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Alterations in the timing of developmental programs during evolution, that lead to
changes in the shape, or size of organs, are known as heterochrony. Heterochrony
has been widely studied in animals, but has often been neglected in plants. During plant
evolution, heterochronic shifts have played a key role in the origin and diversification
of leaves, roots, flowers, and fruits. Heterochrony that results in a juvenile or simpler
outcome is known as paedomorphosis, while an adult or more complex outcome is
called peramorphosis. Mechanisms that alter developmental timing at the cellular level
affect cell proliferation or differentiation, while those acting at the tissue or organismal
level change endogenous aging pathways, morphogen signaling, and metabolism. We
believe that wider consideration of heterochrony in the context of evolution will contribute
to a better understanding of plant development.
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THE DIFFERENT TYPES OF HETEROCHRONY

In the 1870s, Ernst Haeckel identified temporal and spatial changes in development in a descendant
relative to its ancestor as the two mechanisms most important for evolution (Haeckel, 1875).
Haeckel named spatial changes heterotopy, and temporal changes heterochrony.

However, the meaning of heterochrony has changed since Haeckel first coined the term. Haeckel
used the term heterochrony to refer to deviations from his well-known “Biogenetic Law,” which
states that the sequence of developmental events (ontogeny) largely recapitulates the sequence of
events in the evolutionary history of the species (phylogeny) (Haeckel, 1875). Thus, heterochrony
originally referred to a change in the timing of appearance of a feature in a developmental
sequence of an organism, relative to the sequence that occurred in the organism’s phylogeny. In
the middle of the 20th century, De Beer (1951) uncoupled heterochrony from recapitulation. He
used heterochrony to denote differences in the timing of developmental events when comparing
two related species, to explain how heterochrony could generate diversity among organisms.
Gould (1977) re-associated the concept of heterochrony to recapitulation, defining heterochrony
as “changes in the relative time of appearance and rate of development for characters already
present in ancestors,” emphasizing changes in relative size and shape, rather than in the timing
of developmental events, to detect heterochrony. At the turn of the 21st century, Smith proposed
that it would be more useful to define two types of heterochrony: ‘growth heterochrony,’ which
emphasizes changes in final size and shape; and ‘sequence heterochrony,’ which is closer to the
original usage of Haeckel and de Beer, and allows explanation of phenotypic variation by changes
in the timing of developmental events (Smith, 2002, 2003; Keyte and Smith, 2014).
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Sequence heterochrony (hereafter referred to as ‘heterochrony’)
can be classified in two categories: paedomorphosis and
peramorphosis. When compared to ancestral development,
paedomorphosis results in a juvenile or simple outcome,
whereas peramorphosis results in an adult or more complex
phenotype. Each of these two categories of heterochrony
can result from variation in timing of the onset, offset or
rate of a developmental process, as proposed by Alberch
et al. (1979). This variation can result in 6 different types
of heterochrony (Figure 1). Paedomorphosis can result
from the precocious end of a developmental process
(progenesis), from a delayed start of the process (post-
displacement), or from a slower rate of development (neoteny).
Peramorphosis is the result of an extended period of
development due to a later termination (hypermorphosis)
or an earlier onset (pre-displacement), or of a higher rate
of development (acceleration) (Figure 1A). Hypothetical
examples for peramorphosis and paedomorphosis in plant
embryogenesis and vegetative development are shown in
Figures 1B,C.

While these classifications are useful to illustrate changes
in developmental timing, when considering real life examples,
it is often difficult to distinguish between different kinds of
heterochrony. In many cases, evolution can result in distinct
types of heterochrony, each occurring at a discrete stage of a
developmental process (reviewed in plants by Li and Johnston,
2000).

HETEROCHRONY IN THE EVOLUTION
AND DIVERSIFICATION OF PLANTS

Land plants (embryophytes) have undergone many
morphological innovations since their emergence in the
mid-Ordovician period, about 470 million years ago. Early
diverging lineages originated over a period of more than 100
million years, during the Silurian and early Devonian periods
(Kenrick and Crane, 1997; Pires and Dolan, 2012; Harrison
and Morris, 2018). Embryophytes evolved from a freshwater
algae ancestor that was related to the extant charophyte groups
Charales, Coleochaetales, and Zygnematales. The transition to
growth on land, as observed in bryophytes (hornworts, mosses,
and liverworts), involved the origin of spores, alternation of
gametophyte and sporophyte generations, uniaxial forms, and
three-dimensional growth. Innovations of terrestrial vascular
plants (lycophytes, monilophytes, and spermatophytes) included
bifurcation, indeterminacy, sporophytic dominance, axillary
branching, and the formation of meristems, leaves, and roots
(Harrison, 2017).

Several of the evolutionary steps above have been linked
to heterochrony. For the origin of sporogenesis, bryophyte
data suggest that spores were produced directly from zygotes
in a process involving precocious cytokinesis, acceleration
of meiosis and delayed wall deposition from the zygote to
the meiospores (Brown and Lemmon, 2011). The branched
sporophyte (polisporangiophyte) has been hypothesized to have
evolved by extended vegetative growth of the apical cell. This

longer period of vegetative growth was proposed to result in a
prolonged embryonic axis, shoot branching, and a delay in the
transition to reproductive growth, producing the sporangium
(Rothwell et al., 2014; Tomescu et al., 2014). Additional studies
of plant fossils should provide more evidence for ancient
plant morphologies, which would allow comparison between
contemporary and extinct forms (Rothwell et al., 2014).

In extant plants, heterochronic changes have been identified
in gametophyte development, embryogenesis, vegetative
development, shoot maturation, and floral morphogenesis.
The female gametophyte of Gnetum is structurally divergent
from other plants because of differences in the timing of
fertilization and somatic development. Temporal alterations
in cell cycle progression have contributed to diversified
temporal patterns of spermatogenesis and gamete fusion during
fertilization (Friedman, 1999; Tian et al., 2005). In a case of
progenesis, fertilization occurs at a free nuclear stage of somatic
development, a juvenile stage compared to the ancestral somatic
ontogeny, precluding the differentiation of egg cells (Friedman
and Carmichael, 1998). The apomictic development of Boechera
ovules has been associated with heterochronic gene expression
patterns compared to non-apomictic (sexual) ovules (Sharbel
et al., 2010). The development of Rafflesiaceae, a holoparasitic
plant family which infects grapevines, shows two heterochronic
shifts: an arrest at the proembryonic stage, which can be
considered an example of neoteny, and acceleration of the
transition from the undifferentiated endophyte to flowering,
skipping vegetative shoot maturation (Nikolov et al., 2014).

A Quantitative Trait Loci (QTL) analysis comparing
Eucalyptus globulus populations with precocious vegetative
phase change and populations in which vegetative phase
change is delayed several years identified the expression of
the microRNA EglMIR156.5 as responsible for heterochronic
variation in vegetative phase change in E. globulus (Hudson
et al., 2014). Another QTL analysis concluded that heterochrony
underlies natural variation in Cardamine hirsuta leaf form
(Cartolano et al., 2015). QTL mapping determined that the effect
is caused by cis-regulatory variation in the floral repressor ChFLC
such that populations with low-expressing ChFLC alleles show
both early flowering and accelerated acquisition of adult leaf
traits, particularly increased leaflet number. Morphometric and
QTL analyses have determined that heterochronic mutations
contribute to natural variation in Antirrhinum and to grapevine
heteroblasty (Costa et al., 2012; Chitwood et al., 2016).
A Principal Component Analysis (PCA) of the ontogenetic
trajectories of leaf form among the three genera of marsileaceous
ferns (Marsilea, Regnellidium, and Pilularia) suggested that
they show a paedomorphic phenotype, compared to the more
complex ancestral development, caused by accelerated growth
rate and early termination at a simplified leaf form (Pryer and
Hearn, 2009).

Evolutionary diversity in inflorescence architecture of
the Solanaceae is modulated by heterochronic shifts in the
acquisition of floral fate (Lippman et al., 2008; Park et al., 2012).
A comparison of transcriptomes of meristem maturation from
five domesticated and wild Solanaceae species revealed a peak of
expression divergence, resembling the “inverse hourglass” model
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FIGURE 1 | Types of heterochrony. (A) Schematic representation of the 6 types of heterochrony. The black line represents the time required to reach a certain
developmental stage in the ancestral ontogeny. Blue lines show the 3 types of paedomorphosis: progenesis (precocious offset), post-displacement (delayed onset)
and neoteny (slower developmental rate). Red lines show the 3 types of peramorphosis: hypermorphosis (delayed offset), pre-displacement (precocious onset), and
acceleration (higher developmental rate). Drawing in (A) is based on Alberch et al. (1979) and Geuten and Coenen (2013). (B) Heterochrony scenarios for
embryogenesis. Arabidopsis embryogenesis is taken here as the hypothetical ancestral development, divided in four stages for illustrative purposes. A fifth stage,
where the embryo has produced the first two leaves plus the two cotyledons (denoted embryonic seedling), is proposed as the final stage in peramorphic
embryogenesis, whereas paedomorphic embryogenesis is expected to conclude at the heart stage. (C) Heterochrony scenarios for vegetative development. In this
case, Arabidopsis vegetative development, where the plant continues producing cauline/reproductive leaves on the stem before flowering (drawn on the top),
represents a hypothetical case of peramorphic vegetative development, compared to a hypothetical ancestor which flowers at the adult stage without producing
cauline leaves. Paedomorphic vegetative development is predicted to result in plants flowering at the juvenile stage.

for animal embryogenesis, which states that a mid-development
period of divergence drives morphological variation (Lemmon
et al., 2016). In grasses, a delay in the shoot meristem (SM) to
floral meristem (FM) transition results in more complex panicles
(Kyozuka et al., 2014). Poplars (Populus sp.) and willows (Salix
sp.) bear compact unisexual inflorescences known as “catkins,”
which have been proposed to be evolved from a simplification
of the panicle form by an early SM to FM transition (Cronk
et al., 2015). Heterochronic changes have also contributed to
natural variation in flowering time and shoot architecture among
Mimulus guttatus populations (Baker and Diggle, 2011).

Morphological diversity of the perianth in Dipsacoideae is
caused by heterochronic changes in organ initiation, specifically
in the number of sepals (Naghiloo and Claßen-Bockhoff,
2017). The great shape diversity of sepals among Iris species
is due more to heterochrony than to heterotopic changes
(Guo, 2015). A study in Brassicaceae showed that evolution
of corolla monosymmetry from the polysymmetrical ancestral
flower involved a heterochronic shift in the expression of
CYC2 genes (a clade of TCP transcription factors) from
early adaxial expression in ancestral floral meristems, to a
later adaxial expression in petal development (Busch et al.,

2012). Heterochronic, but not heterotopic, CYC2 expression has
also been associated with a loss of papillate conical cells in
petals and a shift to bird-pollination system in Lotus (Ojeda
et al., 2017). A paedomorphic morphology, in which the
flowers hold mature pollen in unopened bud-like structures,
led to specialized pollination in a clade of Madagascar vines
(Euphorbiaceae) (Armbruster et al., 2013). The evolution of
cleistogamous capitulum from a chasmogamous ancestral state
is a classic example of paedomorphosis, since the cleistogamous
shape shows juvenile traits (Lord and Hill, 1987). Cleistogamy
in Asteraceae specifically evolved by pre-displacement and
progenesis of floral development, as well as neoteny of all
whorls other than the gynoecium (Porras and Muñoz, 2000). The
diversity of floral morphologies within Jaltomata, a Solanaceae
genus, is due to hypermorphosis and acceleration of some corolla
traits (Kostyun et al., 2017). The diversity of Azorean butterfly
orchids is also caused by floral heterochronic shifts (Bateman
et al., 2014). Recently, Ronse de Craene (2018) emphasized the
importance of heterochrony in three developmental processes:
phyllotaxis, the development of common stamen-petal primordia
and obdiplostemony, linking changes in the growth rate
with delayed organ initiation. Heterochronic growth rates of
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the perianth and style, and early hypanthium elongation,
are responsible for the great species diversity within the
morphologically homogeneous Eugenia genus (Vasconcelos et al.,
2018). Finally, heterochronic expression of the fw2.2 allele, which
affects cell division in early fruit development, is responsible for
natural variation in tomato fruit size (Cong et al., 2002).

STUDYING HETEROCHRONIC MUTANTS
TO ELUCIDATE GENETIC CONTROL OF
TIMING

The study of mutants affected in developmental timing has
shed light on genetic pathways controlling morphogenesis and
developmental transitions. Heterochrony can be caused by earlier
or later activation or repression of these pathways.

leafy cotyledon (lec), dicer-like1 (dcl1), and extra cotyledon
(xtc) mutants of Arabidopsis thaliana represent heterochronic
phenotypes that have helped to define seed maturation programs.
lec mutants produce cotyledons with features of leaf identity
(Meinke, 1992), a clear example of homeosis: the replacement
of one structure by another. However, it is often difficult to
distinguish between homeosis and heterochrony, since homeosis
can be the result of both heterochrony and heterotopy (Li
and Johnston, 2000; Geuten and Coenen, 2013). During late
embryogenesis, LEC2 promotes seed maturation and represses
postembryonic identity (Stone et al., 2008). Like lec mutants, dcl1
mutants show peramorphic phenotypes during embryogenesis,
as chloroplast development and seed storage protein gene
expression occur earlier than in wild type embryos. DCL1
is required for biogenesis of microRNAs, which repress seed
maturation through the master regulators LEC2 and FUSCA3
(Nodine and Bartel, 2010; Willmann et al., 2011). The xtc1,
xtc2, and altered meristem programming1 (amp1) mutants show
a homeotic phenotype where the first one or two leaves are
transformed into cotyledons (Conway and Poethig, 1997). In
these three mutants, the globular to heart transition is delayed,
causing an enlarged shoot meristem, which leads to extra
organ formation during embryogenesis. This phenotype can be
interpreted as hypermorphosis, a type of peramorphosis, since
embryo development is extended to a more developed shape (like
the peramorphic scenario in Figure 1B). However, if vegetative
development is chosen as a point of reference, lec mutants
would represent a case of pre-displacement (peramorphosis),
and xtc1, xtc2, and amp1 would represent post-displacement
(paedomorphosis) in the acquisition of leaf identity. AMP1 is
required for miRNA-mediated translational repression on the ER
membrane (Li et al., 2013).

Genetic regulation of the juvenile to adult transition,
also called vegetative phase change, has been studied using
both paedomorphic and peramorphic mutants. Screenings for
mutants showing an early adult (peramorphic) phenotype
produced alleles of genes related to small RNA biogenesis like
zippy/ago7, sgs3, and rdr6 (Hunter et al., 2003; Peragine et al.,
2004), while mutants with a late adult (paedomorphic) phenotype
are due to increased miRNA levels (Gillmor et al., 2014; Xu
M. et al., 2016, 2018; Guo et al., 2017). The genetic basis for

these phenotypes is explained by altered expression of the closely
related microRNAs miR156 and miR157, the main regulators of
vegetative phase change that act by repressing SPL transcription
factors at both transcriptional and translational levels, in a
threshold-dependent manner (Wu and Poethig, 2006; Chuck
et al., 2007; Poethig, 2013; He et al., 2018). Both MIR156 and SPL
gene families are directly regulated by epigenetic marks: MIR156
is activated by H3K4me3 and H3K4ac, which are promoted by the
SWR1-C complex and the chromatin remodeler BRAHMA, and
is repressed by H3K27me3, which is promoted by the Polycomb
proteins SWINGER and CURLY LEAF and by the chromatin
remodeler PICKLE (Xu M. et al., 2016; Xu Y. et al., 2016; Xu
M. et al., 2018). SPL genes are activated by histone acetylation
mediated by the SAGA-like complex and repressed by H2AUb
mediated by the Polycomb proteins RING1A and RING1B (Kim
et al., 2015; Li et al., 2017). The study of plants with loss- or
gain-of function of SPL genes has also defined an endogenous
flowering pathway in which some SPL genes promote the
expression of miR172, which in turn promotes flowering by
repressing the APETALA2 family flowering repressors (Wang
et al., 2009; Wu et al., 2009; Huijser and Schmid, 2011).

Besides major developmental transitions, organ
morphogenesis can also be affected by heterochronic activation
of genetic regulators. For instance, early germination of
Brassica rapa embryos results in organs with mosaics
of cotyledon and leaf identity (Fernandez, 1997), and
differential temporal expression of the class II of TEOSINTE
BRANCHED1/CYCLOIDEA/PROLIFERATION CELL FACTOR
(TCP) genes results in leaves with different size and shape (Efroni
et al., 2008).

MECHANISMS DRIVING CHANGES IN
DEVELOPMENTAL TIMING IN PLANTS
(TRANSCRIPTIONAL, METABOLIC, AND
CELLULAR HETEROCHRONY)

Transcriptional heterochrony refers to a change in the timing
of activation or repression of gene expression, and is often
caused by changes in cis-regulatory gene regions (Pham
et al., 2017). Transcriptional heterochrony in the genetic
pathways mentioned above is a common way of producing
heterochronic phenotypes. Metabolic control of pathways
regulating developmental transitions (referred to here as
“metabolic heterochrony”), and temporal control of cell
proliferation, cell expansion and cell differentiation (referred to
here as “cellular heterochrony”) are other mechanisms driving
heterochrony in plants (Figure 2). Transcriptional, metabolic
and cellular processes are interconnected, so the molecular origin
of heterochrony can be due to a combination of mechanisms.

Metabolic heterochrony can be influenced by hormones,
sugars, and redox signals (Jia et al., 2017). Differential
biosynthesis, transport and perception of hormones such as
auxin, jasmonic acid (JA), gibberellin and abscisic acid influence
heterochrony by controlling regulators of developmental
processes. For instance, mutants in the AUXIN RESPONSE
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FIGURE 2 | Mechanisms driving heterochrony in plants. (A) Cellular heterochrony. The sequence of rosette leaves produced during vegetative development is
shown. The phenotype of Arabidopsis Columbia wild type plants is taken as a hypothetical ancestral state; a paedomorphic scenario (neoteny) and a peramorphic
scenario (acceleration) are also shown. Arrows represent the direction of the wave of the cell division arrest in a basipetal gradient, where cells below the dotted line
are still actively dividing whereas the cells above are expanding and/or differentiating. (B) Transcriptional and metabolic heterochrony. A graphic representation of the
predicted abundance of the microRNA miR156/7 and its targets, the SPL genes, as well as sugar abundance along the time of vegetative development,
corresponding to the phenotypes in (A). Dotted lines represent the threshold of miR156/7 and SPL abundance which leads to juvenility (above the threshold) or
adulthood (below the threshold). In this case, a delay in the repression of miR156 and activation of SPL expression and sugar production results in paedomorphosis,
whereas a precocious decay of miR156 and early activation of SPL expression and sugar production results in peramorphosis. These drawings are simplified
representations, and do not reflect the exact abundances in nature. The actual pattern of miR156/SPL abundance is closer to that depicted for “peramorphosis”
state.

FACTORS (ARF) ARF3 and ARF4 delay the adult transition
(Fahlgren et al., 2006; Hunter et al., 2006), and auxin homeostasis
controls the transition from floral stem cell maintenance to
gynoecium formation (Yamaguchi et al., 2017). Exogenous
JA can delay the adult transition by postponing the decline
of miR156 expression (Beydler et al., 2016), and gibberellin
accelerates flowering by releasing SPL genes from repression
by DELLA proteins (Yu et al., 2012). Nutritional status has
been associated with the control of vegetative phase change
since the early 20th century (Goebel, 1908). Sugar produced by
photosynthesis is necessary for the acquisition of adult traits and
is partially responsible for the decrease in miR156 expression
in late vegetative development (Yang et al., 2013; Yu et al.,
2013; Buendía-Monreal and Gillmor, 2017). HEXOKINASE1
(HXK1) and Trehalose-6-phosphate (T6P) are important for
the sugar-mediated repression of miR156, thereby promoting
vegetative phase change and flowering (Wahl et al., 2013; Yang
et al., 2013).

At the cellular level, organogenesis consists of a sequence
of three stages: the establishment of polarity, cell proliferation,
and cell expansion (Walcher-Chevillet and Kramer, 2016). The
timing of initiation and termination of these stages is crucial
for the size and shape of organs, and heterochrony in this
sequence results in diversification of organ size and shape

(Figure 2). The transition from cell proliferation to cell expansion
and differentiation requires coordination between the cell cycle
and cell growth (Sablowski and Carnier Dornelas, 2014). In
leaves of model plants, this transition moves as a basipetal
wave of cell cycle arrest that begins at the distal part of the
primordium and moves to the base. Cells behind the mitotic
arrest front become highly vacuolated and begin to expand
(Donnelly et al., 1999; Czesnick and Lenhard, 2015). However,
other plant species can show diffuse growth, and acropetal or
bidirectional cell cycle arrest gradients (Das Gupta and Nath,
2015). The acquisition of photosynthetic capacity is required for
the shift from cell division to cell expansion (Andriankaja et al.,
2012). This shift correlates with the role of sugar in promoting the
Target of Rapamycin (TOR) pathway and repressing the Sucrose-
non-fermenting1-related kinase 1 (SnRK1): TOR and T6P
induce cell expansion by promoting macromolecular synthesis,
whereas SnRK1 promotes catabolism (Tsai and Gazzarrini,
2014; Sablowski, 2016). Two microRNAs play opposite roles in
this cellular shift: miR319 represses the expression of class II
TCP factors, which are inhibitors of cell proliferation, whereas
miR396 restricts the expression of GROWTH REGULATING
FACTORS (GRFs), which delay differentiation (Das Gupta and
Nath, 2015; Maugarny-Calés and Laufs, 2018). The transition
from an indeterminate shoot apical meristem to a determinate
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floral meristem also involves temporal regulation of the cellular
identity. The timing of AGAMOUS activation of KNUCKLES,
which in turn represses WUSCHEL, defines the temporal window
of indeterminacy and consequently the size and the number of
organs (Sun et al., 2014).

CONCLUSION

An understanding of temporal regulation of plant development
is necessary to better appreciate the diversity of plant forms that
we see in nature, to explain plant morphological evolution, and
to manipulate plant architecture for the benefit of agriculture.

As outlined above, interrelated transcriptional, metabolic, and
cellular mechanisms drive heterochrony in extant species.
Further research on these pathways in angiosperms and
basal plant lineages should reveal more about the changes
in developmental timing that have driven the evolution of
development in plants.
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