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Sorghum (Sorghum bicolor L. Moench) is a C4 tropical grass that plays an essential
role in providing nutrition to humans and livestock, particularly in marginal rainfall
environments. The timing of head development and the number of heads per unit
area are key adaptation traits to consider in agronomy and breeding but are time
consuming and labor intensive to measure. We propose a two-step machine-based
image processing method to detect and count the number of heads from high-
resolution images captured by unmanned aerial vehicles (UAVs) in a breeding trial.
To demonstrate the performance of the proposed method, 52 images were manually
labeled; the precision and recall of head detection were 0.87 and 0.98, respectively, and
the coefficient of determination (R2) between the manual and new methods of counting
was 0.84. To verify the utility of the method in breeding programs, a geolocation-
based plot segmentation method was applied to pre-processed ortho-mosaic images
to extract >1000 plots from original RGB images. Forty of these plots were randomly
selected and labeled manually; the precision and recall of detection were 0.82 and
0.98, respectively, and the coefficient of determination between manual and algorithm
counting was 0.56, with the major source of error being related to the morphology
of plants resulting in heads being displayed both within and outside the plot in which
the plants were sown, i.e., being allocated to a neighboring plot. Finally, the potential
applications in yield estimation from UAV-based imagery from agronomy experiments
and scouting of production fields are also discussed.

Keywords: high-throughput phenotyping, UAV remote sensing, sorghum head detecting and counting, breeding
field, image analysis
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INTRODUCTION

The grain yield of cereal crops is determined by accumulated
processes of resource capture (e.g., radiation, water, and
nutrients) that support net photosynthesis across the growing
season (i.e., the carbohydrate source) and the utilization of this
source, especially in the critical period around the reproductive
stage which allows establishment of a potential sink (grain
number) and, later in the crop, to fill those grains. These
processes and their complex interrelationships form the basis of
physiological models of crop growth and the development of
crops such as sorghum (Sorghum bicolor L. Moench) (Hammer
et al., 2010). Plant breeders and agronomists work collectively
to modify these processes via genetics and management to
develop cropping systems that optimize adaptation to different
environments, particularly those associated with drought and
heat (Lobell et al., 2015; Potgieter et al., 2016).

On an area basis, the final grain yield of cereal crops in
a plot can be described as the product of average values of
plant population, fertile head number per plant (i.e., main stem
plus tillers), seeds per head, and individual seed mass. Insights
into the changes in these component traits through the season
and their final values at harvest provide researchers with a
better understanding of crop adaptation, and potentially allow
breeders to select for different combinations of these traits
in different environments. The process of tillering provides a
flexible or “plastic” response to challenging environments such
as drought, and the trait of fertile head number per plant is
under strong genetic control in both sorghum (Lafarge et al.,
2002) and wheat (Triticum aestivum) (Mitchell et al., 2013;
Dreccer et al., 2014). Although all of these component traits can
be measured through labor-intensive hand-sampling methods,
plant breeders and agronomists doing large trials will typically
only use measures of yield (via plot harvester) and individual
seed mass (via sample of grains from each plot). Together with
estimates of plant population, which can be done by counting
the emerged plants using ground and aerial images (Gnädinger
and Schmidhalter, 2017; Jin et al., 2017; Liu et al., 2017), rapid
and precise estimates of fertile head number per unit area would
allow researchers to estimate the fertile head number per plant as
an indicator of “tillering propensity.”

The aim of the research presented here was to develop a
method that can detect and count the heads of sorghum from
unmanned aerial vehicle (UAV) images, and then apply the
method to specific plots to meet the needs of breeding programs.
Machine-based image algorithms for detecting and counting an
agriculture product with the use of harvesting robots and ground
monitoring vehicles have been applied to imagery of grapes,
tomato, apple, mango, and citrus fruits (Nuske et al., 2011;
Payne et al., 2014; Sengupta et al., 2014; Yamamoto et al., 2014;
Linker and Kelman, 2015; Gongal et al., 2016; Qureshi et al.,
2016). However, these algorithms were designed to handle high-
resolution images that do not include targets with large shape
variations. Therefore, they are not suited for use with either
the images or target object taken by UAVs in a breeding field
of sorghum where different genotypes have heads that vary in
color and shape, with these differences potentially changing with

environment. In this paper, we propose a two-step machine-
learning-based method that can detect and count sorghum heads
from aerial images. To the best of our knowledge, this is the first
report of research of this type.

MATERIALS AND METHODS

Field Experiments and Image Acquisition
The field experiments were part of multi-environment advanced
yield-testing trials in a sorghum pre-breeding program. The trial
was sown on 22 December 2015 at Hermitage, QLD, Australia
(latitude: 28.21◦ S, longitude: 152.10◦ E, altitude: 459 m above sea
level) during the 2015–2016 summer growing season. The target
plant density was 115,000 plants/ha, with genotypes planted in
plots comprising two 5-m-long rows. The plants were sown in
plots within columns, and the trial used a solid row configuration,
with a row spacing of 0.76 m between the two rows and a distance
between two neighboring plots of 1 m as shown in Figure 1.
In this trial, 1440 plots (laid out as 36 columns × 40 double-
row plots; hereafter, we refer to double-row plots as rows, i.e.,
36 columns × 40 rows) were sown, with several columns (216
plots in total) being “filler plots” to allow access for spraying.
The trial comprised 22 check hybrids and 903 test-cross hybrids
derived from crossing between a range of elite male parents and
two female testers in the breeding program. The check hybrids
were replicated at least four times, whereas 220 of the 903 test
hybrids were replicated twice, with no replication at this site
for the remaining 683 hybrids. The trial field was rain-fed and
managed according to local management practices.

A UAV (Modified 3DR X8, Skywalker Technology Co., Ltd.,
China) was flown over the field with a pre-designed flight plan
controlled with Mission Planner (open-source flight planning
software for Pix Hawk autopilot1). The path included substantial
overlap (i.e., 70% front-overlap and 80% side-overlap) at flight
heights of 20 m and a flight speed of 3 m/s. The total flight
time was approximately 50 min (five 10-min flights to cover
the whole field). A commercial RGB camera (Sony Cyber-
shot DSC-RX100M3, Tokyo, Japan) was mounted on the UAV
in a landscape format. The resolution of the camera was set
to 5472 × 3648 pixels, which resulted in an average ground
sampling distance of 0.45 cm at 20 m height with a footprint of
20 m. The image sets were captured at 1-s intervals during the
flights, so that about 2000 images were produced for the target
field (about 35 GB+) per flight.

Data Preparation
Flight data obtained on 24 March 2016 were chosen for this
study because almost all of the genotypes were heading stages
at this time, so that the widest diversity of heads in terms of
color and shape could be found in these images and the dataset
would be large and balanced enough for later processing. We
believe, however, that the image processing algorithm conducted
on this dataset has the general capabilities to be used on the
whole dataset, including images taken at different times of the

1http://planner.ardupilot.com/
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FIGURE 1 | Experimental field layout.

FIGURE 2 | An example of image preparation for algorithm development: (A) original image, (B) cropped image, and (C) manually labeled cropped image, the points
represent the heads (dataset 1).

growth season. From the 2109 original images obtained on 24
March 2016 when most of the plants in the experiment had
produced heads (on average, this date was about one to 2 weeks
after anthesis), 52 images were randomly selected following an
uniform distribution to develop and test the head detecting and
counting algorithm. To minimize the influence of camera lens
distortion, all of the images were cropped so that about 10% of
image was used (Figure 2). The original image of 5472 × 3648
pixels was cropped to a central region of 1154 × 1731 pixels,
which corresponded to an area of 2.3 m× 3.5 m which contained
three to five plots. All of 52 cropped images were carefully hand
labeled with points in Adobe Photoshop (Adobe Systems Inc.,
San Jose, CA, United States) as shown in Figure 2C. These images
were grouped as Dataset 1.

Sorghum Head Detection
The main challenges of creating an image-based solution in a real
breeding field are: (1) changing light conditions within a single
flight (images vary in color; Figure 3A); (2) complex background
(Figure 3B); and (3) head variations in color, size, and shape

caused by light conditions, genotype, heading stage, source of
head (main stem or tillers), angle of head stands, and overlapping
of heads (Figures 3C,D).

To overcome the first challenge, in our previous work
(Potgieter et al., 2015; Guo et al., 2016), we proposed a two-
step machine-learning, voting-based method. The method uses
colors (RGB, HSV [hue, saturation, and value], Lab from related
color space, ExG [excess green], and ExR [excess red]) introduced
by Meyer and Neto (2008); texture features (average gray
level, average contrast, measure of smoothness, third moment,
measure of uniformity, and entropy) from gray-scale imagery
introduced by Gonzalez et al. (2010); and contrast, correlation,
energy, and homogeneity from the gray-level co-occurrence
matrix introduced by Haralick et al. (1973) to train several
decision-tree-based pixel segmentation models (DTSM) (Guo
et al., 2013). These DTSM models are then used to segment
the images to sorghum and non-sorghum head regions. Based
on the segmented regions created in the last step, a bag of
visual words approach, modified from Guo et al. (2015), is
applied to the test images again to gain a new segmentation
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FIGURE 3 | Challenges of head detection in a real field. (A) Changing light conditions within one flight: (1) images taken under sunny conditions; (2) images taken
under cloudy conditions. (B) Complex background: (1) soil/ground (shadowed partially/fully), (2) dead leaves, (3) green leaves, (4) shadowed leaves, and (5) grass.
(C) The sorghum heads vary in color: (1) white, (2) green, (3) brown, and (4) orange. (D) The sorghum heads vary in size and shape: (1) heads from main stem, (2)
heads from tillers, and (3) overlapping heads; note that the shape of the heads is compact in 1 and 2 but is expanded in 3.

image with misclassifications removed from the previous step.
Finally, a voting process is used for all the segmented images
to acquire the most reliably detected region of the sorghum
heads. With only 20 test images cropped from a GoProTM Hero4
camera (GoPro, Inc., San Mateo, CA, United States), the method
showed good accuracy for sorghum head detection; the precision
(the proportion of correctly detected head region inside true
head region) and recall (the proportion of correctly detected
head region inside detected head region) were 0.95 and 0.96,
respectively (Guo et al., 2016). However, since this method used
texture feature and sliding window, the computation time and
cost was substantial for processing of high resolution images and
did not suit practical use.

Using the knowledge gained from our previous studies
(Potgieter et al., 2015; Guo et al., 2016), here we only used
color features to train a pixel-based segmentation model. First,
seven classes – (1) background soil, (2) background shadow, (3)
background dead leaves, (4) leaves, (5) green heads, (6) orange
heads, and (7) white heads – were defined. For each class, a
series of nine color features (r, g, b; H, S, V; L∗, a∗, and b∗)
from three standard color spaces were carefully collected from
17 images (Figure 4, Dataset 0) that were selected from the
entire image dataset of 2109 images, considering the diversity
of lighting conditions and head colors. Using these features, we
trained a DTSM model and applied it to all of the test images to
classify their pixels into the seven classes. DTSM is a supervised
machine learning approach based on the decision tree (DT)
(Guo et al., 2013, 2017). This approach generates a decision tree

model using the selected color features and corresponded classes,
then a constructed tree model is applied to segment test images,
such that each pixel becomes assigned to one of the classes
(Figures 5A,B). After this, the head-related pixels (green heads,
orange heads, and white heads) were selected and integrated
together into “head regions,” as shown in Figure 5C.

Sorghum Head Counting
To count the number of detected regions (Figure 5D) from the
first step with a reliable model, we randomly separated Dataset 1
into six sets, each set being eight or nine images. The images from
five of the sets were used to train the model with fivefold cross
validation, and the last set was used to estimate the performance
of the model. In detail, hand-labeled images were used to extract
the 11 morphology features of all of the candidate head regions
and the corresponding head numbers (Figures 5C,D):

(1) Area: actual number of pixels in each candidate head
region.

(2) Eccentricity: eccentricity of the ellipse that has the same
second-moments as the candidate head region.

(3) Extent: ratio of pixels in the candidate head region to pixels
in the total bounding box.

(4) Perimeter: total number of pixels around the boundary of
the candidate head region.

(5) Major axis length: length of the major axis of the ellipse
that has the same normalized second central moments as
the candidate head region.
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FIGURE 4 | Dataset 0 comprised 17 images for training data collection of pixel-based segmentation model. The images were selected considering light condition,
head color, head shape, and background.

FIGURE 5 | The work flow of the proposed method of detecting and counting sorghum heads. (A) Original image. (B) Pseudo-color image demonstrating pixel
classification result by DTSM: white head, yellow; soil, gray; shadows, black; dead leaves, off-white; leaves, green; orange heads, dark orange; and green heads,
light orange. (C) Detected head regions (left) and overlapped with manually pointed head image (right). The black dots indicate heads pointed manually with
Photoshop. (D) The head regions cropped from original images based on (C). (E) Detected head regions and number of heads counted. The numbers shown in the
image indicate the number of the sorghum heads; 0 means incorrect detection..

(6) Minor axis length, length of the minor axis of the ellipse
that has the same normalized second central moments as
the candidate head region.

(7) ConvexArea, number of pixels in smallest convex polygon
that can contain the candidate head region.

(8) FilledArea: number of pixels in each candidate head region
with all holes filled in.

(9) EquivDiameter: diameter of a circle with the same area as
the candidate head region.

(10) Solidity: proportion of the pixels in the convex hull that are
also in the candidate head region.

(11) Roundness: circularity of candidate head region.

These features of each candidate head region were then used
as predictors with corresponded head numbers as the response,
in order to train a Quadratic-SVM (Support Vector Machine)
classifier with fivefold cross validation. Support Vector Machine
is a supervised machine learning algorithm which has become
commonly used to solve classification problems. SVMs are based

on the idea of finding a hyperplane that best divides a dataset into
two classes. In this paper, a quadratic kernel is used, as it is less
computationally intensive but has been show to perform as well
as previous work (Guo et al., 2016).

Then model was applied to all of the candidate regions
from step 1 to count the numbers of heads in each image
(Figure 5E). The training data and a guidance is also provided in
Supplementary Materials, which can support opportunities for
readers to test other classifiers (such as Decision Trees, Random
Forest, SVMs with different kernel functions) using the MATLAB
“Classification Learner” application.

Application of Method to Count Heads
Within Individual Plots
In total, 2109 original images were also processed by the
Pix4Dmapper software package (Pix4D, SA, Lausanne,
Switzerland) to generate 3D point cloud and ortho-mosaic
images of the whole experimental field. The ortho-mosaic images
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FIGURE 6 | An example of plot segmentation and identification from original images. (A) A plot is selected from a set of ortho-mosaic images. (B) The selected plot
appears in several original images but in different locations. (C) The plots images are grouped and one is selected based on its distance from the central part of the
image. (D) The selected plot is cropped from the corresponding original image. (E) The selected plot is rotated based the corner detection and orientation
calculations of (D).

FIGURE 7 | An example of head detection. Images contain (A) white heads, (B) green heads, and (C) brown heads. All of the images contain orange heads. The
upper panels show the original images and the lower ones show the detected head regions (blue) and hand-labeled head centers (black dots). Almost all of the
heads of the different colors were detected by the proposed model.

were segmented into individual plots and projected back to the
corresponding original images to segment the original pixels
(cf. mosaic) following our previously reported method (Duan
et al., 2016). In total, 28,825 individual plot images (i.e., many
replications of each of the 1440 plots) were segmented from
the dataset. The process of plot segmentation and identification
from the original images is shown in Figure 6. Any given plot
can appear in several original images but in different locations

(Figures 6A,B); the plot with the shortest Euclidean distance to
the central part of the image was selected as the candidate plot
image and cropped from the original image and rotated with
calculated orientation (Figures 6C,D). Each plot was thereby
generated from 1440 images, and 40 of them were randomly
selected for this study. To validate the accuracy of the proposed
detection and counting method, each plot image was also
carefully hand labeled by two scientists (Dataset 2).
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RESULTS AND DISCUSSION

Datasets 1 and 2 were both used to evaluate the head detecting
and counting capabilities of the proposed method.

Figure 7 shows head detection results from dataset 1. Almost
all of the heads of different colors, shapes, and sizes were
successfully detected. Table 1 presents an evaluation of the
detection results in terms of precision and recall based on the
definitions of Davis and Goadrich (2006). Precision indicates
that for the total number of head regions, which proportion
were correctly detected (with a ratio of 1.0 being perfect) while
recall indicates for all detected regions, how many are correctly
detected (perfect = 1.0). The algorithm was able to accurately
detect 87% of sorghum heads for dataset 1 and 82% for dataset
2, and the accuracy rates were high (recall = 0.98) for both
datasets.

TABLE 1 | Evaluation of the detection results.

Dataset TP FP FN Precision Recall F-measure

1 (52 images) 15,773 2434 314 0.87 0.98 0.92

2 (40 plots) 2762 587 44 0.82 0.98 0.89

Images from datasets (1 and 2) had not been used to train the detection model.
TP (True Positive): head region correctly detected.
FP (False Positive): non-head region erroneously detected as a head.
FN (False Negative): head region undetected.
Precision = TP/(TP + FP). Recall = TP/(TP + FN).
F-measure = (2 × precision × recall)/(precision + recall).

Figure 8 shows the counting accuracy of the proposed
method. First, the total number of sorghum heads in each image
from both datasets was counted and double checked carefully by
two researchers. Then, the test part of dataset 1, all of dataset 1,
and all of dataset 2 were tested by the model, and the coefficients
of determination (R2) were 0.85, 0.88, and 0.56, respectively.

The R2 of the head counting at the image level (Dataset 1)
was relatively high, however, it was observed to be decreased
substantially when applying the model to single plot images
(Dataset 2). The main reason for this is likely related to
the application of the plot segmentation algorithm in this
experiment. In our case, there were only two rows in each
plot, and hence it was common to cut out parts of the
heads (which overlapped “plot” boundaries) during segmentation
(Figure 9A). Plot segmentation accuracy could be improved
either by redesigning the field experiment to enlarge plot size or
by using drones with a better positioning system and a higher-
resolution camera. Alternatively, we could try applying methods
to the rows of heads in a multi-plot image to try to better delineate
the boundaries between the plots (i.e., tracing around the heads
at edges of plot).

For both of the datasets, challenges remain in dealing with
the large variability among genotypes, growth stages, and growth
position (main stem or tillers) of heads, all of which contribute to
large differences in the morphological features of detected head
regions. As shown in Figure 9B, detected regions may comprise
multiple overlapping heads while other heads may be obscured by
leaves, neither feature of which has been trained in the counting

FIGURE 8 | Accuracy of head number determined by the proposed method as compared with that done by manual counting: (A) dataset 1 test, (B) dataset 1 (all),
and (C) dataset 2 (all).

FIGURE 9 | Reasons for incorrect counting: (A) the plot segmentation was not perfect, so parts of some heads were cut out (upper red oval); (B) some regions
included multiple overlapping heads (left red circle), and some heads were covered by leaves (right red circle). The upper panels show the original images and the
lower ones show the detected head regions (blue) and hand-labeled head centers (black dots).
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model. The model capabilities could therefore be improved with
additional training data and exploring more efficient features.

With the rapid development of GPU technology in recent
years, the size of electrical infrastructure has been decreased
significantly without loss in performance. These types of
embedded platforms allow for onboard real-time image
processing, so that the proposed or other methods could be
applied with real-time image input. By integrating such system
with UAVs, scouting of production fields could be completed by
the end of the flight.

CONCLUSION

We proposed a simple two-step machine-learning-based image
processing method to detect and count the number of sorghum
heads from high-resolution images captured by UAVs in a
breeding field. This introduces realistic challenges given that
sorghum has various genotypes with different growth stages, and
the heads can have different colors, shapes, and sizes. Using
carefully selected training data, the precision and recall of head
detection were 0.87 and 0.98, respectively, for dataset 1 and
0.82 and 0.98 for dataset 2. The coefficients of determination
(R2) for head counting were 0.88 and 0.56 for datasets 1 and 2,
respectively.

Head number per unit area is an important component of the
yield of cereal crops. As well as being useful to agronomists and
breeders, the method described here has utility in production
agriculture, e.g., by using UAVs to survey a field to estimate
head number, and then manually sampling a range of head sizes
in order to estimate yield as product of weighted average head
size (grain weight per head) and head number. Counting can
also be used to characterize spatial variability in the field, as
well as non-uniformity of development or head size over time
(multiple monitoring flights). In a research context, the ability of
this method to count heads of contrasting genotypes in diverse
measurement conditions provides a better capability to estimate
head number in plant breeding trials. The main limitation at
present in being able to correctly delineate the boundaries of plots
and we are investigating ways of doing this, e.g., by defining plots
early in the season and tracking the head positions relative to
original plant positions.

The application of machine-learning-based image analysis
technologies is become increasingly important in field-based
plant phenotyping tasks. By using these rapidly improving
techniques, we believe the accuracy of phenotyping will increase
while the computational cost will decrease, both of which will
help researchers reach the goal of real-time phenotyping (Fuentes
et al., 2017; Naik et al., 2017). However, key techniques such as

training data preparation, model selection, and feature definition
still rely on highly specialized knowledge in both plant science
and computer science (Singh et al., 2016). Deep learning is
a possible solution to reduce the difficulties, but generating
ground-truth data (image annotation) to train the models is still
very labor intensive (Sa et al., 2016, 2017; Ghosal et al., 2018).
A method is needed to automatically generate reliable training
data, and the detection feature of the proposed method could
be used as a semi-automatic tool to provide candidate training
datasets. We encourage the plant research community to share
the existing annotated dataset to accelerate plant-phenotyping
community growth in a similar way that ImageNet is used
(Russakovsky et al., 2015). To aid in this growth, datasets 1 and 2
along with the manual labeling used in this study are available in
the Supplementary Materials.
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