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Most Agropyron Gaertn. species are excellent sources of forage. The derivative lines
of wheat-Agropyron cristatum show elite agronomic traits, and some are valuable for
wheat breeding. The species of Agropyron Gaertn. was mainly recognized by the spike
morphology in traditional taxon. Six traits, including spike length (SL), ear stem length
(ESL), the second internodes length (SIL), spikelet number per spike (SNS), floret number
per spikelet (FNS), and grain number per spikelet (GNS), are vital to morphology studies
and also influences the forage crop yield. To elucidate the genetic basis of spike and
stem traits, a quantitative trait locus (QTL) analysis was conducted in a cross-pollinated
(CP) hybrid population derived from a cross between two diverse parents, Agropyron
mongolicum Keng Z2098 and A. cristatum (L.) Gaertn. Z1842, evaluated across three
ecotopes (Langfang, Changli, and Guyuan of Hebei, China) over 3 years (from 2014 to
2016). Construction of a high-density linkage map was based on 1,023 single-nucleotide
polymorphism (SNP) markers, covering 907.8 cM of the whole Agropyron genome. A
total of 306 QTLs with single QTL in different environments explaining 0.07-33.21% of
the phenotypic variation were detected for study traits. Seven major-effect QTLs were
identified, including one for ESL on chromosome 3, one for SIL on chromosome 5,
three for SL (two on chromosome 2 and one on chromosome 4), and two for SNS
on chromosomes 3 and 7. Also, seven stable QTLs, including four for ESL, one for
SL, one for GNS, and one for FNS, were mainly mapped on chromosomes 2, 3, 4, 5,
and 7, respectively, elucidating 0.25-14.98% of the phenotypic variations. On the use of
Agropyron CP hybrid population to identify QTL determining spike and stem traits for the
first time, these QTLs for six traits would provide a theoretical reference for the molecular
marker-assisted selection in the improvement of forage and cereal crop species.
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INTRODUCTION

Agropyron Gaertn. is an important wild relative of wheat that
has the genome of P: diploid, PP, 2n = 2x = 14; tetraploid,
PPPP, 2n = 4x = 28; and hexaploid, PPPPPP, 2n = 6x = 42
(Dewey, 1984; Fordlloyd et al.,, 2011). The most of Agropyron
species are excellent sources of forage and habitat for livestock
and wildlife, and they are also valued for weed control, habitat
use, soil stabilization, and watershed management (Wang, 2011).
Agropyron species possess a lot of useful characteristics, such as
the tolerance to drought (Asay and Johnson, 1990) and cold,
resistance to diseases (Lu et al., 2015), and high yield traits (Dong
etal., 1992). It is a quality forage for grassland improvement and
a valuable genetic resource for wheat.

Agropyron cristatum (L.) Gaertn. is known as an important
model species of Agropyron, originating in Iran and distributed
in arid, semi-arid, and alpine regions (Dewey, 1984). A.
mongolicum Keng, a unique species found in China, is mainly
distributed in Shaanxi, Ningxia, Inner Mongolia, Gansu, Shanxi,
and other areas (Guo, 1987). Both A. cristatum and A.
mongolicum are diploids, but the two are very different in
general morphology (Dewey, 1981, 1984). In traditional taxon,
the species of Agropyron Gaertn. was mainly recognized by the
spike morphology. A. mongolicum difters from A. cristatum in its
narrow, linear spikes. All other diploid accessions within genus
Agropyron were similar to A. cristatum in broad spikes. The two
species could hybridize easily, and the F; hybrids show a great
advantage (Dewey, 1984; Hsiao et al., 1986). A. desertorum (Fisch
ex Link) Schlut, A. mongolicum, and A. michnoi Roshev should be
offspring species of A. cristatum sharing the same basic genome
from the counterpart based on SSR analysis (Che et al., 2015).

The spike and stem traits are vital not only to morphology
studies but also to yield (Cui et al, 2014; Li et al, 2017;
Zhang et al., 2017). Some excellent genes associated with spike
characteristics were found on chromosome 6P of Agropyron
(Wu et al,, 2006; Luan et al, 2010). Spike-related traits are
complex quantitative traits controlled by multiple genes, and
showed continuous variation in segregating offspring (Kobayashi
et al., 2003; Fan et al,, 2015). Because each QTL contributes
less to phenotype and influenced easily by the environments, it
is difficult to study by traditional cytogenetics and quantitative
inheritance. QTL mapping provides the possibility of studying
complex traits.

QTL analysis for spike-related traits has been studied using
different mapping populations. A number of QTLs for spike-
related traits have been found in the F, RIL, and BC population
in wheat (Huang et al., 2004; Ma et al., 2007; Deng et al., 2011; Jia
et al,, 2013; Cui et al., 2014). Some QTLs for spike-related traits
were also detected in the double haploid (DH) population in rice
(Bao et al,, 2002; Qiu et al., 2011). Agropyron Gaertn., a perennial
cross-pollination plant, have characteristics of complex genetic
background, long generation cycle, highly heterozygous genome,
and self-incompatibility or low self-sufficiency rate (Che et al.,
2015; Zhang et al., 2015). Therefore, it is not suitable for isolated
populations crossed from homozygous lines and is suitable for
the F; population. A new mapping method called “two-way
pseudo-testcross” was put forward, providing the possibility to

construct a genetic map in heterotic species (Grattapaglia and
Sederoff, 1994). The genetic map of Lolium perenne in CP (cross
pollinated) has been constructed using “Pseudo-testcross,” and
QTL associated with stem rust resistance was mapped (Pfender
etal,, 2011). It was also reported that the genetic map of Camellia
sinensis was constructed in the CP hybrid population deriving
from the heterozygous diploid parents (Hu et al., 2013).

Meanwhile, the P genome of Agropyron has not been
sequenced because of its huge genome and sequencing cost so
far (Zhang et al., 2015; Absattar et al., 2018; Zhou et al.,, 2018).
SLAF-seq (specific-locus amplified fragment sequencing) is an
effective way for high-throughput simplified genome sequencing
and large-scale development of single-nucleotide polymorphism
(SNP) markers and genotyping (Sun et al., 2013). Based on the
genetic map of SNP markers constructed by SLAF-seq, QTL
analysis for spike and stem traits was carried out to determine
the number, effect, and position of QTLs on the chromosomes. It
would provide a theoretical basis for molecular marker-assisted
selection (MAS) in the future study.

MATERIALS AND METHODS

The Progress of Constructing the F4

Population

The CP hybrid population used for QTL mapping derived from
the interspecific cross of diploid A. mongolicum 72098 (2n = 2x
= 14, PP, female) and A. cristatum 71842 (2n = 2x = 14, PP,
male). The experiment with hybrids of Agropyron was carried
out in May of 2012 in Langfang of Hebei province. A total of
19 spikes from one single plant of the A. mongolicum 72098
population as the maternal plant were emasculated and isolated
by paper bags. Pollen was collected from one single plant of
the A. cristatum 71842 population and hybridized with maternal
plant through shaking spike. The 174 F; seeds were placed in an
incubator at 25°C for germination after they were dry, 135 of
which germinated. Then 135 individuals of progeny were planted
in the greenhouse in Chinese Academy of Agricultural Sciences,
Beijing, China, after which they were clonally propagated from
tillers and transplanted 115 ideal seedlings (including two
parents) to Langfang (116°70" E, 39°53’ N), Changli (119°15" E,
39°72' N), and Guyuan (115°68’ E, 41°68’ N) of Hebei province
in April 2013, April 2014 and September 2014, respectively. A
total of 115 individuals (including two parents) were planted in
each ecotope, with a spacing of 40 cm between plants and 60 cm
between rows. Each material was designed with three replications
in each experiment site and managed conventionally.

Trait Measurements

All individuals in each experiment site were selected for the
measurement of six traits, including spike length (SL), ear
stem length (ESL), the second internodes length (SIL), spikelet
number per spike (SNS), floret number per spikelet (FNS), and
grain number per spikelet (GNS) in 2015 and 2016 in three
environments. Five of all study traits except ESL were surveyed
in 2014 in Langfang. Ten effective tillers randomly sampled after
maturing from each plant were surveyed for an average of study
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trait of an individual. The traits were measured as previously
described (Li and Li, 2006).

Statistical Analysis

The phenotypic data and the correlation coefficients between
pairs of all six traits of the CP hybrid population were analyzed
using SPSS 20.0 software (SPSS Inc., Chicago, IL, USA).

QTL Analysis

A population of 113 individuals of the hybrid between
two species, A. mongolicum and A. crystatum, was used as
the mapping population, and a threshold range 3-10 of
independence LOD was applied to group and construct the high-
density molecular map. The genetic map of the Agropyron whole
genome based on the SLAF-seq technique was constructed and
distributed on seven linkage groups (Zhang et al., 2015). The final
map consisting of 1,023 SNP markers spanned a total of 907.8 cM
(centi-morgan), with an average distance of 1.5cM between
markers. The number of markers was 115-225 per linkage group,
with an average of 146 markers per linkage group.

The phenotypic data, an average of each trait from three
replicates in each environment, were examined by the Kruskal-
Wallis test, and the data satisfying normal distribution were used
for the detection of QTL. QTL analysis was performed using
inclusive composite interval mapping in the GACD software (Li
et al.,, 2008). An LOD score of 2.5 was set as a threshold, and a
walking speed for all QTLs was 1.0 cM and the PIN value was
0.001 (Wang, 2009). A QTL with an LOD value >2.5 and a
contribution rate of >10% detected in different environments
was defined as a major QTL, and the QTL detected in at least
three different environments was regarded as a stable QTL (Cui
et al., 2011, Raihan et al., 2016; Fan et al., 2017). QTLs for the
same traits detected in different environments were considered
to be the same if the confidence intervals overlapped. The QTL
was named “q + the first letter of the place name (C represents
Changli, L represents Langfang, G represents Guyuan) + the
abbreviation of trait name + year (1, 2, 3 represents the year of
2014, 2015, 2016, respectively) + chromosome + serial number”
(Mccouch et al., 1997).

RESULTS

Phenotypic Variation and Correlation

Between Traits

The parents and CP hybrid population of Agropyron had
a significant difference in spike morphology (Figurel). A.
cristatum had a board and short spike, whereas A. mongolicum
had a narrow and long spike. F; hybrid plants showed abundant
morphologic diversity, spikes of some plant from which were
longer than that of A. cristatum and border than A. mongolicum,
respectively. There were abundant diversity tillers even in an
individual.

Six traits of Agropyron in three ecotopes in 3
years are presented in Tablel. The parents showed a
significant variation in three different environments,
and the average of CP hybrid population for most of
traits was closer to the female than the male (Table1;

71842

72098

FIGURE 1 | Comparison of the morphology of the parents (A,B) and the F4
hybrid plants of Z2098/21842 (C).

Supplementary Material Figures A-C). Similarly, spike and
stem traits also showed a great range of variation in the CP
hybrid population, such as the minimum for ESL was 24.70 cm,
maximum up to 90.03cm in three ecotopes in 3 years. The
spike-related traits all had an obvious difference among years
(Supplementary Material Figures A-C).

There were certain differences in every trait among different
environments. For the CP hybrid population, the mean values
of six traits in Guyuan and Changli were much higher than
Langfang. For instance, the mean for ESL in Changli and
Guyuan was 40.44 and 43.77 cm in 2015, respectively, higher
than that of Langfang (38.46cm). For most of traits, there
was also a big difference in the same trait among different
years. In 3 years, most of traits in Langfang in 2015 showed
larger than other 2 years. For example, the mean value of SL
was 8.08, 8.39, and 6.59 cm, respectively, in three consecutive
years in Langfang. It indicated that Guyuan and Changli
were more suitable for Agropyron planting. The coefficient of
variation in six traits ranged from 8.24 to 60.03%. For most
traits, there was no significant difference in the coefficient
of variation in three environments in different years with
exception of FNS, SIL, and SNS in Guyuan. The coefficient
of variation for SL showed a significant difference in 2015
(Changli, 8.24; Guyuan, 8.24) and 2016 (Changli, 22.37; Guyuan,
22.81).

The correlation coefficients between study traits are shown in
Table 2. There were differences in the correlation between traits.
There was a positive correlation for all traits between 2015 and
2016 in Langfang and Changli (P < 0.01). However, there was
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TABLE 1 | Summary of agronomic traits of Agropyron in three environments in 3 years.

Environment Trait Year Mongolicum Cristatum Z1842 CP population
Z2098
Mean + SD Coefficient Min-Max Skewness Kurtosis
of variation

Langfang ESL 2014 35.20 27.33 37.28 + 4.20 11.26 27.44-46.52 0.01 —0.61
2015 36.04 26.17 38.46 + 4.48 11.65 24.70-50.80 —0.15 0.76
2016 30.41 28.48 47.86 £ 7.16 14.96 32.00-65.00 3.32 19.35
SIL 2015 6.81 7.68 13.68 + 3.07 22.59 8.456-21.65 0.55 -0.19
2016 6.00 10.22 17.27 £ 10.20 59.07 0.00-35.00 —0.30 —0.47
SL 2014 9.19 9.19 8.08 + 0.96 11.85 4.80-10.84 —-0.04 1.21
2015 10.09 9.95 8.39 + 1.08 12.82 6.12-10.89 0.18 —0.56
2016 8.43 7.30 6.59 + 1.50 22.81 3.40-10.30 0.67 0.84
SNS 2014 27.30 25.70 27.45 + 3.74 13.61 12.60-35.75 —-0.11 1.61
2015 34.40 26.10 31.84 + 3.49 10.94 23.50-41.50 0.12 0.19
2016 35.00 25.30 27.57 £+ 6.80 24.68 16.00-46.00 0.13 0.94
FNS 2014 7.60 4.85 7.37 +0.98 13.31 4.67-10.10 0.38 0.37
2015 5.30 5.70 5.94 +1.01 17.04 4.33-11.56 1.74 7.62
2016 7.50 4.00 7.79 £ 2.89 37.12 4.00-22.00 0.23 —0.42
GNS 2014 1.10 1.55 1.24 £ 0.37 30.56 0.30-2.13 0.10 0.04
2015 1.30 2.00 1.46 + 0.56 38.43 0.40-3.00 0.28 —0.31
2016 1.90 1.10 1.38 £ 0.71 51.45 0.00-8.00 —0.19 0.12
Changli ESL 2015 44.48 30.60 40.44 £ 5.72 14.15 4.60-51.44 —2.20 12.93
2016 51.03 47.59 48.55 + 5.91 1217 32.77-74.72 0.46 3.04
SIL 2015 9.08 13.27 14.06 + 2.97 21.11 7.26-25.90 0.67 1.54
2016 16.60 15.23 15.05 + 3.95 26.26 0.00-22.87 —0.92 2.04
SL 2015 9.89 8.92 7.48 £ 0.62 8.24 5.94-10.84 0.12 0.26
2016 8.73 8.63 8.49 £+ 1.90 22.37 6.29-25.92 7.27 66.49
SNS 2015 28.40 24.00 31.75 £ 3.33 10.49 24.50-39.10 —0.27 0.40
2016 26.33 27.53 29.46 £ 5.70 19.36 18.80-40.27 4.84 38.29
FNS 2015 8.00 6.90 6.23 +£1.25 20.10 4.60-12.70 2.55 11.52
2016 8.93 6.06 9.02 + 3.15 34.86 5.60-35.80 6.63 52.35
GNS 2015 1.20 1.20 1.92 £ 0.69 35.66 0.80-4.10 0.72 0.48
2016 1.47 1.47 1.23 £0.48 38.79 0.00-2.53 0.55 0.34
Guyuan ESL 2015 34.87 33.81 43.77 £ 5.01 11.45 32.22-54.00 —-0.10 0.51
2016 40.72 44.00 42.93. £ 7.26 16.90 30.61-90.03 —0.07 —0.40
SIL 2015 18.47 18.10 18.12 + 3.36 18.55 11.66-27.03 0.47 -0.14
2016 17.54 15.20 12.51. £ 4.00 31.96 2.55-20.27 —0.70 —0.64
SL 2015 8.50 5.08 7.48 + 0.62 8.24 5.64-8.85 0.12 0.26
2016 8.00 7.64 8.32 + 1.00 12.01 6.18-11.76 0.14 —0.38
SNS 2015 18.00 18.25 23.19 £ 2.46 10.61 18.63-29.50 0.36 —0.38
2016 30.67 24.00 33.88 + 2.96 8.73 26.10-42.80 0.59 —0.10
FNS 2015 11.70 11.70 10.56 + 1.37 12.93 7.90-15.00 0.52 0.31
2016 8.22 4.00 5.06 £ 0.74 14.70 3.40-6.90 1.46 5.04
GNS 2015 1.10 1.10 1.38 £0.83 60.03 0.00-4.33 1.00 2.04
2016 1.69 1.00 1.03 + 0.41 39.97 0.10-2.10 2.99 10.72

a negative correlation between ESL, SIL and GNS in Guyuan (r
= —0.02, —0.01, and —0.03, respectively; P < 0.05). In 2015,
SIL was significantly positively correlated with ESL (r = 0.37,
P < 0.01) and SNS in Langfang. Moreover, SIL was negatively
related to SL, GNS, and FNS (P < 0.05, r = —0.13, —0.04, and
—0.08). There was a significantly or highly significantly positive

correlation between SL and FNS in three ecotopes in 2015, and SL
was also significantly positively correlated with FNS in Langfang
(r = 0.25, P < 0.01) and had a positive correlation in Changli
and Guyuan (r = 0.04 and 0.13, P < 0.05) in 2016. There was a
negative correlation or significantly negative correlation between
SNS and GNS in 2015 in three ecotopes. These results suggested
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TABLE 2 | Correlation coefficients for agronomic traits in the Agropyron CP hybrid population.

Environment Trait ESL SIL SL SNS GNS FNS
Langfang ESL 0.20 —0.06 —0.01 0.10 0.00 -0.07
SIL 0.37** 0.19 0.12 0.07 0.01 0.03
SL 0.11 -0.13 0.39** 0.33** 0.15 0.25*
SNS —0.05 0.23* 0.57** 0.47** 0.15 0.09
GNS 0.15 —0.04 —0.04 —0.05 0.04 —0.07
FNS 0.09 -0.08 0.47** -0.19 0.26"* 0.10
Changli ESL 0.18 0.27** 0.23* 0.19* 0.10 0.04
SIL -0.18 0.32** 0.05 —0.05 0.19* 0.17
SL 0.12 0.06 0.11 0.1 0.04 0.04
SNS —0.10 -0.15 0.60"* 0.13 0.05 0.08
GNS 0.19 0.09 0.34** —0.28"* 0.41** —0.08
FNS 0.02 0.04 0.24* —0.01 0.13 0.13
Guyuan ESL —-0.02 -0.13 0.03 0.04 —0.06 0.01
SIL 0.01 —-0.01 0.05 0.05 0.10 0.11
SL -0.02 0.09 0.16 0.63** 0.11 0.13
SNS 0.10 -0.18 0.45* 0.14 0.05 0.07
GNS 0.15 —0.21 0.24* —0.30** —-0.03 0.54**
FNS 0.24* —0.09 0.30** -0.13 -0.17 —0.06

Lower and upper diagonal represent in year of 2015 and 2016; Bold font represents the correlation between different years, respectively; * and ** represent significant differences at the

5and 1% level, respectively.

TABLE 3 | Summary of major QTLs detected in Agropyron Gaertn.

Trait Environment Year QTL Chr. Site Marker interval LOD phenotypic variation Additive effect Additive effect
explained (%) (female) (male)
ESL Changli 2015 qCEsl2-3-4 3 67  Marker10138-Marker53481  8.39 1.00 —10.29 11.26
Langfang 2014  gLEsI1-3-3 3 68  Marker10138-Marker53481  2.75 15.18 —0.62 -0.15
SIL Langfang 2015  glLSil2-5-2 5 87  Marker16892-Marker6766  2.55 11.49 —0.16 0.52
Changli 2016 gCSil3-5-3 5 88  Marker16892-Marker6766  3.31 3.93 —4.15 4.25
SL Langfang 2016 gLSI3-2-1 2 25 Marker9368-Marker7214 2.63 12.76 0.34 0.44
Changli 2016 gCSI3-2-1 2 26 Marker9368-Marker7214  7.27 0.25 —-2.17 2.00
Guyuan 2016 qGSI3-2-2 2 95  Marker12103-Marker8035  2.93 11.35 0.13 -0.27
Changli 2015  gCSl2-2-3 2 96  Marker12103-Marker8035  3.73 1.30 0.37 —0.49
Changli 2015  gCSI2-4-3 4 119 Marker13448-Marker23672  3.27 1.39 0.39 —0.43
Changli 2016  qCSI3-4-4 4 119 Marker13448-Marker23672  4.67 0.25 —2.04 2.00
Langfang 2015 qlL.Sl2-4-2 4 120  Marker13448-Marker23672  2.79 14.98 0.18 —0.41
SNS Changli 2015 (gCSns2-3-1 3 19 Marker27280-Marker16627  5.69 18.68 —0.68 —0.02
Guyuan 2015 gGSns2-3-1 3 19 Marker27280-Marker16627  2.98 11.17 —0.81 0.12
Guyuan 2016  gGSns3-7-1 7 71 Marker17716-Marker24497  5.81 5.90 4.1 —3.36
Langfang 2015 gLSns2-7-1 7 71 Marker17716-Marker24497  5.32 14.11 —1.69 2.89

that study trait values of CP hybrid population were rich in
variation at different environments and were feasible for QTL
analysis.

QTL Analysis for Study Traits

A total 306 QTLs for six study traits were detected on
seven linkage groups in three ecotopes in 3 vyears, with
single QTL explaining 0.07% to 33.21% of the phenotypic
variation. There were 77 QTLs for ESL, 35 QTLs for SIL,

51 QTLs for SL, 28 QTLs for SNS, 47 QTLs for ENS,
and 68 QTLs for GNS, respectively. Seven major QTLs and
seven stable QTLs were detected on chromosomes 2, 3, 4, 5,
and 7.

Ear Stem Length

Seventy-seven QTLs for ESL were detected. The major QTL
(qCEsl2-3-4, gqLEsl1-3-3) explaining totally 16.18% of the
phenotypic variations was mapped at position 67-68cM on
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chromosomes 3 flanking the marker interval Marker10138-
Marker53481 (Table 3; Figure 2). The additive effect of qCEsl2-
3-4 from female was positive, showing that there was a
big contribution from female, whereas there was a negative
additive effect of gLEsl1-3-3 from male and female. Four stable
QTLs (gLEsl1-3-2, qCEsl2-3-3, qGEsl3-3-2; qCEsl2-5-8, qCEsl3-
5-2, qGEsl3-5-2; qCEsl2-5-9, qCEsl3-5-3, qGEsI3-5-3; qCEsl2-
7-3, qCEsl3-7-2, qGEsl2-7-2) were found in at least three
environments of 3 years (Table 4).

The Second Internodes Length

For SIL, there were 35 QTLs, 11, 6, and 18 QTLs in Langfang,
Guyuan, and Changli, respectively. The major QTL of gLSil2-5-
2, qCSil3-5-3 with LOD values of 2.55 and 3.31 was identified
at position 87-88cM on chromosome 5 flanking the marker
interval Marker16892-Marker6766, and explained a total of
15.42% of the phenotypic variations (Table 3; Figure 2). The QTL
of gLSil2-5-2 and qCSil3-5-3 showed a positive additive effect
from female.

Spike Length

There were 51 QTLs for SL, including three major QTLs and one
stable QTL. The major QT (gLSI3-2-1, qLSI3-2-1) was located
at position 25-26 cM on chromosome 2 flanking the markers
Marker9368 and Marker7214, explaining totally 13.01% of the
phenotypic variations. One major QTL (qGSI3-2-2, qCSI2-2-
3) explaining a total of 12.65% of the phenotypic variations
was located on chromosome 2 bound by the marker interval
Marker12103-Marker8035 at 95-96cM and had a negative
additive effect from female. Another major QTL (gCSI2-4-3,
qCSI3-4-4, qLSI2-4-2) with 16.62% of the phenotypic variations
was mapped at position 119-120 cM on chromosome 4 flanking
the marker interval Marker13448-Marker23672 and showed a
negative additive effect, and the major QTL was also a stable QTL
that was detected in three environments (Tables 3, 4; Figure 2).

Spikelet Number Per Spike

Twenty-eight QTLs for SNS including two major QTLs were
detected. A major QTL (qCSns2-3-1, qGSns2-3-1) flanking
the marker interval Marker27280-Marker16627 was revealed
in multiple environments in 2015, which was detected at
19cM on chromosome 3, and explained totally 29.85% of
the phenotypic variations (Table 3; Figure 2). The major QTL
showed a positive additive effect. Another major QTL (qGSns3-
7-1, gGSns3-7-1) explaining 20.01% of the phenotypic variations
was mapped at 71 cM on chromosome 7 flanking Marker17716
and Marker24497, and had a positive additive effect. The
phenotypic variation for SNS ranged from 2.50 to 18.68%.
Fifteen QTLs had positive additive effects and thirteen QTLs had
negative additive effects.

Grain Number Per Spikelet

A total of 68 QTLs for GNS containing one stable QTL were
detected. These QTLs were distributed on all chromosomes, with
12, 15, 5, 9, 7, 11, and 9, respectively, on chromosome 1 to
7. Most of QTLs had a negative additive effect from female.
The stable QTL (qLGns3-2-1, qLGnsl-2-1, qGGns2-2-1) was

detected in Langfang in 2016 and Langfang, Guyuan in 2014,
and was mapped at position 25-26 cM on chromosome 2 flanking
Marker9368 and Marker7214 (Table 4).

Flower Number Per Spikelet

Forty-seven QTLs were detected on all seven chromosomes in
three ecotopes in 3 years. A stable QTL (qCFns3-5-1, qCFns2-
5-1, qGns2-5-1) located at 27 cM on chromosome 5 flanking
Marker12421 and Marker5108 was detected in Changli in 2015
and 2016 and Guyuan in 2016 (Table 4). A half of QTLs had a
positive additive effect, 17 of which were from female. The QTLs
for FNS mapped at 6 cM on chromosome 7 were identified in
Guyuan for 2 consecutive years, having a negative additive effect
from male.

Distribution of QTL

QTL for every trait was detected in every chromosome. The
number of QTLs ranged from 28 to 77. For ESL, 77 QTLs were
detected, which was the highest number of QTLs in all traits,
whereas the number of QTLs for SNS was lowest, that is, 28.
There were 40, 67, 40, 38, 56, 31, and 34 QTLs from chromosome
1 to 7, respectively. The highest number of QTLs (67) were
detected on chromosome 2, whereas there were the lowest
number of QTLs (31) detected on chromosome 6. There were
many QTLs that controlled multiple traits at the same time in
every chromosome. There were QTLs that controlled different
traits at the same locus, which was generally considered to be
“pleiotropism.” For example, the QTLs controlling all six traits
were detected in the Markerl7716-Marker24497 interval on
chromosome 7.

The Major QTL for Study Traits

There were seven major QTLs (Table 3; Figure 2), including one
for ESL, one for SIL, three for SL, and two for SNS. These major
QTLs were mainly distributed on chromosomes 2, 3, 4, 5, and
7. All these major QTLs were detected in two ecotopes, half of
which were found in Langfang and Changli, two in Changli and
Guyuan, and one was found in Guyuan and Langfang. A few of
these QTLs showed a positive additive effect from female, and
others exhibited a negative additive effect.

The Stable QTL for Study Traits

Seven stable QTLs, including four for ESL, two on chromosome
5, one on chromosome 3, and one on chromosome 7; one for
SL on chromosome 4; one for GNS on chromosome 2; and
one for FNS on chromosome 5, were detected in at least three
environments (Table 4). These stable QTLs were mainly mapped
on chromosomes 2, 3, 4, 5, and 7, elucidating the phenotypic
variation of 0.25% to 14.98%. Most of stable QTLs had a negative
additive effect, a few of which were from male.

DISCUSSION

The Effect of Environments on Phenotypic
Traits and QTLs

The climate and soil in the three research regions is obviously
different; Guyuan belongs to a high-altitude grassland climate
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FIGURE 2 | Chromosome locations of some QTLs and major QTLs for six spike and stem traits detected in the Agropyron CP hybrid population. A represents the
location of the major QTL detected in three environments.
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TABLE 4 | Summary of stable QTLs detected in Agropyron Gaertn.

Trait Environment Year QTL Chr. Site Marker interval LOD phenotypic variation Additive effect Additive effect
explained (%) (female) (male)
ESL Langfang 2014 gLEsl1-3-2 3 63  Marker15972-Marker2409  2.52 9.28 -0.73 —0.08
Changli 2015 CEsl2-3-3 3 64  Marker15972-Marker2409  5.29 2.16 —8.81 8.50
Guyuan 2016  gGEsI3-3-2 3 64  Marker15972-Marker2409  10.70 0.89 -8.74 9.07
Changli 2015 gCEsl2-5-8 5 88  Marker16892-Marker6766  4.88 1.47 4.07 -3.29
Changli 2016  qCEsI3-5-2 5 88  Marker16892-Marker6766  6.93 2.24 8.41 —8.45
Guyuan 2016  gGEsI3-5-2 5 88 Marker16892-Marker6766  11.07 0.98 —10.96 11.39
Changli 2015 gCEsl2-5-9 5 102  Marker61069-Marker18447  6.60 1.78 9.57 —8.20
Changli 2016  gCEsI3-5-3 5 102 Marker61069-Marker18447  6.78 1.95 5.80 —5.52
Guyuan 2016  gGEsI3-5-3 5 102 Marker61069-Marker18447  11.25 1.00 —7.40 8.16
Changli 2015 qCEsl2-7-3 7 74 Marker32777-Marker5181 2.76 1.16 —6.24 6.81
Changli 2016  gCEsI3-7-2 7 74 Marker32777-Marker5181  3.61 6.71 1.57 —2.57
Guyuan 2015  gGEsl2-7-2 7 74 Marker32777-Marker5181  9.11 0.90 8.82 —9.09
SL Changli 2015 qCsI2-4-3 4 119 Marker13448-Marker23672  3.27 1.39 0.39 —0.43
Changli 2016  qCSI3-4-4 4 119 Marker13448-Marker23672  4.67 0.25 —2.04 2.00
Langfang 2015 gLSI2-4-2 4 120 Marker13448-Marker23672  2.79 14.98 0.18 —0.41
GNS Langfang 2016 gLGns3-2-1 2 25 Marker9368-Marker7214 8.60 0.94 0.66 -0.72
Langfang 2014 gLGns1-2-1 2 26 Marker9368-Marker7214 2.69 9.18 —0.03 0.06
Guyuan 2015 gGGns2-2-1 2 26 Marker9368-Marker7214 2.78 1.24 -0.84 0.77
FNS Changli 2016  qCFns3-5-1 5 27 Marker12421-Marker5108 3.01 5.35 —0.60 0.48
Changli 2015 qCFns2-5-1 5 27 Marker12421-Marker5108  14.55 0.74 —-1.19 1.28
Guyuan 2015 qGFns2-5-1 5 27  Marker12421-Marker5108  4.27 9.84 —0.81 1.05

and Changli is more humid all year than Langfang. Therefore,
the growth pattern of Agropyron is also different. The ESL, SIL,
and FNS of the CP hybrid population of Agropyron showed an
increasing trend in Langfang from 2015 to 2016; however, the
SL, SNS, and GNS showed a downward trend. The coefficient
of variation of the CP hybrid population varied greatly from
region to region, especially to Guyuan. There were also significant
differences for spike and stem traits among years. The correlation
between most traits was consistent with different environments
or with different years, but the natural environment also
motivated the correlation between the various traits.

The number of QTLs detected for the same traits varies in
different ecotopes. Nineteen QTLs for ESL were detected in
Changli in 2015, whereas there were only eight QTLs in Guyuan
and Langfang in 2015. Similarly, there were different numbers
of QTLs detected in different years. There were four QTLs, eight
QTLs, and one QTL for ESL in Langfang in 2014, 2015, and 2016,
respectively. This showed that the environment had a significant
effect on the phenotypic traits of Agropyron.

The CP hybrid population of Agropyron was constructed
and used as a mapping population for QTL analysis for the
first time. Spike and stem traits are classical quantitative traits
controlled by many genes. The QTLs detected in more than one
environment were more accurate and reliable than the QTLs
detected in a single environment (Paterson et al., 1991; Veldboom
and Lee, 1996). Seven major QTLs existed stably in at least two
environments in this study. Therefore, the results could provide
a theoretical reference for understanding the genome structure
of Agropyron. The quantitative traits would have deepened

understanding through new analytical models and population
designs based on the present study in the future.

The QTLs of qGEsi2-2-1 and qGEsl2-2-2 were detected in
Guyuan in 2015 and had an adjacent location (<2 cM); it may
be the same QTL. The QTLs of qCEsI2-2-3 and qGEsI2-2-2 had
the same confidence interval and were detected at the same
site. This indicated that the QTL of gGEsI2-2-1, qCEsI2-2-3,
and gGEsI2-2-2 may be a stable QTL. Similarly, The QTL of
qCGns2-6-1, qLGns3-6-4, and qGGns2-6-4 found at position 71—
72 cM on chromosome 3 could be regarded as a stable QTL; the
situation also applied to the QTL of qgGGns2-7-1, qCGns2-7-3,
and qLGns3-7-3.

Pleiotropy and Multigenic Effect in QTL

The associated traits are often regulated by the same QTL or
closely linked QTLs (Paterson et al., 1991; Kato et al., 2000).
There were some QTLs for controlling different traits at the same
or similar loci, and there was a high correlation among these
traits in this study. The QTLs for ESL and SIL were detected on
chromosome 5 flanking Marker16892 and Marker6766. The ESL
had a highly significantly positive correlation with SIL in Changli
in 2016. Likewise, there were QTLs for SL and SNS at 72cM
on chromosome 4. This indicated that there may be multiple
tightly linked genes in one locus. There are some reasons for
this phenomenon. The genes controlling different traits may be
closely linked, or the same gene may affect the performance of
different traits. The QTL for ESL had a positive additive effect
from male, whereas the QTL for SIL had a positive additive effect
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from female at the same site on chromosome 5 (Marker16892-
Marker6766).

A number of traits governed by QTL can be modified
simultaneously by molecular MAS. Meanwhile, there was a
disadvantage that if QTLs controlling different traits had an
opposite effect, it would be a negative effect on plant breeding. So
it is necessary to break the chain through fine mapping. On the
contrary, if the QTLs for different traits had an identical positive
effect, these QTLs would play an important role in the genetic
improvement of crop yield-related traits.

Contrast With Wheat in QTL

The QTLs for SL, SNS, and GNS were located on the same
locus (Marker17716-Marker24497) at 71cM on chromosome
7P in this study. The tight QTL clusters in specific regions of
chromosome were in agreement with the phenotypic correlations
in these traits. The SL had a highly significantly positive
correlation with SNS, and SNS had a highly significantly negative
correlation in most instances. Similarly, the QTLs controlling
SL and SNS were detected in the same locus on chromosome
7D in wheat, and they are significantly correlated (Ma et al.,
2007), and the QTLs for SNS and GNS were found at the same
locus of chromosome 7D in wheat (Li et al., 2007). The QTLs
for SL and SNS were mapped at 42cM on chromosome 4P in
the present study. Likewise, SL, GNS, and SNS were mapped
on the same site on chromosome 4B (Deng et al., 2011). Wheat
and Agropyron may have homology in this segment and further
research is needed. These loci should be focused on in future.

The Importance of Part Chromosomes

The number of QTLs for GNS on chromosomes 1 and 2
was greater than on other chromosomes. The grain number
per spikelet is the most important factor in improving yield.
Chromosome 1 and chromosome 2 should be focused on the
future research for GNS. Meanwhile, there were 6, 6, 1, 2, 5,
and 11 for SL, ESL, SIL, SNS, ENS, and GNS, respectively,
on chromosome 6 in the present study. In addition, some
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