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Currently, there is a high concern from consumers regarding food quality, with emphasis
on the origin of food sources. We here review the current situation of beans (Phaseolus
spp.) and cowpea (Vigna unguiculata (L.) Walp.) landraces in the South of Europe
focusing on morpho-agronomic and genetic diversity and physiological adaptation to
the different agrosystems, including the symbiotic association with rhizobia. Despite the
reduction in the production and consumption of grain legumes in Southern Europe,
the variability of common bean, runner bean and cowpea landraces in this region is
adequately preserved ex situ in germplasm banks and in breeder collections in Portugal,
Spain, Italy and Greece; however, on-farm (in situ) conservation in isolated areas mainly
in gardens and small fields for farmers own consumption and local markets is not
guaranteed. This variability can be used for the genetic improvement of varieties, which
will result in environmental-friendly improved legumes for a sustainable production in the
South of Europe as well as in other regions of the World.

Keywords: adaptation, diversity, breeding, populations, Phaseolus, physiology, plant genetic resources, Vigna
unguiculata

LEGUME LANDRACES

Food legumes are an important component of human diet and life for their contribution as source
of protein but also for their support to the environment sustainability through the biological
symbiotic fixation of nitrogen, and the enhancement of the ecosystem services because some of
them are bee pollinated (De Ron, 2015; Suso et al., 2016). In the South of Europe, beans and cowpea
are relevant nutritional and environmental resources well adapted to their agrosystem that should
be genetically preserved and improved for their efficient use.

Landraces are traditional crop varieties or populations growing in specific locations and
constitute valuable sources for breeding purposes as basic genetic material to obtain improved elite
varieties. Usually a landrace is a mixture of a number of distinct homozygous lines in the case
of self-pollinating crops (common bean, Phaseolus vulgaris L. and cowpea, Vigna unguiculata (L.)
Walp.) (Raggi et al., 2013). In the case of cross-pollinated crops (runner or scarlet bean P. coccineus
L.), the landraces are populations with more heterozygous components (Newton et al., 2010). They
are maintained by farmers according to their preferences and the adaptation to their environment
in ecological key areas. Merging several definitions (Spataro and Negri, 2013), a landrace can be
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defined as a “variable population, which is identifiable and usually
has a local name, lacks formal crop improvement, is characterized
by a specific adaptation to the environmental conditions of the
cultivation area (tolerant to the biotic and abiotic physiological
stresses of that area) and is closely associated with the uses,
knowledge, habits, dialects, and celebrations of the people who
have developed and continue to grow it” (Negri et al., 2009). As
such, they are a cultural and biological diversity heritage of value
for present and future generations.

Common bean, runner or scarlet bean and cowpea are the
warm season Mediterranean legumes included in this review.
Common bean is the most important food legume for direct
human consumption on a global scale (De Ron et al., 2016a),
while runner bean has a more limited cultivation. Cowpea is
extensively cultivated in tropical and subtropical areas in Africa
(especially in the Sub-Saharan Africa, SSA) and the Americas
(Central and South America), but has limited importance in
Southern Europe and in North America (De Ron, 2015).

These legumes could be used for fresh and dry seeds and fresh
pods and they play an important role in the healthy European
Mediterranean diet. Recently, the role of beans and other food
legumes in human diet refers not only to its high protein
content but also to the functional properties of some components
that could contribute to reduce risk of several serious diseases
(Hangen and Bennink, 2003; Thompson et al., 2009; Vaz Patto
et al., 2015). Recent trends on legume nutritional quality key
factors focus on new strategies to enhance consumer acceptance
and improve legume functional properties.

In spite of the decrease of grain legumes cultivation and
consumption in some countries of Europe in the last years
(Figure 1), the interest in landraces of these crops has recently
grown in Europe, as well as in other continents This is
due to the need of having a more sustainable agriculture,
meet the present environmental challenges, avoid further
genetic erosion and satisfy consumer increasing request for
healthy, environmentally friendly, local food (with reduced
physiological carbon footprint since it is locally produced).
Special mention deserves the varieties that are recognized with
some figure of legal protection, such as quality labels [like the
European Protected Designation of Origin (PDO), Protected
Geographical Indication (PGI), and Traditional Specialties
Guaranteed (TSG)]. However, the wide variability and the
lack of uniformity for many morpho-agronomic traits in
landraces is an obstacle for the application of the current
legislation for their commercial or protected registration in some
countries.

EUROPEAN COWPEA AND BEAN
LANDRACES EVOLUTION AND
DISTINCTNESS FROM THE ORIGINAL
GENEPOOLS

Cowpea is the old “bean” that was grown by the Romans and
Arabs (Alvarez de Morales, 2002). Domesticated in the SSA
during the second millennium B.C., cowpea early spread in Asia
and Europe, where it was grown by the Greeks in the third

century B.C. and by the Romans in the first century based on
the writings of Theophrastus and Plinius. With its spreading
across the Old World, many different forms and landraces were
developed also for this crop (Polegri and Negri, 2010).

Cowpea has been largely cultivated in the Old World, where
this crop has a high cultural and socio-economic value for local
communities (De Luca et al., 2018). Fresh pods of cowpea are
consumed in Southern Europe, where a relatively large number
of landraces has been developed, giving rise to a wide genotypic
and phenotypic diversity among and within landraces (Lazaridi
etal., 2017). These authors found that differences among cowpea
landraces are not determined by the country of origin in Southern
Europe. Neighbor landraces can be adequately distinguished even
though there is a high level of diversity present within each
landrace; consequently, the best strategy for maintaining diversity
in an area is to preserve each of the landraces in the farms from
which it came (Tosti and Negri, 2005).

After the initial domestication process in the Americas, the
common and runner bean arrived in Spain and spread across
Europe and later arrived in Africa (Gepts and Bliss, 1988; De
Ron et al., 2015, 2016a). Since these species were originated and
domesticated in tropical highlands, local widely different biotic
and physiological abiotic conditions and farmer preferences
and/or initial genetic bottleneck had a strong influence on
the development of European landraces (Rodifio et al., 2006;
Rodriguez et al., 2013; Raggi et al., 2014; Ferreyra et al., 2017)
which resulted in a complex genetic structure of the bean
germplasm and in a clear differentiation of the European gene
pool with respect to the American genetic pools (Santalla et al.,
2002; Angioi et al., 2010; Spataro et al., 2011; Rodriguez et al.,
2013).

As for common bean in particular, no records of this crop
have been found in European herbariums earlier than 1543; but,
according to Zeven (1997), common bean was certainly widely
grown in many areas of Europe in 1669. Of the many landraces
found across Europe most belong to the Andean gene pool, being
less represented the Mesoamerican gene pool (Rodifo etal., 2001;
Angioi et al, 2010; Leitdo et al., 2017). However, a relatively
high proportion of the European common bean germplasm (33-
44%) appear to be derived from hybridization events between the
Andean and Mesoamerican gene pools, when the landraces were
grown in proximity, displaying novel genetic combinations not
typical of the primary American centers of domestication and
emphasizing the potential value of the European germplasm for
breeding (Santalla et al., 2002; Angioi et al., 2010).

ECO-PHYSIOLOGICAL ADAPTIVE
TRAITS OF BEAN AND COWPEA IN THE
SOUTH OF EUROPE

The evolution of beans and cowpea in the South of Europe by
their adaptation to the ecophysiological regional conditions has
involved changes in landraces. In a study that included 10 cowpea
landraces from the South of Europe (five from Portugal, three
from Spain, and two from Greece) cultivated in three different
locations for 2 years, Martos-Fuentes et al. (2017) displayed the
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FIGURE 1 | Production (Mg/year) evolution of dry bean (Phaseolus vulgaris) in southern European countries (FAOSTAT, 2018).
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existence of significant interactions among genotypes, locations
and vyears, that is relevant in breeding for important agro-
morpho-physiological traits.

The diversity originated in cowpea along centuries is also
important for the tolerance to local stresses that each local variety
has developed due to natural selection for adaptation as well
as farmer selection for agronomical applications and dietary
benefits (De Luca et al., 2018).

Low Temperature

A desirable characteristic for crops is a rapid and homogeneous
seed germination and emergence at different environmental
conditions (Revilla et al, 2005). As other crops, there are
differences among bean landraces regarding their performance
(germination, seedling emergence, vegetative growth, flowering,
and vyield) in different environments and under different
temperatures. There is a need of bean germplasm with the
qualities of the grain demanded by consumers to increase the
success and the added value of the bean crop; and the tolerance
to low temperature after sowing at germination and emergence
is a key characteristic for a good development of the crop.
The eco-physiological response of beans to low temperature
stress has been often studied under controlled environmental
conditions in glasshouse and climatic chambers but the long-term
main goal of genetic improvement for low temperature tolerance
is the selection of landraces under different environmental
temperatures in open field.

To analyze the response to a relevant eco-physiological
condition as low temperature, De Ron et al. (2016b) performed
several trials with 28 dry bean genotypes (21 landraces from
Spain and Portugal and seven improved varieties from Spain,
France and Japan) in open field under different temperature
conditions in April (low temperature: 10-14°C), May (moderate
temperature: 12-17°C) and June (warm temperature: 15-22°C)

in the North of Spain. The experiment was replicated in a growth
chamber resembling the same environmental conditions. Three
Spanish landraces (PHA399, PHA419, and PHA1058) and the
improved variety Borlotto with low temperature stress-tolerance
at seedling emergence, and high yield potential could be valuable
genetic material for breeding programs. Seedling emergence of
the large seeded landraces from Spain belonging to the Andean
genetic pool was delayed compared to the small seeded landraces
from the Mesoamerican one, in the controlled growth chamber
and in the open field experiments, and they showed lower
emergence in the open field under realistic agronomic conditions.
This fact could be explained by the evolution of the common bean
in the southwest of Europe, since farmers probably selected for
years large seeded bean landraces due to their high market value
and used to germinate the seeds in nurseries before transplanting
the seedling into the open field and no breeding actions were
taken by farmers and breeders to improve germination and
emergence of the large-seeded Andean landraces under low
temperatures in field.

The runner bean frequently requires moderate or warm
temperatures for a good emergence and growth, while low
temperature at sowing delays plant emergence and early growth,
and can reduce establishment of the crop when an early sowing
is carried out. Rodino et al. (2007a) evaluated runner bean
germplasm in a climate-chamber: 19 landraces from Spain
and Portugal, four from Mexico, four from Rwanda and five
commercial varieties. Best performers in emergence and first
trifoliate leaf, traits related to earliness, were four Spanish and
one Portuguese landraces compared to the Mexican ones that
indicated a good adaptation of this genetic material to the eco-
physiological conditions in the South of Europe.

Cowpea is considered a cold susceptible crop; however,
cowpea is not being improved for cold tolerance. Modern
breeding programs establish as key breeding objectives the

Frontiers in Plant Science | www.frontiersin.org

October 2018 | Volume 9 | Article 1524


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

De Ron et al.

Legume Landraces in Southern Europe

development of drought tolerant, early maturing, pest tolerant
and erect type cowpea in countries where this is an important
crop, such as India (Roy et al., 2016). Since several years ago,
some reports have found genetic diversity for cold tolerance in
cowpea, e.g., El-Kholy et al. (1997) evaluated a collection of
cowpea genotypes for cold tolerance at germination and found
that genotypes differed in rate for leakage of electrolytes but
not in maximal percentage of germination. The effects of cold
conditions on crop development differ at diverse growth stages,
from germination to reproduction. Under cold conditions in the
field, reducing the seed moisture content results in decreased
percentage of emergence and rapid electrolyte leakage in cowpea,
while deep sowing results in slow and low percentage emergence
(Ismail et al., 1997).

The genetic regulation of cold tolerance in cowpea has been
scarcely studied; but several genes related to cowpea response to
cold conditions have been identified (Tan et al., 2016). Ismail et al.
(1997) proposed that cold tolerance at early stages of the crop is
due to a seed dehydrin protein and can be explained by a single
gene inheritance. These authors also reported that maternal gene
effects are important for the electrolyte leakage of cowpea seeds
at cold temperature, and appear to restrict their contribution to
cold tolerance to the beginning of plant development. Although
genetic diversity for cold tolerance is limited in cowpea, breeding
cowpea for cold tolerance at germination has been successful
(Ismail et al., 1997). Although some sources of cold tolerance have
been identified, introgression of cold tolerance in elite germplasm
is a challenge because cowpea is a mainly self-pollinating crop.
Several major QTLs have been identified, even though the
development of mapping populations is a difficult and time-
consuming task. Markers have not been actually used in breeding;
nevertheless, novel techniques, such as developing transgenic
plants, RNA-Seq, and reverse genetics open new opportunities for
molecular breeding (Tan et al., 2016).

Water Stress

Water deficit is considered a relevant agronomic factor limiting
crop productivity and is responsible for important yield
reduction in many crops (Serraj et al, 2004). The severity of
drought stress is always unpredictable as it depends on factors
such as occurrence and distribution of rainfall, evaporative
demands of the atmosphere and moisture storing capacity of the
different soils.

In the common bean, the main selection criteria for drought
resistance is the plant growth and the grain yield. Rodifio et al.
(2007b) evaluated 21 common bean accessions (12 landraces
from Spain and Portugal and nine resistant and susceptible
cultivars) in two locations in the northwest of Spain to identify
those genetic materials adequate for breeding for water deficit
tolerance. The Drought Intensity Index (DII) was calculated
as DII = 1—Xds/Xns, being Xds and Xns the average of
all the accessions under drought stress (DS) and no stress
(NS) conditions. Drought Susceptibility Index (DSI) for each
common bean accession was calculated following these formulae:
DSI = (1—Yds/Yns)/DII, where Yds and Yns are the average
yields of an accession under DS and NS conditions. Five Spanish
landraces (PHA432, PHA471, PHA543, PHA683, and PHA2074)

had high level of drought resistance together with two cultivars
(Alavesa and Linex). These results confirm that during its
evolution in Europe some common bean landraces were able to
adapt to different eco-physiological conditions, such as drought.

Moreover, the variability present in 23 cowpea landraces
collected from Greek fields revealed potential germplasm for
drought tolerance (Lazaridi et al., 2016). Cowpea is considered
a legume tolerant to heat, drought and poor soils due to its
capacity to fix nitrogen even under stress conditions (Carvalho
etal,, 2017a; Lazaridi et al., 2017). However, the diversity available
for stress tolerance in southern Europe has neither been deeply
studied nor used in breeding programs for stress tolerance.
Shadeya et al. (2000) found limited diversity for drought tolerance
in advanced breeding lines evaluated by a rapid laboratory
method, but they were able to identify tolerant and susceptible
genotypes that could be used for breeding. Genetic regulation of
drought tolerance follows an additive - dominance model in most
crops, including cowpea; being dominance and additive effects
similar and important, while epistasis was rare, and narrow sense
heritability was low to moderate for most traits under terminal
water stress (Olajide and Ilori, 2018).

Drought effects in cowpea included reduction of plant growth,
yield components, shoot and seed nutrients, and leaf water
content, along with membrane instability; while increase activity
of leaf antioxidant enzymes, content of leaf proline, electrolyte
leakage, and shoot Si content (Merwad et al., 2018). Furthermore,
leaf anatomical features are also altered by drought, being width
of midvein and xylem, thickness of midvein, phloem and xylem
tissues, and palisade and spongy tissues of leaf blade decreased
(Merwad et al., 2018). Drought reduces plant cell water potential
and turgor and raises solute concentrations. The water deficit
had negative influence on mineral nutrition and metabolism
decreases leaf area and alters assimilate partitioning among
the organs. Physiological mechanisms of the plants for facing
water stress include escape, avoidance by increasing the water
uptake and reducing transpiration rate by maintaining tissue
turgor by osmotic adjustment allowing the plants to preserve
their vegetative growth, and resist the severe water stress by
physiological mechanisms (Jones, 2004).

Biological Nitrogen Fixation

Legume biological Nitrogen (N) fixation by symbiosis with soil
rhizobia provides an eco-physiological and agronomic chance to
increase common bean productivity related to soil fertility and
climatic conditions. Miranda and Bliss (1991) reported that many
common bean landraces have low biological N fixation capacity
probably due to their original domestication process as a home
garden crop, with low selection pressure for the improvement
of the symbiotic association with rhizobia. Rodifio et al. (2011)
studied 64 common bean landraces for their capacity to establish
symbiosis with rhizobia in controlled conditions and the effect of
the environmental conditions on the symbiotic efficiency of them
in six environments in Spain. The variation among environments
for nodulation efficiency among landraces was remarkable, and
five of them (PHA175, PHA508, PHA525, PHA595, and PHA652)
displayed good nodulation and high yield in field.
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The bean-rhizobia symbiotic system is usually affected by the
water availability. Coleto et al. (2014) studied the inhibition of
N fixation and ureide accumulation under water deficit in two
common bean landraces and two breeding lines of contrasting
drought tolerance. Their results displayed relevant genotypic
differences in the drought sensitivity of biological N fixation
among the landraces, and that the genetic variation is linked
to ureide accumulation in the stressed leaves. In addition, two
common bean landraces studied (PHA246 from Spain and
PHAG683 from Portugal) had better performance under DS than
the tolerant breeding line used as check (Sea 5); therefore, their
eco-physiological adaptation were reliable and they could be used
in breeding programs designed to improve the efficiency of N
biological fixation under water stress in common bean in the
South of Europe.

De Ron et al. (2014) evaluated 10 common bean landraces
from Spain and Portugal, together with some breeding lines
tolerant to water deficit. This material was inoculated with
10 distinct strains of Rhizobium (eight local and two checks,
R. tropici CIAT899 and R. etli CFN42) in greenhouse both under
irrigation and water stress. Under water stress, five Spanish
and one Portuguese landraces displayed high nodule number,
high nodular biomass, a great uniformity in the caliber of their
nodules, and a significant correlation with aerial biomass that is a
relevant component of plant yield.

The results of these experiments showed that the common
bean landraces are well adapted to their eco-physiological
environments in the South of Europe and some of them are
able to establish an efficient symbiosis with native rhizobia, even
under water stress conditions.

Low soil fertility is a challenge for cowpea production,
especially in low-input agriculture, which is the most common
production system in undeveloped countries where this legume
is a basic food supply. Fortunately, this crop has a great ability
to synthetize N through the symbiotic interaction with rhizobia.
Adaptation of cowpea includes coevolution with indigenous
rhizobia associated with strains of the species Ensifer fredii that
were able to nodulate and fix N in cowpea but not in soybean and
common bean (Tampakaki et al., 2017). These authors conclude
that the Ensifer isolates may constitute a new symbiovar for which
they propose the name “aegeanense”. Furthermore, symbiosis can
partially explain the gains in breeding programs for agronomic
performance; actually, Oruru et al. (2018) reported that modern
cultivars of cowpea had higher root colonization, nodulation,
and nutrients in the shoot than old cultivars and concluded
that the response of mycorrhizal inoculation has been indirectly
improved by selection for yield.

MORPHO-AGRONOMIC AND GENETIC
TRAITS OF BEAN AND COWPEA IN THE
SOUTH OF EUROPE

In the European Mediterranean basin, clearly differentiated
common bean landraces exist, originated from populations firstly
introduced in the Iberian Peninsula after the exploration of The
Americas. A particular case is the white seed bean types from

Turkey that seem to be phylogenetically distant from the rest
of the European germplasm, probably due to their introduction
through East Asia via the Silk Route (De La Fuente et al., 2010).

There are great differences in the preferences of the bean
markets and consumers in different countries and regions related
to grain size, shape, color, and cooking time, therefore these types
are described as “market classes” (Voysest, 2000; Santalla et al.,
2001), usually including unimproved germplasm (landraces) and
some improved varieties. Breeding for commercial varieties in
beans within landraces of different market classes has the goals of
improve the preferred seed size, shape, color, and pattern in each
area of production. As mentioned above, in the South of Europe
bean landraces appear to have experienced major phenomena of
evolution and adaptation, as they show clear differences between
them.

In Portugal, the national common bean production still
depends considerably on landraces adapted to local conditions,
and fulfilling specific morphological, agronomic and nutritional
farmers’ preferences in mainland north and central regions,
Azores and Madeira Islands (Moreira and Veloso, 2009; Vaz
Patto and Araujo, 2016). Currently there are some common bean
cultivars (six landraces and two conservation varieties (“Corno
de Carneiro” and “Tarrestre”) registered at the Portuguese
National Catalog (CNV, 2017). Based on morphological and
reproductive traits, considerable diversity has been described
among common bean landraces from the North of Portugal
(Rodifio et al., 2001) and from Madeira Island (Freitas et al,,
2010). In particular, different sources of resistance and partial
resistance to rust and powdery mildew have been identified in
a dedicated germplasm collection screening (Leitdo et al., 2013),
anticipating a high potential for disease resistance breeding
in the Portuguese germplasm. The genetic variation of the
Portuguese common bean accessions was also characterized
using RAPD and SSR molecular markers (Martins et al., 2006;
Leitao et al., 2017) not detecting clear relation between the
geographic distribution and the genetic distance. This absence of
relation may be due to an important genetic flow resulting from
the traditional seed exchange practices at local markets or among
farmers. Leitao et al. (2017) also positioned the Portuguese
germplasm in the worldwide diversity of common bean through
a SSR-based genetic diversity study involving an enlarged
collection of Portuguese landraces from all traditional bean-
growing geographical areas and wild relatives and representative
accessions from the Andean and Mesoamerican gene pools.
Structure analysis divided the collection into three main clusters,
with most of the Portuguese accessions clustering with the
Andean representatives, but one third of the analyzed national
landraces might represent putative hybrids between American
gene pools. Some core collections were developed by the same
authors maximizing the genetic and morphological diversity of
the original collection, and representing the Portuguese common
bean accessions with the minimum redundancy.

In Spain many common bean landraces have been collected
in farmer fields, starting from the 70s of the last century
and are conserved ex situ in the national gene bank (CRF-
INIA, Alcala de Henares) as well as in breeders collections
in different regions, while many landraces can still be found
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cultivated in situ (on-farm) in some places mainly for own or local
markets consumption. Six areas of Spain have landraces or local
varieties awarded with quality labels (PDO and PGI), including
16 common bean and one runner bean, while no cowpea variety
is recognized with these labels. The most appreciated landraces
or local varieties are white large and extra-large seeded (50-100 g
100 seeds™!) (Santalla et al., 2005), generally belonging to the
Andean gene pool, although some of them are intermediate or
recombinant types with the Mesoamerican pool (Santalla et al,,
2002).

In Italy over 200 common bean landraces are officially
recorded as maintained in situ (Negri et al., 2013) with six of them
awarded with PDO or PGI. An analysis of 146 Italian landraces
based on the combined use of morpho-physiological, biochemical
and molecular traits clearly distinguished almost each landrace
from the others (Raggi et al., 2013). It also showed that the
Italian landrace genetic diversity is clearly structured in three
clusters and that clustering is not simply ascribable to the original
Mesoamerican and Andean gene pools, similarly to what was
found in the Portuguese germplasm by Leitdo et al. (2017). On
the contrary, the distinction of cluster 1 from cluster 2 appeared
to be (at least partially) due to adaptation (for flowering date and
resistance/tolerance to diseases) to the different environmental
conditions that are determined by altitude since the presence
of selective effects was detected for some of the SSR used in
the study. Breeding activities have been intense in the past
years since beans are largely cultivated for both the seed and
the pod consumption in Italy: twenty-eight cultivars have been
released by a Ministry of Agriculture Research Center (CREA_CI,
A. Carboni pers. comm.). Most of them were specifically bred
for resistance to the main biotic stress of the crop (which are
striking on intensive cultivations) and mostly relying on alien
germplasm since landraces, although giving product of high
organoleptic quality, are poorly adapted to intensive cultivation

(Parisi and Campion, 2010). However, to breed lines specifically
suited to organic agriculture we can well take advantage of
landrace germplasm (Caproni et al., 2018).

In Greece bean landraces have been collected in organized
expeditions particularly during the previous century and are
conserved ex situ in many genebanks while several landraces can
still be found cultivated on-farm in many places mainly for own
or local consumption. The dry beans of several Greek Phaseolus
spp. landraces have been characterized as PDO or PGI having
added value that resulted in the need for testing the authenticity
of their products and the development of test methods based
on molecular tools (Ganopoulos et al., 2012). Improved cultivars
bred in Greece are either selections from Greek landraces or
selections following crosses between landraces and introduced
germplasm. Characterization and evaluation of common bean
landraces and main improved varieties cultivated in Greece
using morpho-agronomical, physicochemical traits, sensory and
molecular data showed a wide (among and within landraces)
genetic variation and also revealed promising landraces with
superior yield components and protein content that could be
used “per se” or in breeding programs for conventional or low
input/organic cultivation (Mavromatis et al., 2010; Vakali et al.,
2017).

As for runner beans, different landraces are also cultivated in
Spain, Portugal, and Italy (Santalla et al., 2004; Spataro et al.,
2011; Rodriguez et al., 2013; Schwember et al., 2017), and in
the North of Greece where two groups can be distinguished
depending on seed dimensions (“giants” with 100 seed weight
range from 120 to 180 g and “elephants” with 100 seed weight
outreaches the 180 g).

Cowpea is currently a crop of minor importance for
Europe; however, considering its greater drought resistance
in comparison with common bean and a scenario of climate
change and unpredictability, it is likely to have an increased

TABLE 1 | Warm season legume landraces ex situ collections in the South of Europe.

Country National collections (gene banks) Breeder collections and features

Portugal Portuguese Plant Germplasm Bank, BPGV
(Braga, Portugal, FAO code PRT001; now
conserving also the previous INIAV Research
Unit of Biotechnology and Genetic Resources
collection, FAO code PRT005). Conserving
3307 common bean and 344 cowpea
accessions.

Spain National Center for Plant Generic Resources MBG-CSIC (FAO code ESP009) (De Ron et al.,
(CRF-INIA, FAO code ESP004). Conserving 2018). Conserving 1701 Spanish and other
3616 Common bean, 121 runner bean and 487 origins common bean, 49 Spanish runner bean
cowpea accessions. and 89 Spanish and Portuguese cowpea

accessions (De Ron et al., 2003).

Italy UNIPG-DSAB (FAO code ITA363) and other Common bean 552, runner bean 91 and
Italian collections (See cowpea 16 accessions.
https://www.crea.gov.it/853/plantares/ for
details on number of conserved accessions).

Greece Greek Genebank (FAO code GRC005).

Conserving 436 common bean, 30 runner bean
30 and 37 cowpea accessions (Katsiotis et al.,
2009).
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importance in future years. For instance, Portugal has presently
one cowpea cultivar (“Fradel”) registered at the National Catalog
for commercial use (CNV, 2017) although many varieties are
available commercially. Cowpea cultivation is mostly based on
landraces and scientific studies have been carried out to assess
breeding potentialities of local germplasm (Negri et al., 2000,
2001; Lazaridi et al., 2016, 2017; Carvalho et al., 2017a,b;
Karapanos et al, 2017; Martos-Fuentes et al, 2017). The
characterization of fresh pod traits in thirty-one cowpea landraces
from Portugal, Spain and Greece revealed promising variation for
production (Lazaridi et al., 2017).

From all the above, we may conclude that Southern
Europe is still rich in landrace diversity maintained ex
situ and in situ which represents an important source of
interesting plant traits combinations, not yet fully explored
in formal genetic improvement programs. According to the
PGR Genesys (2018) database the landraces of warm season
legumes landraces from the South of Europe maintained in
genebanks are: 11371 of common bean, 1442 of runner bean
and 940 of cowpea. In situ wealth of landrace diversity is
presently threatened by the replacement by novel, genetically
uniform cultivars, the possible general effects of climate change
in plant physiology and growth, the aging of farmers and
ineffective transmission of knowledge related to landraces,
the desertion of the land caused by migration from rural
areas to cities, the internationalization of food systems
and the pressure of changing markets with restrictive food
standards.

However, it should be noted that some of the numerous
landraces of warm season legumes were/are being awarded of
EU quality marks (27, including both common and runner
bean) and/or are promoted as typical product locally. This helps,
at least partially, halting the loss of useful germplasm and its
evolution in situ. The on farm conservation of landraces could
be guaranteed if it offers an income to the farmers. This can
be achieved by marketing the landraces products emphasizing
their uniqueness with special brand names that highlight their
local cultural heritage (Karanikolas et al., 2017). Additionally,
in situ conservation can be accomplished by supporting farmers
willing to cultivate the traditional varieties, for example with
a participatory plant breeding program, or even with financial
support when the genetic resources are considered as national
patrimony.

CONCLUDING REMARKS

According to the available data, the variability of the common
bean, runner bean and cowpea landraces from the South of
Europe is adequately preserved ex situ in germplasm banks
and in breeders collections in Portugal, Spain, Italy and Greece
(Table 1); however, on-farm or in situ conservation in isolated
areas mainly in gardens and small fields for farmers own
consumption and local markets is not guaranteed currently.
In addition, this variability is being used for the genetic
improvement of varieties, some of them already registered

and others protected by quality labels, despite the reduction
in the production and consumption of grain legumes in
those areas. Legume research programs in Europe are only
focussed to cowpea pre-breeding, even though this crop could
make significant contributions to legume production in arid
areas.

The genetic structure of landrace populations, in the case of
autogamous species such as common bean and cowpea, gives
an opportunity for individual selection within landraces adapted
to particular eco-physiological conditions with the objective of
obtaining improved breeding lines that could be used per se for
production or as basic germplasm for breeding programs. In
the case of the runner bean, an allogamous species, individual
selection must include isolation because of the role of insects in
the reproductive process.

To take full advantage of these valuable bean and cowpea
adapted landrace resources it is extremely important to
complement the existing molecular/morpho-physiological
diversity analysis with detailed phenotypic evaluations, and to
enhance the symbiotic system legume-rhizobia for an efficient
biological N fixation. These will allow the identification of
landraces with increased market value (adapted to biotic and
physiological stresses or characterized by market quality traits)
that can actively be used to overcome different constraints
affecting both production and consumption. It will result
in obtaining environmental-friendly improved legumes for a
sustainable production in the South of Europe and for other
regions of the World.
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