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The development of unmanned aerial vehicles (UAVs) and image processing algorithms

for field-based phenotyping offers a non-invasive and effective technology to obtain

plant growth traits such as canopy cover and plant height in fields. Crop seedling stand

count in early growth stages is important not only for determining plant emergence, but

also for planning other related agronomic practices. The main objective of this research

was to develop practical and rapid remote sensing methods for early growth stage

stand counting to evaluate mechanically seeded rapeseed (Brassica napus L.) seedlings.

Rapeseed was seeded in a field by three different seeding devices. A digital single-lens

reflex camera was installed on an UAV platform to capture ultrahigh resolution RGB

images at two growth stages when most rapeseed plants had at least two leaves.

Rapeseed plant objects were segmented from images of vegetation indices using

typical Otsu thresholding method. After segmentation, shape features such as area,

length-width ratio and elliptic fit were extracted from the segmented rapeseed plant

objects to establish regression models of seedling stand count. Three row characteristics

(the coefficient of variation of row spacing uniformity, the error rate of the row spacing

and the coefficient of variation of seedling uniformity) were further calculated for seeding

performance evaluation after crop row detection. Results demonstrated that shape

features had strong correlations with ground-measured seedling stand count. The

regression models achieved R-squared values of 0.845 and 0.867, respectively, for the

two growth stages. The mean absolute errors of total stand count were 9.79 and 5.11%

for the two respective stages. A single model over these two stages had an R-squared

value of 0.846, and the total number of rapeseed plants was also accurately estimated

with an average relative error of 6.83%. Moreover, the calculated row characteristics were

demonstrated to be useful in recognizing areas of failed germination possibly resulted
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from skipped or ineffective planting. In summary, this study developed practical

UAV-based remote sensing methods and demonstrated the feasibility of using the

methods for rapeseed seedling stand counting and mechanical seeding performance

evaluation at early growth stages.

Keywords: UAV, remote sensing, vegetation index, rapeseed seedling, stand count, high-throughput phenotyping,

agronomic management, seeding performance

INTRODUCTION

Unmanned aerial vehicles (UAVs) have become a popular
and promising platform for field-based phenotyping (FBP)
(Zhang and Kovacs, 2012; Sankaran et al., 2015; Yang et al.,
2017). UAVs have many advantages, including flexibility to
be quickly deployed, low-attitude imaging and non-invasive
observation with ultrahigh spatial resolution, and frequent data
collection. They offer great opportunities for field-based high-
throughput phenotyping (Araus and Cairns, 2014; Sankaran
et al., 2015; Holman et al., 2016). In contrast to the high-
throughput phenotyping platforms (HTPPs) in greenhouses
or growth chambers, UAV-based HTPPs can obtain detailed
information in fields (Yang et al., 2017). Compared with other
field-basedHTPPs (e.g., unmanned ground vehicle), they provide
more effective and simultaneous measurements of all plots in a
relative large field (Holman et al., 2016; Liu et al., 2017b). Thus,
the emerging UAV-based HTPPs have been increasingly used to
evaluate plant water stress (Sullivan et al., 2007; Baluja et al.,
2012; Gonzalez-Dugo et al., 2013; Ludovisi et al., 2017), nitrogen
content (Kefauver et al., 2017; Krienke et al., 2017), and growth
parameters (Brede et al., 2017; Jin et al., 2017; Yue et al., 2017) at
field scale. During the FBP of a crop’s entire growth period, there
is a strong interest in evaluating its growth traits such as canopy
cover (Irmak et al., 2000; Breckenridge et al., 2011; Córcoles et al.,
2013) and plant height (Bendig et al., 2015; Holman et al., 2016;
Schirrmann et al., 2017; Watanabe et al., 2017; Yue et al., 2017).
Nevertheless, seedling stand count in early growth stage has not
received enough attention, though it is one of the most important
traits for crop cultivation and management (Severini et al., 2011;
Sankaran et al., 2015; Gnädinger and Schmidhalter, 2017; Liu
et al., 2017b).

Seedling stand count is not only critical for determining
plant emergence (Jin et al., 2017), density (Liu et al., 2017b)
and yield (Zheng et al., 2016) in breeding programs, but also
important for other related agronomic practices. For example,
plant density derived from seedling stand count is considered
as one of the first variables commonly measured in agronomical
trials (Liu et al., 2017a). Furthermore, most crops are sown in
rows by seeding devices nowadays. The uniformity of the seedling
distribution based on seedling stand count can be useful for

Abbreviations: UAVs, unmanned aerial vehicles; FBP, field-based phenotyping;

HTPPs, high-throughput phenotyping platforms; VIs, vegetation indices;

PPCCSD, precision pneumatic cylinder-type centralized seeding device; RDSD,

rotating disc-type seeding device; CMD, centrifugal metering device; ExG, excess

green index; ExR, excess red index; ExG-ExR, excess green minus excess red index;

NGRDI, normalized green minus red difference index; GLI, green leaf index.

improving seeding equipment technology. However, traditional
manual methods to count the number of seedlings are time-
consuming and prone to human errors (Jin et al., 2017; Liu et al.,
2017b).

The fast development of field-based high-throughput
phenotyping provides new ways to overcome this deficiency
(Araus and Cairns, 2014; Chapman et al., 2014; Shi et al., 2016).
Shi et al. used a LiDAR system to achieve maize plant locating
and counting at mid-growth stages. A laser scanner was used
to count maize plants from the side-view (Shi et al., 2013). The
mean total errors in plant counting at two different growth stages
were, respectively, 24.0 and 10.0%. In addition, weed control and
sensing height would impact on the counting accuracy when
using a ground-based platform for maize counting at the mid-
growth stages. In contrast, Gnädinger et al. carried out maize
plant recognition using digital counts in images that captured
by an UAV platform at different growth stages (Gnädinger and
Schmidhalter, 2017). The authors found that ground cover
calculated from segmentation of green areas indicated little
correlation (R2 = 0.023) with plant numbers recorded manually
in a field. After image processing via enhancing color contrasts
and creating a threshold, a strong correlation (R2 = 0.89)
between digital counts and plant numbers was achieved. These
results demonstrated the potential of using field-based HTPPs
to achieve crop seedling counting. However, these methods
for maize stand counting can hardly be applied to other small
crops (Liu et al., 2017a), such as wheat and rapeseed. Maize
plants are bigger, with larger plant spacing and more uniform
distribution (Jin et al., 2017; Liu et al., 2017b). Instead, some
crops have complex leaf overlap with small and variable spacing
(Jin et al., 2017), making it difficult to employ these methods
directly.

In spite of a number of difficulties, several studies on wheat
density estimation have been conducted (Liu et al., 2016, 2017a,b;
Jin et al., 2017). The seedling counting of wheat first started
with the extraction of features of segmentation objects. Objects
were separated from images of vegetation indices (VIs) derived
from ultrahigh resolution images. Wheat density was further
computed from the objects in conjunction with crop row
detection. Liu et al. used a neural network to estimate the number
of seedlings in wheat objects using object features (Liu et al.,
2017b). The method was applied at three experimental sites with
different types and numbers of features. The experimental result
showed the estimated wheat density accuracy with an average
relative root-mean-square-error (RMSE) of 12.15% for the three
experiments. This study demonstrated that extracted feature
type and number affected the estimated result. Jin et al. used
a supervised classification method to estimate wheat seedling
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count (Jin et al., 2017). The results also demonstrated that spatial
resolution better than 0.40 cm/pixel would improve seedling
count estimation. It was possible to retrieve the number of plants
per segmentation object through separating the overlapping
leaves at this resolution. These efforts for wheat seedling counting
have been implemented with the advances in object-based image
analysis (OBIA) techniques (Pe-a-Barragán et al., 2011; Torres-
Sánchez et al., 2015) and the usage of ultrahigh resolution images
collected from field-based HTPPs (Ballesteros et al., 2014; Matese
et al., 2015). FBP with high resolution images offers a new means
to estimate crop seedling count with sufficient accuracy. Image
resolution, observation growth stage, and estimation methods all
influence the performance. These results will be beneficial to the
study of rapeseed, a crop that also has complex leaf overlap and
small and variable spacing, like wheat.

China is one of the main countries for rapeseed production
(Fu et al., 2001; Wang et al., 2007; Yu et al., 2014). Mechanical
direct-seeding of rapeseed is amethod encouraged and supported
by the government for agricultural production. Nonetheless, little
work has been done on the use of UAV-based technology for
rapeseed seedling stand counting. Meanwhile, rapeseed has small
seed size with a diameter of 1.9mm, which can be easily damaged
or gathered to block the nozzle of the sowing device to cause poor
seeding performance (Yu et al., 2014). Thus, there is an urgent
need for field-based seeding performance evaluation to improve
agronomy and mechanical seeding technology. As mentioned
above, the advances in crop seedling counting will facilitate
the development of techniques for rapeseed stand counting.
Therefore, the objectives of this study were to (1) use ultrahigh
resolution UAV imagery to identify rapeseed seedling objects
at two different growth stages; (2) develop multiple regression
models for seedling stand counting over these stages; (3) evaluate
mechanical seeding performance based on seedling stand count.

MATERIALS AND METHODS

Study Area and Field Experiment
This study was conducted in a field plot of 18 × 50m
(central coordinate: 114◦21′17.5′′E, 30◦28′4.2′′N) in Wuhan,
Hubei province, China in autumn 2016. Rapeseed was seeded in
the study area with three different mechanical seeding devices,
including a precision pneumatic cylinder-type centralized
seeding device (PPCCSD), a rotating disc-type seeding device
(RDSD) and a centrifugal metering device (CMD). According to
the field experiment, six sample plots were randomly delimited
for each seeding device. A total of 18 sample plots were selected
for the rapeseed seedling counting survey and estimation. The

seedlings in each sample plot were manually counted and
recorded after image collection on the same day. Detailed seeding
information with the three seeding devices is given in Table 1.
Since the difference in the number of rows, these three treatments
didn’t have the same design density, but had the same ratio of
seeding rate to number of rows, 4.5/6= 6/8= 0.75, to ensure the
consistency of sowing.

Ground control points (GCPs) were collected by a global
navigation satellite system real-time kinematic (GNSS RTK)
instrument (UniStrong Science & Technology Co., Ltd, Beijing,
China) after image acquisition. There were five check points
among a total of 14 GCPs. The study area and the GCP
distribution are shown in Figure 1.

The UAV Platform and Camera
Configuration
A Matrice 600 UAV developed by DJI-Innovations (DJI,
Shenzhen, China) was used for this study. With the maximum
payload of 6.0 kg, its hovering time is close to 16.0min. This UAV
can resist the maximum wind speed of 8.0 m/s and its maximum
speed is 18.0 m/s in a windless environment. In this study, the
UAV was flying at about 3.0 m/s at an altitude of 20.0m. The
camera was looking with 15◦ zenith angle. The camera was setting
as being parallel to the main flight path during flighting, with a
forward overlap of 80.0% and a side overlap of 70.0%. Moreover,
two flight plans were specifically designed for the UAV as shown
in Figure 1. The two flight paths were perpendicular to each other
and one of the path was parallel to the row direction. This study
used the configuration to ensure that all the rapeseed plants were
covered and imaged (to maximize the cross section viewed of
the rapeseed plants). The ortho-mosaic imagery (e.g., Figure 1)
was further generated by Pix4D software. The trajectory was
automatically controlled by the integrated global position system
(GPS) in the UAV with a horizontal accuracy of 1.5m and a
vertical accuracy of 0.5m.

A digital single-lens reflex Nikon D800 camera (Nikon, Inc,
Tokyo, Japan) was installed on the UAV. The camera employed
a complementary metal-oxide-semiconductor (CMOS) sensor of
35.9 × 24.0mm and was equipped with a Nikon 50.0mm f/1.4
D focal lens to acquire RGB images with 36.3 million effective
pixels. The camera was also equipped with a GPS device and
a wireless trigger. The GPS information in the images could
improve the accuracy of the mosaicked image. Images were
captured every 1.0 s automatically during the UAV flight. The
captured 24-bit JPEG images with 7,360 × 4,912 pixels were
stored on a SD memory card.

TABLE 1 | Seeding information for three seeding devices.

Seeding

device

Sowing date Seeding rate

(kg/ha)

Number of

rows (row)

Theoretical row

spacing (cm)

Size of subsample

(m × m)

Sampling

sequence

PPCCSD 07 October 2016 4.5 6 25.0 1.6 × 2.0 1–6

RDSD 09 October 2016 6.0 8 20.0 2.0 × 2.5 7–12

CMD 09 October 2016 6.0 8 20.0 2.0 × 2.5 13–18
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FIGURE 1 | Study area and GCP distribution (the image was captured on 02 November 2016, projected coordinate system was WGS 1984, UTM Zone 50N, and the

RMSE in the X and Y directions calculated by check points was 0.76 and 0.74 cm, respectively).

The images were collected on 02 and 12 November 2016 at
about 11 am local time under clear and calm weather condition.
The imaging dates were appropriate because most of the rapeseed
seedlings had emerged and were at the growth stage with at least
two leaves larger than 1.0 cm2. In the study, the 230 images
collected on 02 November 2016 were named Stage 1 and the 219
images on 12 November 2016 were named Stage 2.

Data Processing and Statistical Analysis
The framework of data processing is illustrated in Figure 2A. The
first step was image pre-processing, which included distortion
correction of each image, image mosaicking, registration and
clipping. The second step was rapeseed object identification and
segmentation. These two steps were based on the 18 sample
plots, meaning that the processing domain was at image level.
Afterwards, some types of shape characteristics for rapeseed
objects were extracted for seedling stand count modeling. Finally,
seeding performance was evaluated according to the seedling

stand count estimation, including crop row detection and row
characteristic calculation.

Image Pre-processing
Vignetting and geometric distortion of images were corrected
by the free software, Capture NX-D 1.2.1 (Nikon, Inc, Tokyo,
Japan), provided with the camera. Pix4DMapper software
(Pix4D, Inc., Lausanne, Switzerland) was used to mosaic
the calibrated images, add the GCPs, and calculate RMSE
with the check points. The spatial resolution, RMSE X, and
RMSE Y for the mosaicked images are shown in Table 2.
The mosaicked images were registered and divided into 18
subsets by ERDAS Imagine 2014 (Intergraph Corporation,
Madison, AL, USA). In this study, the mosaicked image for
Stage 2 was registered to the mosaicked image for Stage 1
with a RMSE of 0.384 pixels. These 18 subsets corresponded
to the 18 sample plots according to its sampling sequence
(Table 1).
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FIGURE 2 | Data processing and analysis flowchart in (A), and data grouping flowchart in (B).

Rapeseed Object Identification and Segmentation
The key to object identification and segmentation was to separate
the rapeseed plant objects from the background. Color vegetation
indices are widely used for crop identification in agriculture (Xue

and Su, 2017). Table 3 lists some common VIs based on visible
bands from traditional digital cameras. Since rapeseed is sensitive
to the green light, excess green (ExG) (Woebbecke et al., 1995),
excess green minus excess red (ExG-ExR) (Meyer and Neto,
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TABLE 2 | Information on mosaicked images for two dates.

Dataset Number of images Acquisition date Flight height

(AGL: m)a
Spatial resolution

(cm)

GCP/Check point RMSE X (cm) RMSE Y (cm)

Stage 1 230 02 November 2016 20 0.18 14 / 5 0.76 0.74

Stage 2 219 12 November 2016 20 0.18 14 / 5 0.49 0.75

aThe abbreviation AGL stands for above ground level.

2008), normalized green minus red difference index (NGRDI)
(Gitelson et al., 2002) and green leaf index (GLI) (Louhaichi et al.,
2001) were chosen for rapeseed object identification.

Otsu thresholding method was used to separate the rapeseed
objects from soil background because of its advantages of quick
operation (Vala and Baxi, 2013) and low probability of incorrect
segmentation. There are some improved Otsu thresholding
methods, but this study chose the typical method because it was
the most fundamental segmentation algorithm. The feasibility of
using color index-based with Otsu thresholding for segmentation
to separate green crop from bare soil has been reported (Meyer
and Neto, 2008; Hamuda et al., 2016). In this study, the field
scene was relatively simple, with brown bare soil and green
rapeseed plants. Color-based Otsu thresholding could achieve
an optimal threshold to sperate background and target in this
study. The thresholds for the 18 sample plots could be rapidly
and automatically obtained.

Precision, Recall and F-measure were used in this study to
determine the segmentation effect and accuracy. Overall accuracy
and kappa value based on the confusion matrix were also
calculated for segmentation evaluation. Precision and Recall are
the most basic indicators to reveal the final segmentation results
(Xiong et al., 2017). F-measure is an overall factor to balance these
two indicators. Precision, Recall and F-measure are defined in
terms of true positive (TP), false positive (FP) and false negative
(FN) as follows:

Precision =
TP

TP+ FP
(1)

Recall =
TP

TP+ FN
(2)

F−measure = 2×
Precision × Recall

Precision+ Recall
(3)

A TP means that the extracted pixel representing rapeseed is
indeed rapeseed in the reference. If the extracted pixel does not
represent rapeseed, but the reference indicates rapeseed, then it
is counted as a FN. For an FP, the extracted pixel represents
rapeseed, but the reference doesn’t indicate rapeseed.

In this study, two sample plots were randomly chosen from
the two datasets for the segmentation test. Their VI images
were validated with a reference image digitized manually in
ArcMap 10.3 (ESRI, Redlands, CA). An example was shown in
Figure 3. The pixel value of the reference objects was assigned to
2. Meanwhile, the pixel value of the segmentation objects derived
from the VI image was assigned to 1. The value of the non-
rapeseed region was 0 in all images. Summing the digitized object
layer to the segmentation object layer, a new layer with four values

TABLE 3 | Common color vegetation indices based on RGB images.

Color vegetation

indices

Abbreviation Formula

Excess green index ExG 2G-R-B (Woebbecke et al., 1995)

Excess red index ExR 1.4R-G (Meyer et al., 1999)

Excess green minus

excess red index

ExG-ExR 3G-2.4R-B (Meyer and Neto, 2008)

Normalized green

minus red difference

index

NGRDI (G-R)/(G+R) (Gitelson et al., 2002)

Green leaf index GLI (2G-R-B)/(2G+R+B) (Louhaichi et al.,

2001)

R, G, and B represent the digital numbers (DNs) of the color image channels red (R), green

(G), and blue (B), respectively.

(0, 1, 2, and 3) was generated (calculating result in Figure 3). In
the new layer, the value of 0 indicated the non-rapeseed region. If
a pixel had the value of 1 in the new layer, the pixel only appeared
in the segmentation object layer (FN). Similarly, if a pixel had the
value of 2, the pixel only appeared in the digitized object layer
(FP). The value of 3 indicated that the pixel matched between the
digitized and segmentation object layers (TP).

During rapeseed identification and segmentation, the
confusion of weeds with rapeseed seedlings was unavoidable.
According to the rapeseed growth stages, the possible weeds
were eliminated by removing segmentation objects with an
area less than 1.16 cm2 (about 36 pixels) in this study. Another
confusion was due to the disconnected fragment objects after
segmentation. They might belong to the same rapeseed plant but
were disconnected during image segmentation because of the
effect of illumination, imaging angle and motion blur. In this
study, these potential disconnected objects were merged if they
were no more than 1.0 cm apart.

Rapeseed Object Shape Feature Extraction and

Seedling Stand Count Modeling
After the rapeseed object identification and segmentation, the
processing domain changed from image level to image object
level. Although it was difficult to separate a rapeseed object
to independent plant because of the complex overlap, the
number of seedlings contained in the object would greatly
influence its morphological parameters. For instance, an object
with more rapeseed seedlings contains more pixels than an
object with a single rapeseed plant. Therefore, there exist
differences in shape features between the two objects. This was
the base of using shape features to estimate rapeseed seedling
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FIGURE 3 | Accuracy assessment of the segmentation object.

stand count. Two types of shape features were calculated after
seedling identification and segmentation: vector features and
raster features. For vector features, four geometric features
were calculated by the minimum enclosing rectangle of an
object. Its perimeter (cm) and area (cm2) were calculated
first and then the length-width ratio and the area-perimeter
ratio were calculated. The raster features consisted of 11 shape
characteristics, including area count (pixel), perimeter count
(pixel), length-width ratio of raster number, border index, shape
index, the distribution density of the pixel feature, asymmetry,
compactness, roundness, rectangular fit, and elliptic fit (Trimble,
2014). They were calculated by eCognition Developer software
(version 8.9, 64-bit, Trimble Germany GmbH, Germany).
Table 4 lists these shape features extracted for each of the
connected object.

After rapeseed object segmentation and shape feature
extraction, the segmented objects in the 18 sample plots for
each of the two imaging dates (Stages 1 and 2) were divided
into a training dataset and a validation dataset before modeling.
To analyze the model performance on each seeding device, one
sample plot from the six sample plots for each seeding device was
randomly chosen as a validation area, resulting in three validation
sub-datasets for the three seeding devices. The rapeseed objects in
these three validation sample plots were not used for modeling.
Furthermore, 85% of the objects in the remaining 15 sample plots
for each imaging date were randomly assigned as the training
dataset for modeling, and the other 15% of the objects were
used as the fourth validation sub-dataset. Thus, there were four

validation sub-datasets and one training dataset as shown in
Figure 2B.

It is known that when the absolute linear correlation
coefficient is high (i.e., over 0.8) (Riordan and Rundel, 2014;
Sanjerehei and Rundel, 2018), the two variables are significant
collinear. Accordingly, a pre-selection was conducted for the 15
shape characteristics. Let a and b be any two shape features and y
be the ground-measured rapeseed seedling stand count contained
in objects. If these two features (a and b) were significant collinear
(|rab| > 0.8), the feature that had a higher absolute linear
correlation coefficient with y would be selected. Otherwise, both
features would be the selected characteristics.

In multivariate statistics, it is not sufficient to just evaluate
the simple correlation coefficient. Multiple stepwise regression
should be evaluated to eliminate the redundant shape features
and identify the significant features for multivariate modeling.
Consequently, multiple stepwise regression was used for
establishing the relationship between object shape characteristics
and rapeseed seedling stand count in the segmented rapeseed
objects in this study. The statistical analysis was implemented
in IBM SPSS Statistics software (version 23, 64-bit, IBM
Corporation, USA). The significant levels of variable selection
and elimination were 0.05 and 0.10, respectively, which were
default settings in SPSS. The validation dataset was used
for comparing the estimated stand count values to ground-
measured count values. The coefficient of determination (R2)
and RMSE were used as important indicators. Meanwhile,
the sum of the estimated rapeseed seedling stand counts for
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TABLE 4 | Fifteen shape characteristics extracted for each connected object (Trimble, 2014).

Feature Name Meaning Unit

F1 Perimetera The perimeter of an image object’s minimum enclosing rectangle cm

F2 Areaa The area of an image object’s minimum enclosing rectangle cm2

F3 Area-perimeter ratioa The area-to-perimeter ratio of an image object’s minimum enclosing rectangle scalar

F4 Length-width ratioa The length-to-width ratio of an image object’s minimum enclosing rectangle scalar

F5 Border indexb How jagged an image object is; the more jagged, the higher its border index scalar

F6 Area countb The number of pixels forming an image object pixel

F7 Roundnessb How similar an image object is to an ellipse scalar

F8 Compactnessb How compact an image object is scalar

F9 Shape indexb The smoothness of an image object border scalar

F10 Length/widthb The length-to-width ratio of an image object scalar

F11 Rectangular fitb How well an image object fits into a rectangle of similar size and proportions scalar

F12 Densityb The distribution in space of the pixels of an image object scalar

F13 Elliptic fitb How well an image object fits into an ellipse of similar size and proportions scalar

F14 Asymmetryb The relative length of an image object, compared to a regular polygon scalar

F15 Border lengthb The sum of pixels along an image object edge pixel

aVector feature type and
bRaster feature type.

the objects in a sample plot was introduced because the
total stand count estimation in each sample plot was the
focus in the study. Estimated count sum was rounded to
integers. The error rate of the sum (Es) and mean-absolute-
error (MAE) among the validation subsets was further used for
validation.

Estimated count sum =

M
∑

i = 1

ŷi (4)

Es =
(Estimated count sum−Measured count sum)

Measured count sum
(5)

MAE =
1

N

N
∑

i = 1

∣

∣(Es)i
∣

∣ (6)

where M is the number of the segmented rapeseed objects in
a sample, ŷ is the estimated rapeseed seedling stand count in a
segmented rapeseed object, N is the number of the validation
subsets in a dataset, and

∣

∣(Es)i
∣

∣ is the absolute Es of the ith
validation subset.

Seeding Performance Evaluation
The seeding performance evaluation included two main
processes, rapeseed row detection, and row characteristic
calculation. In this study, the rapeseed row lines were created
by points that were transformed from the segmentation objects
and spatial information. The key to row line detection was to
clearly define the points a rapeseed row line contained. For this
purpose, the points converted from the segmentation objects
were categorized and labeled according to the rapeseed row
number and the x-axis. The rapeseed row lines were generated
by connecting the points with the same labels along the y-axis
(seeding direction). Figure 4 shows the flow for creating rapeseed

object row lines. It should be mentioned that the area-based
elimination (S3) used in Figure 4 was based on a threshold that
was the area-median of the segmentation objects in the sample.
In fact, the seeding device might be shaking during seeding
due to the change of topography or other factors, which could
cause irregular seed placement and emergence. The area-based
elimination can retain the major rapeseed objects for the row
line creation. These processing techniques were written as a
Python script and implemented in ArcMap 10.3 (Zandbergen,
2013; ArcGIS, 2014). The validation datasets representing the
three different seeding devices were used for calculating row
characteristics.

Three row characteristics were calculated, including the
coefficient of variation of row spacing uniformity (CVrs), the
error rate of the row spacing (Ers), and the coefficient of variation
of seedling uniformity (CVsu). This study firstly measured the
row spacing with the spatial information of any two adjacent row
lines. Accordingly, CVrs and Ers were calculated by the following
formulas:

Xrs =
1

N − 1

N−1
∑

i = 1

xi (7)

SDrs =

√

√

√

√

1

N − 1

N−1
∑

i = 1

(xi − Xrs)
2

(8)

CVrs =
SDrs

Xrs

× 100% (9)

Ers =
(Xrs − T)

T
× 100% (10)

where N is the number of rows in the sample plot, xi is
the measured row spacing between two adjacent row lines, Xrs is
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FIGURE 4 | Flowchart for creating rapeseed row lines: S1-raster to vector, S2-buffer creation, S3-area-based elimination, S4-polygons to points, S5-category

definition, S6-category labeling, S7- connecting points, and S8-smoothing row lines.

the mean of the measured row spacings in the sample plot, SDrs

is the standard deviation of the row spacing in the sample plot,
and T is the theoretical row spacing set by the seeding devices.

The coefficient of variation of seedling uniformity (CVsu)
among the row lines depended on the rapeseed seedling stand
count estimation and row line extraction. As mentioned, the
shaking seeding device would lead to irregular seed placement
and thus irregular seedling distribution. Therefore, CVsu was
calculated using the estimated number of rapeseed objects within
8.0 cm of the row lines:

Xsu =
1

N

N
∑

i = 1

ui (11)

SDsu =

√

√

√

√

1

N

N
∑

i = 1

(

ui − Xsu

)2
(12)

CVsu =
SDsu

Xsu

× 100% (13)

where N is the number of row lines in the sample plot, ui is the
number of rapeseed seedling stand count in the ith row line, Xsu

is the mean of the numbers of rapeseed seedling stand count in
the sample plot, and SDsu is the standard deviation of numbers of
rapeseed seedling stand count in the sample plot.

RESULTS

Object Segmentation Performance
Table 5 presents the accuracy assessment results using two
randomly selected sample plots for the two datasets. In an ideal
case that the segmentation is identical to the reference, both
Precision and Recall would achieve the maximum value of 1.
When an image is under-segmented, the Recall is high but the
Precision decreases. By contrast, in an over-segmented situation,
the Precision is high but the Recall would decrease.Table 5 shows
that the over-segmented situation mainly existed in both ExG
and NGRDI over the two stages. All of their Precision values
were lower than 80.00%, even 59.23% for NGRDI in Stage 2.
On the contrary, most of the Precision and Recall for ExG-ExR
and GLI were over 90.00%. Accordingly, ExG-ExR and GLI had
greater F-measure, overall accuracy and Kappa value than ExG
and NGRDI, indicating their better segmentation performance.

Frontiers in Plant Science | www.frontiersin.org 9 September 2018 | Volume 9 | Article 1362

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zhao et al. UAV-based Rapeseed Seedling Stand Counting

The average F-measure, overall accuracy and kappa value
for ExG-ExR were 92.45, 97.98 and 0.92%, respectively,
compared with the respective values of 91.83, 97.64 and
0.90% for GLI. In fact, ExG-ExR showed an over-segmented
in Stage 2, while GLI showed an under-segmented in
Stage 1. Supported by the results, ExG-ExR showed better
performance than GLI for the segmentation. The results
of overall accuracy and Kappa value presented a small
difference in segmentation between ExG-ExR and GLI.
In contrast, more information about the segmentation
performance could be obtained using Precision, Recall and
F-measure.

Since ExG-ExR performed slightly better than GLI,
it was considered as the best VI for the rapeseed
object identification and segmentation. This result
illustrated that ExG-ExR combined with typical Otsu
thresholding method could be effective for rapeseed object
segmentation.

Rapeseed Seedling Stand Count Modeling
Based on Morphological Parameters
Table 6 presents the correlation coefficient matrices among the
ground-measured rapeseed seedling stand count in segmented
objects (y) and the 15 shape features (F1–F15) for Stage 1 (above
the main diagonal) and Stage 2 (below the main diagonal).
As shown in Table 6, the absolute correlation values between
the ground-measured rapeseed seedling stand count contained
in objects (y) and the 15 shape features (F1-F15) ranged from
0.52 for F12 to 0.93 for F1 in Stage 1 and from 0.48 for F12
to 0.94 for F1 in Stage 2. These r-values indicated that it was
feasible to estimate the rapeseed seedling stand count from the
shape features. In addition, the negative correlation coefficient
values in both datasets were symmetric about the main diagonal,
indicating the consistent negative relationships between these
variables.

Through the pre-selection process, the same three significant
shape features (F4, F12, and F15) were chosen for both two

TABLE 5 | Segmentation accuracy for two datasets based on four vegetation indices.

Dataset Vegetation index Precision (%) Recall (%) F-measure(%) Overall accuracy (%) Kappa value

Sample 3 from Stage 1 ExG 79.25 99.55 89.40 97.69 0.86

ExG-ExR 93.98 96.63 95.30 99.29 0.96

GLI 98.66 85.91 92.28 98.09 0.90

NGRDI 68.57 99.98 84.28 96.57 0.79

Sample 8 from Stage 2 ExG 71.52 99.68 85.60 95.28 0.80

ExG-ExR 83.49 95.72 89.60 96.67 0.87

GLI 90.85 91.91 91.38 97.18 0.89

NGRDI 59.23 99.87 79.55 93.28 0.70

TABLE 6 | Correlation coefficient matrices among ground-measured seedling counting and 15 shape features for Stage 1 (above diagonal) and Stage 2 (below diagonal).

y F1 F2 F3 F4 F5 F6 F7 F8 F9 F10 F11 F12 F13 F14 F15

y – 0.93 0.89 0.87 0.70 0.84 0.88 0.71 0.71 0.86 0.70 −0.62 −0.52 −0.69 0.63 0.91

F1 0.94 – 0.95 0.99 0.68 0.90 0.96 0.79 0.79 0.90 0.71 −0.66 −0.41 −0.75 0.68 0.99

F2 0.91 0.94 – 0.92 0.66 0.84 0.99 0.68 0.70 0.86 0.65 −0.60 −0.48 −0.66 0.57 0.98

F3 0.89 0.99 0.89 – 0.60 0.90 0.93 0.80 0.80 0.89 0.65 −0.66 −0.33 −0.76 0.66 0.97

F4 0.66 0.66 0.64 0.57 – 0.63 0.66 0.57 0.50 0.71 0.89 −0.47 −0.67 −0.55 0.76 0.70

F5 0.83 0.90 0.78 0.91 0.58 – 0.82 0.91 0.90 0.99 0.68 −0.79 −0.54 −0.87 0.70 0.91

F6 0.91 0.95 0.99 0.91 0.65 0.78 – 0.68 0.67 0.84 0.64 −0.57 −0.42 −0.64 0.57 0.98

F7 0.65 0.74 0.56 0.77 0.52 0.89 0.57 – 0.87 0.89 0.64 −0.79 −0.50 −0.94 0.75 0.78

F8 0.70 0.77 0.62 0.80 0.45 0.90 0.61 0.87 – 0.88 0.59 −0.85 −0.46 −0.89 0.67 0.77

F9 0.85 0.91 0.82 0.91 0.67 0.99 0.81 0.87 0.88 – 0.76 −0.77 −0.63 −0.86 0.74 0.92

F10 0.63 0.65 0.60 0.58 0.89 0.61 0.60 0.59 0.52 0.70 – −0.49 −0.72 −0.59 0.89 0.71

F11 −0.66 −0.71 −0.59 −0.74 −0.46 −0.87 −0.57 −0.87 −0.93 −0.85 −0.46 – 0.50 0.84 −0.56 −0.66

F12 −0.48 −0.42 −0.47 −0.35 −0.66 −0.52 −0.43 −0.48 −0.46 −0.61 −0.73 0.53 – 0.54 −0.60 −0.47

F13 −0.65 −0.73 −0.57 −0.76 −0.49 −0.88 −0.57 −0.94 −0.90 −0.86 −0.53 0.92 0.52 – −0.71 −0.74

F14 0.54 0.59 0.47 0.59 0.72 0.65 0.47 0.73 0.63 0.69 0.87 −0.56 −0.60 −0.68 – 0.65

F15 0.93 0.99 0.97 0.96 0.68 0.89 0.97 0.70 0.73 0.92 0.65 −0.68 −0.48 −0.69 0.56 –

All r-values were significant at the 0.01 level (double tail).

Indicated Stage 1 (above diagonal).

Indicated Stage 2 (below diagonal).
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stages. None of the three features were removed during
the multiple stepwise regression modeling. Table 7 gives the
regression analysis results based on the three shape features.
The three shape features (Length-width Ratio, Density, Border
length) were significant at the 0.05 level with R2-values of 0.845
for Stage 1 and 0.867 for Stage 2. Although Stage 2 had a
slightly higher R2-value, it also had a slightly higher RMSE.
A single model was also fitted over the two stages in this
study. The single model showed a good agreement with an R-
square of 0.846. The total number of rapeseed plants could be
accurately estimated with an average relative error of 6.83%.
The result also demonstrated that it was feasible to estimate
the number of rapeseed plants with shape traits of segmented
objects during these two stages. However, the similar results
from the two individual stages, which were 10 days apart, and
from the combined stage indicate that there was no significant
difference between the two stages as far as image acquisition
timing is concerned. Clearly, it is not possible to determine
an optimal time window from only two stages. A multi-stage
experiment is necessary to find out the optimal time window
in future research. Nevertheless, the two stages used in this
study were within the reasonable time window based on the
results.

A comparison between estimated numbers of plants per object
and measurements among the sample plots showed that the
distribution of the numbers of plants per object was positively
right-skewed. The numbers of plants per object ranged mostly
from 1 to 3 based on ground observations, and the estimated
average numbers of plants per object also ranged from 1 to 3.
Since the rapeseed plants in this study were mainly at early
growth stages the size and overlap of their leaves were relatively
small. However, the number of plants per object can be much
larger, indicating the complexity of the plant estimation from it.

Nevertheless, the results demonstrated that their morphological
traits contained detailed information of the seedling stand
count.

Table 8 gives the statistical results of each model for the
different validation datasets. The two models produced high R2-
values with RMSE values less than 1, indicating good estimation
accuracy. Moreover, the MAE values of the two models were
<10% with only about 5% for Model B. The sub-dataset for
PPCCSD (Sample 5 in Model A and Sample 6 in Model B)
had the lowest R2-values and, highest RMSE and Es among the
validation datasets. Validations A and B generally showed better
performance than most of the validation datasets representing
the three seeding devices.

Rapeseed Row Characteristics for Seeding
Performance Evaluation
The rapeseed row line extraction results for the six sample
plots are displayed in Figure 5. The row line extraction was
conducted on the validation datasets representing the three
different seeding devices. The red row lines were created by
connecting the blue triangle points (Points for Lines Creating
in Figure 4). The smoothed line processing in Figure 4 should
be noted. It had little impact on the CV of row spacing and
the row spacing error. The average CV of row spacing for
non-smoothed was 10.80%, and the average row spacing error
was 10.66%. After smoothed processing, the average CV of
row spacing slight degraded to 9.89%, while the average row
spacing error increased to 10.74%. In fact, the variation of the
seeding devices would lead to irregular seed placement and thus
irregular seedling distribution. In practical seeding operations,
there was a tolerated distance. On the other hand, through the
smoothed processing, the extracted line would be similar to

TABLE 7 | Regression models for Stages 1 and 2 and for the two stages combined.

# Model F-value R2 RMSE P-value

Model A from Stage 1 y = 0.382F4-1.188F12 + 0.011F15 + 2.364 3863.525 0.845 0.672 <0.05

Model B from Stage 2 y = 0.167F4-0.621F12 + 0.009F15 + 1.498 5874.029 0.867 0.759 <0.05

A single model y = 0.462F4-0.747F12 + 0.009F15 + 1.465 8863.680 0.846 0.747 <0.05

y is the estimated rapeseed seedling stand count of per segmentation object.

TABLE 8 | Validation results of two models.

Model Sub-dataset Number of objects R2 RMSE Measured sum Estimated suma Es (%) MAE (%)

A Validation A 376 0.862 0.72 694 721 3.89 9.79

Sample 5 (PPCCSD) 83 0.718 0.85 147 177 20.41

Sample 10 (RDSD) 221 0.794 0.63 319 362 13.48

Sample 17 (CMD) 234 0.889 0.62 431 425 −1.39

B Validation B 477 0.886 0.72 846 859 1.54 5.11

Sample 6 (PPCCSD) 133 0.846 0.88 255 281 10.20

Sample 8 (RDSD) 197 0.886 0.58 459 442 −3.70

Sample 13 (CMD) 242 0.858 0.61 440 418 −5.00

aEstimated sum was rounded to integers.
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FIGURE 5 | Row line extraction using six samples for three seeding devices in two datasets. For Stage 1: Sample 5 (PPCCSD) (A), Sample 10 (RDSD) (B), and

Sample 17 (CMD) (C). For Stage 2: Sample 6 (PPCCSD) (D), Sample 8 (RDSD) (E), and Sample 13 (CMD) (F). Samples 5 (A) and (B) had smaller sampling plots.

the central line of the row, which would approximate the real
row line.

In Figure 5A, the row line on the east edge of the sample
plot was shorter than the other row lines due to missing
rapeseed seedling stand, and the same also occurred in Figure 5F.
Furthermore, the row lines had some distortion. The row
lines were created by connecting the points transformed
from the segmentation objects. The missing rapeseed plants
would increase the distance between the two major points
in the same rapeseed row. If these two points had some

obvious horizontal offset, or if a point deviated from the
row line was located between the two major points, the
connected row line would not be straight due to the change
of direction. Moreover, the randomness and subjectivity of
the sample plot delimitation also influenced the results.
Although there were some deficiencies, using geographic
coordinate information of these points to create row lines was
appropriate. More importantly, this method could obtain the
geographic coordinate information for seeding performance
evaluation.
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Figure 6 shows three row characteristics for the three seeding
devices for the two observation dates. The values for the three
row characteristics were higher for Stage 2 than for Stage 1
except for the row spacing error in RDSD for Stage 1 (Figure 6B)
and the CV of seedling uniformity in PPCCSD for Stage 2
(Figure 6C). These row characteristics were helpful to recognize
corresponding seeding abnormal areas for seeding performance
evaluation.

The higher CV of seedling uniformity in PPCCSD for Stage
1 as shown in Figure 6C was partly due to the row line on the
east edge of the sample plot was shorter than the other lines
because of the missing rapeseed stand as shown in Figure 5A.
The accuracy of seedling stand count estimation was another
factor for the higher CV value. The estimation for this dataset
(Sample 5) had the lowest R2 of 0.718 as shown in Table 8.
The three row characteristics for CMD had less fluctuation than
those for the other two seeding devices. The variation of growth
condition between Samples 17 and 13 for CMD was the least
among the three seeding devices (Figure 5), explaining why the
row characteristics of CMD had a relatively less fluctuation.
Sample 13 contained four row lines shorter than the other
four lines because of poor rapeseed stand, which may have
caused the higher CV of seedling uniformity as shown in
Figure 6C.

Multiple factors can also affect the seeding performance.
Variability in soil texture and microtopography can result in
differences in emergence and growth. Field variability might be

the reason for the higher row spacing error in RDSD (Figure 6B).
The obvious shadows on the bare soil background as shown in
Figure 5Bwere due to the coarseness of soil texture and variation
of microtopography.

In summary, it was practicable to evaluate seeding
performance through the seedling stand count based on an UAV
field-based HTPP. Seeding abnormal areas could be recognized
by the crop row characteristics. These row characteristics were
helpful for evaluating the rapeseed emergence and growth
conditions, and the seeding performance evaluation was useful
for effective crop management within the season. In addition,
remote sensing images can be collected shortly before or after
seeding to document pre-emergence field conditions for seeding
performance evaluation.

DISCUSSION

Limitation of Spectral Information
The spectral information in the visible bands was used for

rapeseed object identification and segmentation in this study.

Consumer-grade RGB camera was used for image acquisition.
The usefulness of this type of cameras for crop identification

has been demonstrated (Zhang et al., 2016, 2017). The color VIs
derived from only RGB spectral bands can accentuate a color

that may be intuitive for comparison of plant greenness (Meyer

and Neto, 2008). Color VIs are suggested to be less sensitive
to lighting variations (Meyer and Neto, 2008; Campbell and

FIGURE 6 | Comparison of three row characteristics for three seeding devices, the CV of row spacing uniformity in (A), the row spacing error in (B) and the CV of

seedling uniformity in (C). Three seeding devices are precision pneumatic cylinder-type centralized seeding device (PPCCSD), rotating disc-type seeding device

(RDSD), centrifugal metering device (CMD).
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Wynne, 2011), but impact of sunlight conditions is unavoidable.

Compared to indoor experiments, image acquisition in field-

based experiments is more difficult. It is impossible to control
the sunlight outdoors, but imaging can be carried out under

relatively sunny conditions. In this study, the weather of

during image acquisition was clear and calm to minimize
the impact of sunlight change. Therefore, the segmentation

results revealed that almost all the rapeseed objects were
successfully identified and separated from the background
with satisfied accuracy (Table 5). Color VIs combined with
typical Otsu thresholding method were effective for rapeseed
object identification and segmentation. However, using spectral
information alone for data analysis limited the quantitative
interpretation of vegetation remote sensing information (Xue
and Su, 2017; Yang et al., 2017). For instance, it was a challenge
for seedlings stand counting due to complex overlapping of
rapeseed seedlings. Figure 7 illustrates the relationship between
total ground measured rapeseed seedling stand count and
number of seedling pixels extracted from ExG-ExR for the
two datasets. These results indicated that the use of spectral
information alone could not sufficiently estimate rapeseed
seedling stand count in the sample plots compared with
the models presented in Table 7. As rapeseed seedlings grew
with more leaf overlapping, the correlation would further
decrease.

Previous studies have demonstrated that RGB imagery has
the capability to detect and count post-emergence plants more
easily at their growth stages for cotton (Chen et al., 2018), maize
(Gnädinger and Schmidhalter, 2017), and potato (Sankaran et al.,
2017). Most of these plants were represented by individual
objects after identification and segmentation using spectral
information, because they were bigger with larger spacing
and more uniform distribution (Jin et al., 2017; Liu et al.,
2017b). Moreover, the Near infrared (NIR) band has shown its

spectral sensitivity for crop vegetation detection (Zhang et al.,
2016). The accuracy may be improved with additional NIR
images (Chen et al., 2018). High resolution multispectral images
were successfully used to estimate crop emergence in potatoes
(Sankaran et al., 2017). These results demonstrated that spectral
information could be effective to identify and count the number
of seedlings with no or minimal overlapping. However, it was
difficult and in feasible to estimate plant count if complex
plant overlapping occurs as the unsatisfying results shown in
Figure 7.

The spectral information was still necessary for the
identification and segmentation for such complex overlapping
crop as rapeseed. With complex overlapping, each segmentation
objects does not necessarily represent an individual plant
(Jin et al., 2017; Liu et al., 2017b). Accordingly, additional
information is needed to supplement the spectral information.
For example, a skeleton analysis of the touching wheat seedlings
was used to count the wheat seedlings after segmentation (Liu
et al., 2016). Compared to wheat, rapeseed has elliptic leaves, so
the skeleton analysis was hard to apply. Therefore, other features
such as morphological features were needed to count the number
of rapeseed seedlings.

Importance of Morphological Parameters
The OBIA technique was conducive to obtain more features
of the segmentation objects for the rapeseed seedling stand
counting. Size and shape analysis of corn plant canopies
demonstrated that morphological information was useful for
plant population and spacing sensing (Shrestha and Steward,
2005). Although texture and morphological characteristics were
used to count wheat seedlings (Cointault and Chopinet, 2006; Jin
et al., 2017; Liu et al., 2017b), but little work has been done for
rapeseed.

FIGURE 7 | Correlation between ground-based rapeseed seedling count and the number of seedling pixels extracted from ExG-ExR in the sample plots for Stage 1 in

(A), and Stage 2 in (B).
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This study extracted 15 morphological features and confirmed
the morphological features could be used for estimating rapeseed
seedling stand count (Table 6). Repeated random experiments to
verify the lower r-values for F12 showed that the average absolute
correlation coefficient value between y and F12 was about 0.5 in
both datasets. Although F12 had the lowest correlation with y,
it was a significant variable in the multiple regression models
between the number of rapeseed seedlings per object and the
three shape features. Moreover, it was important to compare the
models for the two datasets and to even obtain a universal model
for estimating rapeseed seedling stand count based on the three
selected shape features (F4, F12, and F15). F4 was length-to-width
ratio of an image object’s minimum enclosing rectangle. F12 was
the distribution in space of the pixels of an image object. F15 was
the sum of pixels along an image object edge (Table 4). Although
these three shape features had different coefficients, they had
the same positive or negative sign in both models (Table 7). As
shown in Table 6, F4 and F15 had a positive correlation, and
F12 had negative correlations with F4 and F15. It can be clearly
seen from the models that the estimated number of the rapeseed
seedlings in a segmentation object increases with F4 and F15 and
decreases with F12.

The results presented in Tables 7, 8 indicated that using
multiple regression to establish the rapeseed seedling stand count
models was appropriate and feasible. The use of morphological
parameters significantly improved the accuracy for rapeseed
seedling stand count estimation compared with the use of
spectral information.

Importance of Image Acquisition Time
Crop growth is a dynamic process (Sankaran et al., 2017; Chen
et al., 2018). Image acquisition time can affect crop monitoring
and analysis results (Liu et al., 2017c). Compared to some wheat
seedling counting studies based on single dates (Jin et al., 2017;
Liu et al., 2017b), this study employed the images captured at two
different growth stages of the rapeseed crop.

The growth condition initially influenced the performance
of segmentation (Table 5). The differences in canopy coverage
might have resulted in the different superior VIs for the
datasets. Ground canopy cover was considered as an important
trait related to crop growth (Mullan and Reynolds, 2010). As
crop plants grow, canopy cover will become saturated. The
experiments in this study were carried out at two early growth
stages. There were only 10 days apart between these two stages.
Despite the short time interval, our calculations showed that
the average canopy cover increased about 50% between the two
stages among all sample plots. There are significant differences
over these two stages, representing the rapid change of rapeseed
plant growth. Nevertheless, more observations are still necessary
to examine the effect of image acquisition time in future
work.

Crop growth conditions also impacted the performance of
the seedling count models (Tables 7, 8 and Figure 7). There
were differences in emergence of the rapeseed seedlings at the
two growth stages (Table 8 and Figure 5). By examining the
modeling data, the maximum seedling stand count contained in
segmented objects in the two datasets was 16 for Stage 1 and

25 for Stage 2. The most probable reason for the lower seedling
count for the first date was due to the missing and extremely
small rapeseed seedlings from delayed germination. If the crop
emergence is completed, all emerged seedlings and the region
of missing seedlings would be more obvious for evaluation.
Compared with the acquisition time of Stage 1, the time of Stage
2 was therefore more suitable in this study. Observation time was
a crucial factor for seeding performance evaluation (Liu et al.,
2017c). Furthermore, weeds and growing rapeseed seedlings
could be distinguished more easily on the second date because
their differences in leaf area and color were more obvious.

The single model covering the two stages would inspire the
further improvement of this research. Multiple observations
should be made during the critical crop growth stages in the
future. With multiple observations, the seedling stand count
models derived from the data can be more accurate and reliable.
Moreover, the same sample plot for each seeding device can
be observed multiple times for its spatial-temporal change for
seeding performance evaluation. The temporal change of the
extracted row characteristics will provide more information on
the emergence and crop growth. Thus, the best acquisition time
for rapeseed seedling stand count and seeding performance
evaluation can be determined.

CONCLUSIONS

As low-attitude UAV remote sensing technology is being
increasingly used for monitoring agricultural fields, this study
developed practical methods for estimating directly-seeded
rapeseed seedling stand count and for evaluating seeding
performance using ultra-high resolution RGB images captured by
the low-altitude UAV remote sensing platform.

Color VIs combined with Otsu thresholding method were
efficient and reliable for rapeseed seedling object identification
and segmentation. The result showed that ExG-ExR and GLI
performed better than ExG and NGRDI. Meanwhile, ExG-
ExR was a bit better than GLI supported by the data in this
study. Multiple regression analysis was used for seedling count
modeling with extracted shape features. Two models for each
stage showed good agreement between the seedling stand count
with three shape features (Length-width Ratio, Density, Border
length). A single model over these two stages reaffirmed the
feasibility to estimate the number of rapeseed plants with shape
traits of segmented objects. These results clearly showed that
there existed significant relations between the number of directly-
seeded rapeseed seedlings in a segmentation object and its shape
features, indicating traditional multiple regression analysis was a
rapid and effective method for modeling rapeseed seedling stand
count. However, the results also revealed that further work should
pay more attention to multiple and long-term observations.

This study also illustrated an application to seeding
performance evaluation based on the rapeseed seedling
identification and stand count estimation. Rapeseed plant rows
were extracted from the georeferenced segmentation objects.
Results from the sample datasets showed that the object spatial
information was sufficient to perform crop row extraction,
though there were some limitations due to the uncertainty
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in sample delimitation and the process for point sorting and
categorizing. The seeding performance evaluation using three
row characteristics (row spacing error, CV of row spacing and
CV of seeding uniformity) showed that it was feasible to use
the information derived from low-attitude UAV image data for
evaluating the performance of mechanical seeding devices.

UAV-based remote sensing has great potential for field-
based phenotyping with the advances of this technology. Future
work can be focused on the spatial-temporal variation during
the rapeseed growing season. Meanwhile, it is necessary to
develop a generalized model for estimating rapeseed seedling
count and to use the model for improving the performance
of mechanical seeding devices and optimizing the efficiency of
rapeseed production.
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