ T/C 2 9506602 −0.18 5.14 −0.06 0.53 −0.24 9.74

SNP_3_219463585 T/A 3 219463585 −0.10 4.67

SNP_4_211011498 T/C 4 211011498 −0.07 0.54

SNP_5_59630329 G/C 5 59630329 −0.07 0.58

SNP_8_22655499 T/A 8 22655499 0.34 5.00

PTP SNP_2_80464203 C/T 2 80464203 1.36 2.24

SNP_3_12888452∗ G/C 3 12888452 1.58 14.96 0.27 0.42

SNP_3_171824570# G/T 3 171824570 −1.26 6.02

SNP_4_193530385 T/G 4 193530385 −1.36 3.71

SNP_4_71048778 A/G 4 71048778 −1.27 3.32

# Indicates the QTN identified across different traits. ∗ Indicates the QTN identified across different methods.

TABLE 4 | Statistical powers (%) of eight simulated QTL and Type I error rates for
four GWAS methods drawn from 200 replicated simulation experiments.

QTL FASTmrEMMA FarmCPU LASSO GEMMA

QTL1 52.5 22.5 5.5 6

QTL2 20.5 15.5 39 0

QTL3 55 46 62 41

QTL4 47 11.5 9 2.5

QTL5 92 61 83.5 60

QTL6 58 57 51 50

QTL7 20.5 65 92.5 94

QTL8 96 68 87 70

Type I error 6.99E-05 7.17E-05 4.70E-05 6.58E-05

widely used to identify genetic variants in many crop species,
they neglect the overall effects of multiple loci and suffer from
the problem of multiple test corrections for critical values. Several
investigators have compared statistic powers of multi-locus
and single-locus methods and demonstrated that multi-locus
methods perform better than single-locus methods. Wen et al.
(2018) compared FASTmrEMMA with single-locus approaches
including EMMA, SUPER, CMLM, and ECMLM using a series of
simulation studies and found that FASTmrEMMA has the highest
power and accuracy. Xu et al. (2017) showed that the multi-
locus LASSO method has higher statistical power and lower
Type I error than GEMMA. Liu X.L. et al. (2016) demonstrated
that FarmCPU improves statistical power compared to GLM,
MLM, CMLM, FaST-LMM-Select across multiple species, such as
Arabidopsis thaliana, human and maize. In previous simulation
studies, Bonferroni multiple test correction was used for single-
locus method. However, it may be too strict to use Bonferroni
correction (0.05/m) as the cut-off as not all loci are independent
(Yang N. et al., 2014). To avoid missing the relevant loci,
we replaced Bonferroni correction by a less stringent criterion

(1/m) for GEMMA. The results of simulation showed that
Type I error of GEMMA with 1/m as the cut-off was well
controlled and similar to that of three multi-locus methods.
Additionally, the permutation method is commonly used to
adjust for multiple tests, which yields reliable outcome but
requires a lot of time for huge samples (Churchill and Doerge,
1994). Fortunately, no multiple test correction is required for
FASTmrEMMA and LASSO because all markers are fitted
to a single model and all effects are estimated and tested
simultaneously.

In the real data analysis, a total of 29, 19, 12, and 7 significant
QTNs were identified for seven pasting properties of maize
starch using FASTmrEMMA, FarmCPU, LASSO, and GEMMA,
respectively. FASTmrEMMA detected the most QTNs, while
GEMMA detected the least, which was consistent with the
results of the simulation that FASTmrEMMA performed the
best for detection of most QTL and GEMMA performed the
worst. Unexpectedly, there was no significant QTN detected
by these four methods simultaneously, and only seven QTNs
were detected by more than one method. This situation could
be explained by the simulation studies. From the simulation
results, none of these methods were found to achieve very
high power for detecting all the simulated QTL and different
methods may be suitable for identification of different QTL.
For example, FASTmrEMMA possessed good performance for
most QTL, whereas it was not efficient for simulated QTL7
with the largest effect and lowest MAF. LASSO performed
well for detecting large QTL but poorly for small QTL. Each
method has its own advantages and limitations. LASSO is
computationally efficient, but fails to handle a large number of
markers. FASTmrEMMA is powerful in detection of QTL and
accurate in effect estimation of QTL. However, FASTmrEMMA
is a two-step combined method. The first step is to select a small
fraction of makers and then apply these markers to perform
multi-locus analyses in the second step. This method has an
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issue in how to determine the suitable thresholds in the first
step. To improve the power of GWAS, it is better to use a
combination of these methods, and the QTL detected by multiple
methods may be more reliable. Recently, Zhang et al. (2018)
and Ma et al. (2018) also proposed that using a combination
of multiple multi-locus methods could improve the efficiency
for detecting the QTL underlying lodging resistance-related and
regeneration-related traits of maize. Genome-wide association
studies have been applied to dissect genetic architectures of
several complex traits in maize (Xiao et al., 2017). However,
no previous studies have focused on GWAS for starch pasting
properties in maize. Here, we performed GWAS for seven pasting
properties in a panel of 230 maize inbred lines genotyped with
145,232 SNPs and identified 60 significant QTNs using single-
locus and multi-locus GWAS methods. Notably, the detected
loci may not be the real causative loci due to false positives
caused by LD or population structure. To understand the
molecular basis of pasting properties, we further investigated
locations of associated QTNs for possible candidate genes. The
candidate genes within 250 kb downstream and upstream of
the identified QTNs and their orthologs in Arabidopsis and
rice are presented in Supplementary Table S1. According to
functional annotations, these candidate genes were primarily
categorized as protein kinases, glycosyltransferases, glycosidases,
hydrolases, and transcription factors. The transcription factors
included E2F, BHLH, TFIIH, MYB, bZIP, and HSF superfamily.
Some of the candidate genes or their homologous genes
are known genes linked to starch biosynthesis. For example,
GRMZM2G032628 (ae1) encodes starch branching enzyme,
which is a downstream gene involved in the final product
of starch biosynthesis (Dolezal et al., 2014). It was reported
that ae1 was significantly associated with pasting properties of
maize starch (Wilson et al., 2004). The homologous gene SUS3
of GRMZM2G392988 in Arabidopsis has been reported to be
involved in starch biosynthesis within seed coat and embryo
(Angeles-Nunez and Tiessen, 2010). Several candidate genes are
annotated as glycosyltransferases, which formed the important
catalytic mechanism to synthesize and break the glycosidic
bonds in oligosaccharides, disaccharides, and polysaccharides
(Li et al., 2018). To better understand the potential biological
functions of these candidate genes, we performed the gene
ontology (GO) analysis for these genes using clusterProfiler (Yu
et al., 2012). The GO analysis revealed that these genes were
significant enriched in 16 GO terms (P-value <0.01), which were
classified into three main types containing biological process,
molecular function, and cellular component (Supplementary
Figure S1). Under the first type, the most significant GO terms
are gluconeogenesis process and hexose biosynthetic process,
which play important roles in starch biosynthesis. Under the
second type, these genes were significant related to chorismate
synthase activity and glucose-6-phosphate isomerase activity.
Under the third type, several genes were involved in photosystem.
We also found that some candidate genes were involved in
multiple functions. For example, GRMZM2G065083 are involved
in gluconeogenesis process, hexose biosynthetic and metabolic
process and glucose-6-phosphate isomerase activity. However,
these genes were not found to be known genes involved in

starch biosynthesis pathway, indicating that our study of the
molecular mechanisms underlying pasting properties of maize
starch is incomplete. These identified QTNs and candidate
genes provide foundation for further functional studies to
dissect the genetic mechanism manipulating maize pasting
properties.

CONCLUSION

In this study, single-locus and multi-locus GWAS methods were
used to identify loci associated with starch pasting properties
in maize. A total of 60 significant QTNs were detected for
seven pasting properties, of which 29, 19, 12, and 7 QTNs
were detected using FASTmrEMMA, FarmCPU, LASSO, and
GEMMA, respectively. These QTNs could be utilized for further
genetic and breeding studies to regulate starch pasting properties.
Additionally, we compared four GWAS methods for their
detection powers and Type I errors based on simulation studies
and found that the multi-locus method is more powerful than
the single-locus method and the combination of these multi-
locus methods could help improve the statistical power of current
GWAS.
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