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Candeia (Eremanthus erythropappus (DC) McLeisch, Asteraceae) is a Brazilian tree,
mainly occurring in the cerrado areas. From ethnobotanical information its essential
oil is known to have wound healing and nociceptive properties. These properties are
ascribed to result from a sesquiterpene alcohol, (–)-α-bisabolol, which is present at high
concentrations in this oil. Bisabolol is highly valued by the cosmetic industry because
of its antibacterial, anti-inflammatory, skin-smoothing and wound healing properties.
Over the past decades, Candeia timber has been collected at large scale for bisabolol
extraction from wild reserves and the species is thereby at risk of extinction. To support
the development of breeding and nursing practices that would facilitate sustainable
cultivation of Candeia, we identified a terpene synthase gene, EeBOS1, that appears
to control biosynthesis (–)-α-bisabolol in the plant. Expression of this gene in E. coli
showed that EeBOS1 protein is capable of producing (–)-α-bisabolol from farnesyl
pyrophosphate in vitro. Analysis of gene expression in different tissues from Candeia
plants in different life stages showed a high correlation of EeBOS1 expression and
accumulation of (–)-α-bisabolol. This work is the first step to unravel the pathway toward
(–)-α-bisabolol in Candeia, and in the further study of the control of (–)-α-bisabolol
production.

Keywords: (–)-α-bisabolol, Eremanthus erythropappus (DC) McLeisch, Candeia, sesquiterpene, bisabolol
synthase

INTRODUCTION

Essential oils from wild plants have been applied for many centuries in traditional medicine
(Kamatou and Viljoen, 2010). In recent years, knowledge from indigenous people is being explored
to scout for novel medicines. In particular, in areas that are rich in biodiversity, such as the
Brazilian Cerrado, ethnobotanists have scouted for plants whose extracts or oils have potential
as pharmaceuticals (Ferreira-Rodrigues et al., 2016; Borges et al., 2017; Oliveira et al., 2017). One
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plant that has been identified as a source of high-value
essential oil is the Candeia tree (Eremanthus erythropappus
(DC) McLeisch), which primarily grows in the state of Minas
Gerais in Brazil. The oil which is steam distilled from trunks of
this plants is known for its wound-healing, antinociceptive and
anti-inflammatory properties (Sousa et al., 2008). A dominant
active ingredient in Candeia oil is (–)-α-bisabolol, which is a
monocyclic sesquiterpene alcohol (Figure 1). Its activities include
anti-inflammatory (Kim et al., 2011), antifungal, antibacterial (De
Lucca et al., 2011), gastro protective (Bezerra et al., 2009), and
anti-cancer effects (Cavalieri et al., 2004; Da Silva et al., 2010;
Seki et al., 2011). Due to its wound-healing and skin permeation
enhancing effects it is frequently used as an additive to skin care
products such as balms and aftershaves 1. (–)-α bisabolol was
first described as an active component of German chamomile
(Matricaria recutita L.) (Mckay and Blumberg, 2006; Kamatou
and Viljoen, 2010). Four stereo isomers have been found in
other plant species, due to the presence of two chiral centers
(Gunther et al., 1993). The most bio-active form of bisabolol is the
(–)-α-Bisabolol, with the (4S, 8S)-configuration. Chemical
synthesis of bisabolol results in racemic mixtures, which have
a lower bio-activity compared to the Candeia oil ingredient
(Schwartz and Swanson, 1979). Candeia wood essential oil
was reported to be dominated by (–)-α-bisabolol, up to a
level of 66 to 91%. In leaves, (–)-α-bisabolol constitutes 2–
24% of the oil (Silverio et al., 2013; Dos Santos et al.,
2015).

Until recently, most of the (–)-α-bisabolol on the world
market world is produced from Candeia trees (De Oliveira et al.,
2009). In the period from 1980 to 2010, up to 250 tons of
Candeia oil were harvested (De Oliveira et al., 2010), which
is predominantly collected by grubbing trees from the wild.
Economic quantities of (–)-α-bisabolol can only be distilled from
trees older than 10 years implying the risk of deforestation for
oil extraction (Silva et al., 2012). As an alternative to collection
from the wild, commercial exploitation of Candeia plantation
would be an attractive solution for the production of high quality
timber and natural (–)-α-bisabolol (Silva et al., 2012; Scolforo
et al., 2016).

FIGURE 1 | Structures of α-bisabolol isomers.

To sustain the annual oil production, at least 30,000 m3

of Candeia wood is needed, equivalent to approximately
1000 ha of forest. However, cultivation of Candeia is not
straightforward, long-term strategies are needed and Candeia
germplasm with predictable productivity after 10 years is not
yet available. Therefore, illegal logging of wild material is still
continuing, and will eventually cause an ecological imbalance,
even putting this species at risk of extinction (Silva et al.,
2012). To support such a commercial exploitation there is a
need for a better understanding of the physiological processes
leading to the biosynthesis of (–)-α-bisabolol (Mori et al.,
2010), and the underlying biosynthetic genes. Since the relevant
level of bisabolol in trunks can only be quantified after
10 years, understanding the bisabolol pathway and regulation
of the bisabolol level would strongly enhance Candeia breeding
practices.

In this work, we take the first step toward identification
of a genetic marker, by identifying a Candeia gene encoding
an (–)-α-bisabolol synthase that produces (–)-α-bisabolol as
a single product and correlate the gene expression with the
(–)-α-bisabolol accumulation in planta.

MATERIALS AND METHODS

Plant Material
Plant material from E. erythropappus was collected from
the nursery of professor L. Amaral de Melo (Departamento
de Ciências Florestais, Laboratório de Silvicultura) at the
Universidade Federal de Lavras (Lavras, MG - Brazil - Caixa-
Postal: 3037). The samples were collected from genetically
identical plants from different ages. Materials from Lippia
dulcis and Nicotiana benthamiana expressing Artemisia bisabolol
synthase were obtained from previous studies (Yang et al., 2011;
Delatte et al., 2018).

Extraction and Isolation
All chemicals were purchased at Sigma-Aldrich if not otherwise
indicated. Plant material (0.1 g) was weighed in a precooled glass
tube, and extracted with 1 mL of dichloromethane. Samples from
hard tissues were first frozen in liquid nitrogen then broken in
pieces with a hammer before being pulverized with a grinding
mill (IKA type A11, VWR). The suspension was vortexed (1 min),
then sonicated (15 min, Branson 3510) and centrifuged for 5 min
at 1500 g at room temperature. The supernatant was collected,
dehydrated using a column of 1 g sodium sulfate and analyzed on
GC/MS. Annotation was performed with retention indices, mass
spectra and authentic standards. Quantification was performed
with an external calibration curve from (–)-α-bisabolol.

Gas Chromatography
Chemical analysis was performed on an Agilent 7890A gas
chromatograph connected to a 5975C mass selective Triple-
Axis Detector (Agilent Technologies). For quantification of
bisabolol, 1 µL of each sample was injected at 250◦C in
split-less mode on a ZB-5MS column (Zebron, Phenomenex,
30 m × 250 µm × 0.25 µm film thickness) with 5 m guard
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column, with a constant flow of helium at 1 mL/min. For chiral
analysis the same GC-MS set up was used, using an Alpha DEXTM

120 (Supelco; 30 m × 0.25 mm × 0.25 µm) column. With the
ZB-5MS the oven was programmed for 1 min at 45◦C, then
ramped at 10◦C/min to 300◦C and kept as such for 5 min with
a solvent delay of 5.5 min, for a final run time of 31.5 min. With
the Alpha DEXTM, the oven was programmed for 1 min at 50◦C,
then ramped at 2◦C/min to 175◦C and then ramped at 10◦C/min
to 190◦C kept as such for 1 min with a solvent delay of 5 min,
for a final run time of 66 min. The ionization potential was set
at 70 eV, and scanning was performed from 45 to 400 atomic
mass units, with a scanning speed of 3.99 scans/s. Samples from
Candeia trees were separated in branch (n = 5), leaf (n = 3), and
root (n = 4).

RNA Isolation and Sequence Analysis
RNA isolation was performed with a hot borate method (Wan
and Wilkins, 1994). Wood samples were frozen in liquid nitrogen
before being broken in pieces with a hammer then pulverized

with a grinding mill (IKA type A11). Around 70–90 mg of
ground material was extracted with 800 µL extraction buffer
preheated at 80◦C [0.2 M sodium borate, pH 9.0; 30 mM
EGTA; 1% (w/v) sodium dodecyl sulfate; 1% (w/v) sodium
deoxycholate, 6% (w/v) polyvinylpyrrolidinone K 40, 10 mM
dithiothreitol], and incubated at 42◦C for 15 min, after which
samples were centrifuged (4◦C, 12000 g) for 20 min. The
supernatant was transferred to new tubes and 260 µL of ice-
cold 8 M lithium chloride (LiCl) was added before a 4◦C
over-night incubation. After centrifugation (4◦C, 12000 g) for
30 min, the supernatant was discarded and 750 µL ice-cold
2 M LiCl was added. The tubes were centrifuged again (4◦C,
12000 g, 10 min), the supernatant discarded and then the
pellet was air-dried for 20 min. The dried pellet was dissolved
in 150 µL DEPC treated water and extracted once with an
equal volume of chloroform:isoamylalcohol (24:1, v:v). After
centrifugation (4◦C, 12000 g) for 10 min the aqueous phase
was transferred to a new tube. The RNA was precipitated
overnight at −20◦C in the presence of sodium acetate (final

FIGURE 2 | Identification of (–)-α-Bisabolol in Candeia. Extract from the limb of Candeia tree (5 years) was obtained with dichloromethane then analyzed by GC-MS
(A), and compared to a standard of (–)-α-Bisabolol (B). On the right side of both panels are the MS spectra for the peak number 1.
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FIGURE 3 | Bisabolol content in different tissues. (–)-α-Bisabolol was
extracted with dichloromethane and quantified by GC-MS for different tissues
originating from Candeia trees. Each bar is the average of at least three
biological replicates ± SE.

centration 300 mM, pH 5.2), ethanol (2.5× volume, ice-cold)
and glycogen (45 µg). The RNA was pelleted by centrifugation
(4◦C, 12000 g) for 30 min, and the pellet washed with 250 µL of
ice-cold 70% ethanol (v/v). After 10 min of centrifugation (4◦C,
12000 g) the pellet was air-dried and suspended in water (DEPC
treated).

Total RNA was used to prepare a cDNA library using
TruSeqTM RNA preparation kit (Illumina, United States) for
Illumina HiSeq2000 at Vertis Biotechnology AG (Freising,
Germany). Illumina HiSeq2000 sequencing resulted in
81,396,422 total reads between 36–251 bp long. Bisabolol
synthases known from the literature, including L. dulcis (+)-
epi-α-bisabolol synthase (J7LH11), Artemisia annua α-bisabolol
synthase (4FJQ), Matricaria bisabolol synthase AIG92846 were
blasted against Candeia transcriptome in the Trinity web tool,
using TBLASTN with a cut-off e-value of 1e-4. After annotations
and assembling, contigs were manually inspected to identify
coding regions and full length open reading frames. The best hits
were blasted on UniProt database Uni Prot Consortium (2017).
Multiple protein sequence alignments were performed using the
CLC Main Workbench (QIAGEN, Version 7.6.4).

Cloning EeBOS1
The most likely candidate identify from Illumina the was
extended to full-length cDNA sequences using the SMART RACE
cDNA Amplification Kit from Clontech. Total RNA isolated from
the branch was used to generate 3′RACE cDNA according to the
Kit’s descriptions (Supplementary Table 2). The PCR products
were verified by Sager sequencing (Macrogen Europe) before
being cloned in pGEM Teasy vectors (Promega).

Protein Expression and Enzymatic Assay
To obtain recombinant EeBOS, the ORFs of full-length EeBOS
was cloned into pACYCDuet-1 vector (Novagen). Recombinant
pACYCDuet-1:EeBOS construct was transformed into E. coli
BL21 DE3 (Stratagene) and selected with chloramphenicol
(50 µg·ml−1). A single transformed colony was cultured in LB
medium with chloramphenicol (50 µg·ml−1) supplemented with

1% (W/V) glucose. When OD600 was between 0.6 and 0.8 the
expression of EeBOS was then induced with 1 mM IPTG (final
concentration) then the culture was incubated at 18◦C overnight.
The cells were harvested by centrifugation and immediately used
for an in vitro enzyme assay.

The cells were re-suspended in buffer A [50 mM Tris/HCl (pH
7.5), 1.4 mM 2-mercaptoethanol]. After cell lysis by sonication
and centrifugation (13000 g, 10 min, 4◦C), the clear supernatant
was used for enzymatic assay. Hundred microliters of the crude
extract was diluted with 800 µl of buffer [15 mM MOPSO (pH
7.0), 12.5% (v/v) glycerol, 1 mM MgCl2, 1 mM ascorbic acid,
1 mM dithiothreitol, 5 mM sodium ortho-vanadate] and 10 mM
farnesyl diphosphate (FPP) or geranyl diphosphate (GPP) as
substrate. The mixture was covered with 1 mL of pentane layer
and incubated at 30◦C with mild agitation for 2 h, followed by
extraction with 2 mL ethyl acetate (vortex-mixed and centrifuged
at 1200 g for 10 min). The collected pentane layer was dried over
a sodium sulfate column then analyzed by GC-MS.

Quantitative RT PCR
Total RNA was used as template to synthesized cDNA
with iScriptTM cDNA synthesis (Bio-Rad) according to the
manufacturer’s instructions. After DNase treatment (Thermo
Fisher Scientific), Q-PCR was performed using Power SYBR
Green (Applied Biosystems) in a 10 µl reaction using the
standard program of the CFX ConnectTM instrument (Bio-
Rad). Data were analyzed using Bio-Rad CFX Manager version:
3.0.1215.0601 (Bio-Rad). The reference gene use for this study
was obtained by homology to the Chrysolaena obovata elongation
1-α factor (KM597066). A Candeia elongation factor-encoding
fragment was amplified from Candeia cDNA using primers
designed on sequence of C. obovata which are conserved
among asteraceae species (Supplementary Table 2). The product
obtained was sequenced. Based on this sequence we designed
a set of reference primers used in our study. All primers used
are provided in the supporting information (Supplementary
Table 2). Samples from Candeia trees were separated in branch
(n = 5), leaf (n = 3), and root (n = 4).

Accession Numbers
The nucleotide sequences of Candeia reported in this work have
been submitted to the GenBank under the accession number
MH048990 for the EeBOS and MH048991 for the EeEF1.

RESULTS

Analysis of Candeia Material for
Bisabolol
In order to determine relative quantities of (–)-α-bisabolol
in different tissues, three Candeia plants which were
genetically identical, but 1, 5, and 10 years old, were sampled.
Dichloromethane (DCM) extracts from grinded material were
analyzed by GC-MS using a non-chiral column for the presence
of sesquiterpenes (Supplementary Table 1). This analysis was
aimed to confirm the presence of bisabolol, and to investigate
the proportion of bisabolol among DCM-extracted compounds.
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FIGURE 4 | Enantioselective identification of the product of EeBOS. The product of the in vitro enzymatic assay with FPP were analyzed by GC-MS with a
cyclodextrin column (solid black line). To confirm the enantiomer the EeBOS sample was compared with pure standards of [(–)-α-bisabolol; dotted black line], a
known (+)-epi-bisabolol (L. dulcis extracts; dotted gray line), a known (+)-α-bisabolol (extract of N. benthamiana expressing A. annua bisabolol synthase; solid gray
line). On the left side of both panels are the MS spectra for the (–)-α-bisabolol standard and EeBOS the in vitro enzymatic assay with FPP.

FIGURE 5 | Relative gene expression of EeBOS in different tissues. The
reference gene used was EeEF1. Each bar represents the average of at least
three biological replicates ± SE.

In none of the 1-year old sapling tissues any bisabolol could
be detected, but a suite of other sesquiterpenes was observed,
including (E)-β-caryophyllene and copaene. In the 5-year old
tree, again these two sesquiterpenes were dominant, but also
bisabolol could clearly be detected as a major peak in woody
limb and twig samples, and to a lesser extent in root tissue. The
proportion of bisabolol in the sesquiterpene mixture greatly
increases in the 10 year-old samples, which was consistent with
previously published research (Mori et al., 2010). In particular
woody tissues such as limb and twig, but also in different root

samples, high proportions of bisabolol were found. In the 10-year
old tree samples, (E)-β-caryophyllene was only detected in leaf
tissues.

To confirm the identification of α-bisabolol from the
Candeia samples we compared the mass spectrum (Figure 2A)
and retention index of the peak identified as α-bisabolol
corresponded to an authentic (–)-α bisabolol standard
(Figure 2B). Subsequently, α-bisabolol was quantified in
different tissues from the Candeia tree, using an external
calibration curve. As appears from Figure 3 and Supplementary
Figure 3, in particular the root material and the mature branches
were found to be rich in bisabolol. The highest content of
bisabolol was found in the lateral root samples of the 10-year
old tree, at 10 mg/g fresh weight. Interestingly, this tissue also
had a very high concentration of an unidentified diterpene
(Supplementary Table 1). In leaves bisabolol could not be
detected (Figure 3 and Supplementary Table 1). The absence of
bisabolol in this tissue was reported by Sousa et al. (2008), but
differs from the results reported by Silverio et al. (2013), where
α-bisabolol was detected in the leaves.

Isolation of the (–)-α-Bisabolol Synthase
From Candeia
Based on bisabolol quantification we chose to extract the RNA
from the woody part of the branch of the 10 year old Candeia
tree. Total RNA was extracted from the sample with hot borate
method (Wan and Wilkins, 1994). The cDNA obtained from this
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RNA was analyzed by Illumina HiSeq2000 paired end sequencing
using a read-length of about 250 bp. The sequencing generated
81.396.422 total sequence reads, from which 65.117.137 cleaned
reads were used for sequence assembly. The assembly was probed
for the presence of sesquiterpenes synthase-encoding sequences
using TBLASTN, which resulted in 87 candidate terpene synthase
transcripts (2017). Among these sequences, a transcript encoding
a protein of 574 amino acids was identified, which showed
71% sequence identity to the recently identified (–)-α-bisabolol
synthase from M. recutita (Son et al., 2014). This Candeia cDNA
sequence was thereafter referred to EeTPS1.

Identifying the Products of EeTPS1
The full length open reading frame of EeTPS1 was amplified from
Candeia cDNA and cloned into expression vector pACYCDUET-
1 (Supplementary Table 2). The EeTPS1 protein was expressed
in E. coli BL21 DE3, and cell-free extracts of EeTPS1 and
pACYCDUET-1 hosting bacteria were compared in in vitro
assays, using FPP or GPP as substrate. Assays of EeTPS1 with
GPP did not show any product other than those detected using
a control cell extract (Supplementary Figure 1). Assays with
FPP did generate a single peak which showed the same mass
spectrum and retention time as an authentic standard of (–)-
α-Bisabolol on a chiral column (Figure 4). To confirm the stereo
selectivity of EeTPS1 we also injected extracts from L. dulcis [(+)-
epi-α-bisabolol; Attia et al., 2012] and Artemisia [(+)-bisabolol;
Muangphrom et al., 2016]. The three stereo isomers are clearly
separated. Thus, EeTPS1 was identified as an (–)-α-Bisabolol
synthase, and was renamed to EeBOS.

The EeBOS protein sequence was aligned to the protein
sequences of the currently known (–)-α-bisabolol synthase of
M. recutita (Son et al., 2014), the (+)-epi-bisabolol synthase
from L. dulcis (Attia et al., 2012), and the α-bisabolol synthases
from A. annua (Li et al., 2013), (+)-α-bisabolol synthases from
Artemisia kurramensis and Artemisia maritima (Muangphrom
et al., 2016; Supplementary Figure 2). The EeBOS protein
sequence displayed 71% identity to the Matricaria synthase
(MrBOS), but only 48% identity to the Artemisia synthases,
and 35% identity to the synthase of L. dulcis (Supplementary
Table 3). Both the Matricaria and Candeia amino acid sequences
showed an elongated N-terminus, compared to the other proteins
(Supplementary Figure 2). Interestingly we could only detect
(–)-α-bisabolol as the product of EeBOS, whereas the MrBOS was
also producing a small (2% of the total terpenoids) quantity of
β-farnesene (Son et al., 2014).

Gene Expression Analysis of EeBOS1
In order to correlate the expression of the EeBOS to the
presence of (–)-α-bisabolol, samples from the branch, leaves
and roots of the trees were analyzed for gene expression with
quantitative RT-PCR (Figure 5 and Supplementary Figure 4).
Specific primers were designed based on the Candeia cDNA
sequence (Supplementary Table 2). The reference gene used was
the Candeia elongation 1-alpha factor (EeEF1).

EeBOS expression followed the (–)-α-bisabolol accumulation
pattern (Figure 5 and Supplementary Figure 4). Interestingly,
low levels of expression of EeBOS1 could be detected in leave

samples whereas no bisabolol could be detected in these samples
(Figure 3). Otherwise, levels of gene expression of EeBOS parallel
the bisabolol levels in the analyzed tissues, confirming a role of
the EeBOS gene in production of (–)-α-bisabolol, and suggesting
that regulation of its expression contributes to the control of the
quantity of (–)-α-bisabolol in the Candeia tree.

DISCUSSION

In this work, we identify EeBOS, a gene which appears to be
able to mediate the synthesis of the broadly used compound
(–)-α-bisabolol, from the Candeia tree. This is the first step in the
elucidation of the pathway to bisabolol in this important plant.
On the longer term, EeBOS may provide an important tool for
the breeding of highly productive Candeia germplasm, which is
needed for the sustainable production of (–)-α-bisabolol and the
preservation of the wild Candeia resources. The observation that
(–)-α-bisabolol is also produced in the root of the Candeia tree
could suggest that alternative ways of (–)-α-bisabolol using hairy
root cultures could be explored, as an alternative for commercial
plantations.
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