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A high-density, high-resolution genetic map was constructed for bitter gourd
(Momordica charantia L.). A total of 2013 high quality SNP markers binned to 20 linkage
groups (LG) spanning a cumulative distance of 2329.2 cM were developed. Each LG
ranging from 185.2 cM (LG-12) to 46.2 cM (LG-17) and average LG span of 116.46 cM.
The number of SNP markers mapped in each LG varied from 23 markers in LG-20 to
146 markers in LG-1 with an average of 100.65 SNPs per LG. The average distance
between markers was 1.16 cM across 20 LGs and average distance between the
markers ranged from 0.70 (LG-4) to 2.92 (LG-20). A total of 22 QTLs for four traits
(gynoecy, sex ratio, node and days at first female flower appearance) were identified
and mapped on 20 LGs. The gynoecious (gy-7) locus is flanked by markers TP_54865
and TP_54890 on LG 12 at a distance of 3.04 cM to TP_54890 and the major QTLs
identified for the earliness traits will be extremely useful in marker development and MAS
for rapid development of various gynoecious lines with different genetic background of
best combiner for development of early and high yielding hybrids in bitter gourd.
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INTRODUCTION

Bitter gourd (Momordica charantia L.; 2n = 22) is an economically important vegetable crop
belonging to the subtribe Thalidianthinae, tribe Joliffieae, subfamily Cucurbitoideae and family
Cucurbitaceae (Jeffrey, 1980; De Wilde and Duyfjes, 2002). It is widely cultivated in India, China,
Malaysia, Africa, and South America (Singh, 1990; Raj et al., 1993). Indian bitter gourd has wide
phenotypic variation with respect to growth habit, maturity, fruit shape, size, color, and surface
texture (Robinson and Decker-Walters, 1997) and sex expression (Behera et al., 2006). Fruits with
seeds of bitter gourd are consumed at immature stage and possess medicinal properties such as anti-
diabetes (e.g., India, China, and Central America; Chen et al., 2003), hypoglycaemic compounds
(Jayasooriya et al., 2000), anti-carcinogenic and hypercholesterolemic (Ganguly et al., 2000; Ahmed
et al.,, 2001), anti-HIV activity (Lee et al,, 1995) and also contain charantin (Yeh et al., 2003),
momorcharin (Leung et al.,, 1997), momordicosides A and B (Okabe et al., 1980). Bitter gourd
possesses comparatively high concentrations of ascorbic acid and iron than other cucurbitaceous
vegetable crops (Behera, 2004).
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Like other cucurbitaceous vegetable crops, hybrids in bitter
gourd offer opportunity of earliness, high yield, and quality
improvement besides better capacity to counteract biotic and
abiotic stresses. The hybrid development in bitter gourd may be
limited because of traditional practice of hand pollination, which
requires lot of labor and time, but development of hybrids using
stable gynoecious lines or predominately gynoecious lines would
be highly useful. The predominant sex form in bitter gourd is
monoecious, however, gynoecious sex form has been reported
from India, Japan, and China (Ram et al., 2002; Behera et al., 2006;
Iwamoto and Ishida, 2006). In bitter gourd, gynoecism is under
the control of a single recessive gene (gy-1) (Ram et al., 2006;
Behera et al., 2009; Matsumura et al., 2014), whereas two pairs of
genes reported by Cui et al. (2018). The flowering traits like days
to first pistillate flower appearance, node at first pistillate flower
appearance and staminate: pistillate (5":Q) flower ratio (sex ratio)
are directly related to earliness and fruit yield. Production of
hybrid seeds in bitter gourd is highly expensive because it is done
mainly through hand pollination. But utilization of a gynoecious
line would be more economical and easier method (Behera et al.,
2009). Since gynoecious parent produces only female flowers, the
open pollinated seeds produced in these plants will be F; hybrid.
It reduces the cost of male flower pinching and hand pollination
(Behera et al., 2009).

Conventional phenotypic selection for high and stable yield
requires the evaluation of yield in multiple environments over
several seasons; which is very expensive and time consuming
(Yuan et al., 2002). In contrast, marker assisted selection (MAS)
certainly accelerates the breeding process and powerful tool for
selecting traits such as gynoecism. The scarcity of polymorphic
molecular markers in the public database has hindered genetic
mapping and the application of molecular breeding in bitter
gourd. The molecular basis of agronomically important traits
remains unexplored to date and decisive linkage map has not
been reported in bitter gourd. Various multi-locus dominant
DNA markers such as RAPD (Dey et al, 2006; Paul et al,
2010), ISSR (Singh et al., 2007), and AFLP (Gaikwad et al,
2008) have been reported for genetic analyses of bitter gourd.
SSRs are known to have high heterozygosity values and are
more informative than dominant DNA markers (Powell et al.,
1996). However, the number of microsatellite markers available
in bitter gourd is few. Among the 70 SSR markers reported,
16 have been developed using FIASCO technique (Guo et al,,
2012; Ji et al, 2012), 11 through genomic library enrichment
(Xu et al,, 2011) and 43 through cross-species transferability
from other cucurbits (Chiba et al., 2003; Watcharawongpaiboon
and Chunwongse, 2008; Xu et al., 2011). It is established that
greater number of markers are necessary for the development
of genetic map and MAS (Tang et al., 2007). A novel set of 160
microsatellite markers has been developed in Momordica species
through sequencing of small insert genomic library enriched for
10 different repeat motifs (Saxena et al., 2015), but they showed
polymorphism across the Momordica species and less variation
within the M. charantia genotypes.

The first genetic map and positions of major fruit trait loci of
bitter melon were worked out by Kole et al. (2012). An extensive
genetic linkage map was constructed for bitter gourd via the

study of F,.3 progenies derived from two cultivated inbred lines
(Wang and Xiang, 2013). Matsumura et al. (2014) identified SNP
marker, GTFL-1 that was linked to the gynoecious locus at a
distance of 5.46 cM by using RAD-seq (restriction-associated
DNA tag sequencing) analysis. Bitter gourd (M. charantia) draft
genome sequence (Urasaki et al., 2017) of a monoecious inbred
line, OHB3-1, was analyzed through Illumina sequencing and de
novo assembly, scaffolds of 285.5 Mb in length were generated
corresponding to ~84% of the estimated genome size of bitter
gourd (339 Mb). Draft genome sequence of bitter gourd revealed
that, the MOMC3_649 in bitter gourd was presumed to be an
ortholog of CmAcsl1 (female flower determination in melon)
and two proteins (MOMC46_189, MOMC518_1) were found in
bitter gourd similar to CmAcs-7 (unisexual flower development
in melon) grouped in the same clade in the phylogenetic
tree sequence (Urasaki et al., 2017). Cui et al. (2018) did the
RAD-based genetic map for anchoring scaffold sequences and
identified QTLs for gynoecy, first flower node, female flower
number, fruit epidermal structure and fruit color in bitter gourd.

Elshire et al. (2011) have developed simple and highly
multiplexed genotyping by sequencing (GBS) approach for
population studies, germplasm characterization and mapping
of desired traits in diverse organisms. GBS depends on high-
throughput, next-generation sequencing (NGS) of genomic
subsets targeted by restriction enzymes (REs) at low cost per
sample and an advantage in crops like bitter gourd that lacks
a complete genome sequence, a reference map need to be
developed only around the restriction sites (Elshire et al., 2011).
The consensus of read clusters across sequence tagged sites
becomes the reference in case of crops that lack reference genome
sequence. The innovative GBS approach offers an ultimate MAS
tool to accelerate crop improvement program (He et al., 2014).
However, to date there is very scattered information related to
QTL mapping for horticultural traits in bitter gourd. Keeping
the aforesaid information in view, the present experiment was
undertaken with objective to map gynoecious (gy-1) gene, sex
ratio, and earliness related traits in bitter gourd for further
utilization in bitter gourd crop improvement.

MATERIALS AND METHODS

Plant Material for Genotyping by
Sequencing (GBS)

The genetic material used for mapping of gynoecious and
earliness involved 90 F, segregated population and 65 Fj3
families (individual plants of F, selfed) derived from a cross
between DBGy-201 (PVGy-201) and Pusa Do Mousami (PDM).
It is very difficult in self-fertilizing and seed production of
gynoecious lines to F,.3 population. The female parent PVGy-
201 is a gynoecious line (100% female flowers) and first pistillate
flower appear at 7th node on 33 days after planting; whereas male
parent Pusa Do Mousami is a monoecious plant (¢™:Q is 17:1)
and first pistillate flower appear at 13th node on 60 days after
planting. The F; plants along with the two parents were planted at
vegetable research farm of Indian Agricultural Research Institute
(IARI), New Delhi, India during spring summer (February-May)
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2015 for phenotyping the qualitative traits like gynoeciousim and
sex ratio. A total of 65 F.3 families along with two parents were
planted during spring summer (February-May) 2016 to study
the quantitative traits like node and days to first pistillate flower
appearance. About 20 F3 seeds from each F, plant were sown in
single row with three replications and recommended agronomic
practices were undertaken for the healthy crop.

Phenotyping

Phenotyping of parental lines, F;, back crosses, F, and Fj.3
populations was performed to study the inheritance and mapping
of traits related to sex ratio (Supplementary Table S1) and
earliness. The sex (" or Q) of 20 flowers each in parents, F;, F,
F,.3 and backcross populations was investigated. Plants carrying
only the female flowers were defined as gynoecious plants, while
the other plants were classified as monoecious plants in this study.
The data was recorded on individual basis, 20 plants in each
parent, 30 plants each in Fys, BC;P; and BC;P5, 90 plants in F,
and 65 plants in F,.3 populations.

Genotyping

Genomic DNA Extraction and Quantification

Genomic DNA was extracted from leaf tissue by following
modified CTAB method (Saghai-Maroof et al, 1984). The
quantity and quality of extracted genomic DNA was checked by
spectrophotometer (NanoDrop 8000; Thermo Fisher Scientific).
An estimated quantity of 100 ng/pL of total genomic DNA was
used to prepare each library.

GBS Library Preparation and Sequencing
Restriction Enzyme (RE)

Two major points considered while choosing REs; firstly, REs
that cuts to leave overhangs of 2 to 3 bp, secondly, REs that
do not cut frequently in the major repetitive fraction of the
genome. Different REs like ApeKI, EcoT22I, Mspl, and PstI are
screened to choose most appropriate RE for bitter gourd GBS
library preparation. Among these Apekl enzyme was given best
library fragment distribution and hence, Apekl was chosen for
library preparation for all bitter gourd samples (Supplementary
Data Sheet S1). 96 plex library preparation protocol was designed
according to Elshire et al. (2011; Supplementary Data Sheet S2).

Adapters for GBS

Two different types of adapters were used in this protocol (Elshire
et al,, 2011). The “barcode” adapter terminates with a 5 to 10 bp
barcode on the 3’ end of its top stand and a 3 bp overhang on
the 5 end of its bottom strand that is complementary to the
“sticky” end generated by ApeKI (CWG). The sequences of the
two oligonucleotides comprising the barcode adapter are:

5-ACACTCTTTCCCTACACGACGCTCTTCCGAT
CTxxxx and

5 -CWGyyyyAGATCGGAAGAGCGTCGTGTAGGG
AAAGAGTGT

where “xxxx” and “yyyy” denote the barcode and barcode
complement and sequences.

The second, or “common,” adapter has only an ApeKI-
compatible sticky end:

5-CWGAGATCGGAAGAGCGGTTCAGCAGGAATGC
CGAG and
5-CTCGGCATTCCTGCTGAACCGCTCTTCCGATCT

For preparing each library we have used 94 different barcodes
for tagging samples, which have variable length from 5 to 10
nucleotides.

lllumina Sequencing

The final 93 libraries (90 F, and each one from two parents and
Fy) were sequenced using Illumina True Seq Version 3 single end
sequencing chemistry with read lengths of 150 bp on HiSEQ 2000
Platform. Ninety four samples (plus a blank negative control)
were sequenced per lane. The library was prepared for GBS by
following the Elshire et al. (2011) protocol and the complete
genomic data was deposited at NCBI (the SRA number was
SUB4509570 and the Bioproject ID was PRJNA493717).

Raw Sequence Data Processing

The reads were filtered following Elshire et al. (2011) protocol;
perfectly matched one of the barcodes and the expected four-base
remnant of the ApeKI cut site (CWGC), no adapter dimers and
reads with no “NS” (minimum Qscore of 10) across the first 72
bases. The final size of raw data from all libraries was 18.4 GB.
As bitter gourd was not having reference genome, sequence reads
from raw data FASTQ file were processed through de novo GBS
analysis pipeline as implemented in UNEAK (Supplementary
Data Sheet S3). Software for sequence filtering and the mapping
analysis is a part of the TASSEL package and is available on Source
Forge' (Supplementary Data Sheet S4).

Construction of Genetic Linkage Map

The genotypic data matrix was generated based on scoring
pattern observed with all polymorphic SNP markers. The
generated matrix data was integrated with all polymorphic SNP
markers used as an input file in JOINMAP® 4.1 program (Van
Ooijen, 2011) for construction of linkage map. The %? test was
performed for identification of markers with aberrant segregation
(p < 0.05) by calculating the locus genotyping frequencies
in JOINMAP®4.1. Linkage groups (LGs) were constructed by
grouping of markers at a minimum independence LOD threshold
of 3.0 and a maximum of 10.0 with a step up of 0.5. The groups
were converted to maps at LOD using regression algorithm with
the following settings: linkages with recombination frequency
(<0.49), LOD (>0.01) threshold for removal of loci with respect
to jumps in goodness-of-fit (5.0) and performing a ripple after
adding 2 loci. Distance was calculated using Kosambi’s mapping
function and LGs were drawn with help of Map Chart.

QTL Analysis

Quantitative trait loci analysis was carried out on the set of 90
F, individuals with phenotypic data for sex ratio and earliness
(both F, and F3 populations). The genotypic data consisted of

'http://sourceforge.net/projects/tassel/
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marker loci. QTLs were detected with the WinQTL Cartographer
v2.5 (Wang et al., 2012) software by composite interval mapping
(CIM) (Zeng, 1993, 1994). The statistical significance thresholds
used to declare the presence of QTLs were determined by
1,000 random permutations with a genome-wide type I error
rate of 5% (p = 0.05) (Doerge and Churchill, 1996). The 95%
confidence intervals of the QTL locations were determined by
one LOD intervals surrounding the QTL peak (Mangin et al,
1994). Additive effect of the detected QTLs was also estimated by
the WinQTL Cartographer v2.5. The R? value from this analysis
was accepted as the percent phenotypic variance explained by the
locus.

RESULTS

Sequencing and Identification of SNPs

Raw data of Illumina sequence of all 93 libraries was 18.4 GB.
The total 93 pooled, barcoded samples (each sample from 90
F, individuals, F; and two parents) have generated 93,926 SNP
sites. After excluding SNPs that were monomorphic in the F,
population, those non-biallelic, with more than 40% of missing
data, with minimum allele frequency (MAF) 20%, 4003 SNPs
remained. The SNPs were again filtered to remove heterozygote
SNPs in both parents and finally high quality 2013 SNPs were
identified and used for linkage map construction.

Linkage Map Construction

The genetic map of the F, population consisted of 2013 high
quality SNP markers that binned to 20 LG (Figures 1-3). The
linkage map spanned a cumulative distance of 2329.2 cM, with
each LG ranging from 185.2 cM (LG 12) to 46.2 cM (LG-17) and
average LG span was 116.46 cM (Table 1). The number of SNP
markers mapped in each LG varied from 23 markers in LG-20 to
146 markers in LG-1, with an average of 100.65 SNPs per LG. The
average distance between markers was 1.16 cM across 20 LGs and
average distance between the markers ranged from 0.70 (LG-4) to
2.92 (LG-20).

Phenotypic Variation in Parents, F, and

F».3 Populations

The phenotyping of gynoecious trait was performed in F,
population and quantitative traits like sex ratio and earliness were
performed in both F, and F,.3 populations. Descriptive statistics
(Table 2) (range, mean, variance, standard deviation, skewness,
and kurtosis), co-relation for three quantitative traits are shown
in Table 3.

Inheritance of Gynoecy

Inheritance pattern of gynoecy was investigated in bitter gourd
in cross DBGy-201 (100% pistillate flower frequency) x Pusa Do
Mousami (6% pistillate flower frequency), the F; (33% pistillate
flower frequency) generation all plants were monoecious which
indicated it as dominant trait (Table 4). Out of total 90
plants of F, population (5-100% segregation for pistillate flower
frequency), 72 plants were monoecious and 18 plants gynoecious.

The observed frequency of F, plants fitted well in the expected
ratio of 3 monoecious: 1 gynoecious as evident from the non-
significant %2 values of 1.20 (P = 0.27). The BC,P; population
segregated into 16 monoecious and 14 gynoecious plants. The
observed frequency of BC;P; plants fitted well in the expected
ratio of 1 monoecious: 1 gynoecious plants with non-significant
%2 values of 0.13 (P = 0.72).

Inheritance of Sex Ratio

In addition to gynoecious nature, the sex ratio
(staminate:pistillate) is also an extremely important trait in
cucurbits for getting higher fruit yields. The sex ratio most likely
genetically controlled, but it is often affected by environmental
and nutritional factors. The sex ratio of parents DBGy-201 (0
i.e., all pistillate flowers), Pusa Do Mousami (17), F; (3) and
segregated populations F, and F,.3 ranged from 0 to 20 and 0.5
to 21, respectively. The transgressive segregants for sex ratio in
F,.3 population were 13.85%. The bimodal distribution of F, and
F,.3 populations (Figures 4, 5) revealed that, the involvement
of some major genes may be modified by other genes of minor
effect and trait controlled by semi-quantitative genes, but the
information in the histogram is too limited to conclude on this
aspect.

Inheritance of Node and Days to First

Pistillate Flower Appearance

For getting higher price in the market, early picking is most
important. Node and days to first pistillate flower appearance
are directly contributing toward early harvesting of horticultural
matured fruits. The first pistillate flower appeared for parent
DBGy-201 on 7th node after 33 days of sowing and parent Pusa
Do Mousami at 15th node, after 60 days of sowing. The F; had
first pistillate flower appeared at 6th node after 35 days of sowing.
The range of segregation for node at first pistillate flower appear
was 3-16 and 2.5-15.75 in F, and F,.3 populations, respectively.
For trait, days to first pistillate appearance ranged from 35 to 47
and 32.56 to 46.63 in F, and F».3 populations, respectively.

The segregation pattern (Figures 6, 7) of trait, node at
first pistillate flower appearance among F, individuals and F;.3
families indicated that, this trait was governed by quantitative
genes. For trait, node at first pistillate flower appearance, out
of 90 plants in F,, 73 plants and in F,.3 out of 65 families, 55
families had shown lower than female parent PVGy-201 (<7th
node; desirable), which indicated predominance of major genes
toward lower node for first pistillate appearance. The segregation
pattern (Figures 8, 9) of trait, days to first pistillate appearance
among F, individuals and F,.3 families indicated that this trait
was governed by quantitative genes. For the trait, days to first
pistillate flower appearance more plants of F, individuals (55
plants out of 90 plants had in the range of 35-40 days) and
Fy.3 families (45 families out 65 families had in the range of 35-
40 days) were located between the two parents, but very close
to female parent (PVGy-201), this indicated predominance of
major genes toward earliness for pistillate flower appearance.
The transgressive segregants for node at first pistillate flower
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FIGURE 1 | Linkage map of bitter gourd of a cross (DBGy-201 x Pusa Do Mousami) using F».3 population along with peak positions of quantitative trait loci (QTLS)
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FIGURE 2 | Linkage map of bitter gourd of a cross (DBGy-201 x Pusa Do Mousami) using Fo.3 population along with peak positions of QTLs (LG 10-17).

Frontiers in Plant Science | www.frontiersin.org

October 2018 | Volume 9 | Article 1555


https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles

Gangadhara Rao et al.

Mapping Gynoecy in Bitter Gourd

LG18
() TP_89155
—// TP_89153
TP_89067
—

~~— TP_88977

= P YNy N

TP_88958
TP_88948
~— TP_88908
TP_88361

| " Tp gg278
TP_88220
—'§ TP_86725
TP_86767
L TP_86650
—~— TP_86684
TP_86649
—<_TP_86646
TP_86546
/ TP_86534

= e Tt

§- TP_84449
- TP_85814
- TP_85795
TP_84493
|- TP_84536
I TP_85802
|- TP_84492
i— TP_85215
- TP_84280
il TP_84225
I TP_85208
i— TP_84199
- TP_84246
TP_84349
TP_84443
TP_83974
TP_84178
TP_84022
TP_83901
TP_83973
TP_84055
TP_84033
TP_83964
[l - TP_83884
///— TP_82906
TP_82892
TP_82904
/- TP_83876
/- TP_83754
TP_83852
TP_83877

TP_89211
~—TP_89209
TP_89231

TP_89345
TP_89491
TP_89301
TP_89398
TP_89492
TP_90588
TP_90768
TP_90700
TP_89550
TP_90766
{— TP_90732
(¥ TP_89887
it TP_90772
it TP_90824
il TP_90841
TP_90842
TP_92018
it TP_92066
- TP_92176
i TP_92200
i TP_92205
- TP_92251
TP_92308
TP_92354
TP_92462
TP_92463
TP_92528
TP_92604

TP_92707
TP 03721

TP_93749

TP_93743

TP_93748

TP_93813
éTP 93831

TP_93843
TP_93849
TP_93893

TP_93850

cM LG20

0.0 ()  TP_82801
8.6 TP_82586
14.8 \ / TP_82373
15.1 \— %TP_82332
16.3 TP_82374
17.6 %:;Tp_szsw
18.8 7:-—-\—-—_TP__82346
19.6 LIS~ TP_82415
215 1 N\=TP 82448
284 —| | —TP_79837
29.1 TP_79696
29.1 TP_79821
29.2 TP_79725
30.5 TP_79581
30.5 TP_79579
30.9 TP_79573
31.7 TP_79554
36.0 || Y- TP_78618
36.6 TP_78599
37.0 TP_78579
37.0 TP_78598
52.5 TP_78027
67.1 TP_75976

FIGURE 3 | Linkage map of bitter gourd of a cross (DBGy-201 x Pusa Do Mousami) using F».3 population along with peak positions of QTLs (LG 18-20).
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TABLE 1 | Summary of high density SNP marker distribution on linkage groups in
bitter gourd cross DBGy-201 x Pusa Do Mousami.

Linkage group (LG) Length (cM) Number of SNP Average distance

markers between markers

(cM)
LG 1 138.3 146 0.95
LG 2 114.3 131 0.87
LG 3 94.3 131 0.72
LG 4 86.9 125 0.70
LG5 165.7 123 1.27
LG 6 156.9 121 1.30
LG7 134.1 119 1.18
LG8 89.1 116 0.77
LG9 158.9 116 1.37
LG 10 129.8 114 1.14
LG 11 169.0 108 1.67
LG 12 185.2 106 1.75
LG 13 119.7 105 1.14
LG 14 124.8 95 1.31
LG 15 135.5 85 1.59
LG 16 87.1 84 1.04
LG 17 46.2 59 0.78
LG 18 68.1 59 1.15
LG 19 68.2 47 1.45
LG 20 67.1 23 2.92
Total 2329.2 2013 -
Average 116.46 100.65 1.16

appearance in F».3 population were 86.15% and for days to first
pistillate flower appearance were only 1.54%.

Mapping of Genes for Sex and Earliness
Related Traits

Four most important economic traits were studied in both F, and
F,.3 mapping populations with 2013 SNP markers over 20 LGs
to construct high quality genetic map. High-resolution mapping
of QTLs may be used to develop reliable markers for MAS (at
least <5 cM but ideally <1 cM away from the gene) and LOD
score of above 2.0 or 3.0 (most commonly 3.0) was usually chosen
as the significance threshold for detecting QTL (Collard et al.,
2005). A QTL generally considered as major QTL if R*-value
>10% and minor QTLs will usually account for <10% R2-value
(Collard et al., 2005). The additive effect of a QTL with positive
and negative effects indicate that, the allele which increases
the trait values is in the female and male parent, respectively
(Supplementary Presentation S1).

Tagging of gy-1 Gene

The gynoecious (gy-1) (Figure 10) gene was mapped on LG-
12 and flanked by TP_54865 and TP_54890 markers. Marker
TP_54890 was very close to gy-1 gene at a distance of 3.04 cM
(LOD = 2). The marker TP_54923 on right side of gy-I gene at
a distance of 4.14 <M and marker TP_55091 was on right side at
distance of 10.04 cM. The markers TP_54865 and TP_54827 were
on left side at distance of 7.06 and 10.36 cM, respectively.

TABLE 2 | Descriptive statistics for cross DBGy-201 x Pusa Do Mousami.

F2.3 population

Fq

Parents

Particulars

S. no.

Mean SD Variance Skewness Kurtosis CV (%) Transgressive

Range

Male

Female

Trait

segregants

(%)

12.75 6.13 2.50-15.75 5.30 2.33 5.44 2.03 8.38 43.96 86.15

7.25

Node at first

0.39 3.54 6.67 1.54
1.43 3.80 87.55 13.85

6.80
37.48

2.61
6.12

39.13
6.9

32.63-46.63
0.56-21.37

37.85
2.80

59.50
17.10

33.65
0.00

Sex ratio (male:

pistillate flower
female)

appearance
Days to first
pistillate flower
appearance
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TABLE 3 | Pearson’s correlation coefficient of major horticulture traits of bitter
gourd cross DBGy-201 x Pusa Do Mousami.

Trait Node at first Days to first Sex ratio (male:

pistillate flower pistillate flower female)
appearance appearance

Node at first 1.00 0.627** 0.526**

pistillate flower

appearance

Days to first 1.00 0.316**

pistillate flower

appearance

Sex ratio (male: 1.00

female)

**Significant at 1% level.

TABLE 4 | Chi square (x?) analysis of F» population for studying inheritance
pattern of gynoecious (gy-17) trait in bitter gourd cross DBGy-201 (Gy-1) x Pusa
Do Mousami (PDM).

Parent/Cross Monoecious Gynoecious Expected X2' P-
ratio value value
Gy-1 0 20
PDM 20 0
Gy-1 x PDM (F¢) 30
(Gy- 16 14 1:1 0.13 0.72
1 x PDM) x Gy-1
(BC1Py)
(Gy- 30 0
1 x PDM) x PDM
(BC1P2)
Gy-1 x PDM (Fp) 72 18 3:1 1.20 0.27
Sex ratio in F2 population
35
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FIGURE 4 | Frequency distribution pattern sex ratio in Fo population
(DBGy-201 x Pusa Do Mousami).

QTL Detection for Mapping Quantitative

Traits
A total of 22 QTLs related to sex ratio, node and days to first
pistillate flower appearance were mapped across 20-LGs with

Sex ratio in F2:3 population
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FIGURE 5 | Frequency distribution pattern sex ratio in Fo.3 population
(DBGy-201 x Pusa Do Mousami).
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FIGURE 6 | Frequency distribution pattern of node at first pistillate flower
appearance in Fo population (DBGy-201 x Pusa Do Mousami).

F, and F,.3 populations. Detailed information about all these
QTLs (explained variance, LOD peaks, flanking markers, additive
effects) is shown in Table 5. A total of 22 QTLs (15 QTLs with
LOD > 3) were identified using CIM based on the phenotyping
of both F, and F,.3 populations. The phenotypic variation (R*%)
explained by these QTLs ranged from 0.05 to 58.75% and total
11 major QTLs (R* = >10%) were identified. Most of the QTLs
identified in this study were located in the same or adjacent
regions on LG-14 and LG-16, this may be due to high correlation
among the traits under study (Table 3). The identified QTLs were
discussed below by trait wise.

Sex Ratio (5': 9)
Four major QTLs were identified for sex ratio (": @), one on LG-
13 and three on the linkage group LG-14. The QTL qSR13-F3
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FIGURE 7 | Frequency distribution pattern of node at first pistillate flower
appearance in Fo.3 population (DBGy-201 x Pusa Do Mousami).
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FIGURE 8 | Frequency distribution pattern of days to first pistillate flower
appearance in F» population (DBGy-201 x Pusa Do Mousami).
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FIGURE 9 | Frequency distribution pattern of days to first pistillate flower
appearance in Fo.3 population (DBGy-201 x Pusa Do Mousami).

was located between flanking markers TP_59825 and TP_59813
on LG-13, had shown LOD value of 3.90 and explaining 11.51%
of phenotyping variation (R?%). The QTLs qSRI4a-F; and

qSRI4b-F3 were located between flanking markers TP_68232
and TP_68500 on LG-14, had shown LOD value of 6.30 and
6.40, respectively (R?> = 16.24 and 16.90%, respectively). The
qSR14b-F, was located between flanking markers TP_68643 and
TP_67968 on LG-14 with LOD value of 6.30 (R* = 20.95%).
All four major QTLs together explained 65.60% of phenotyping
variation. The QTLs gSRI14a-F3, qSR14b-F3, and gqSRI4b-F,
showed positive additive effect, indicating allele for increasing
sex ratio was contributed by DBGy-201, whereas QTL gSR13-F3
showed negative additive effect, indicating allele for increasing
sex ratio was contributed by Pusa Do Mousami.

Node at First Pistillate Flower

Appearance

Two major QTLs were identified for node at first pistillate
flower appearance one each on the linkage group LG-9 and
LG-14. The gNPF9-F3; was located between flanking markers
TP_46756 and TP_46766 on LG-9, showing LOD value of 4.00
(R* = 13.94%). The gNPF14-F, was located between flanking
markers TP_67968 and TP_68232 on LGl14 (R? = 12.03%).
Both the QTLs together contributed 25.97% of phenotyping
variation and showed positive additive effect indicating positive
allele for increasing node at first pistillate flower appearance was
contributed by female parent PVGy-201.

Days to First Pistillate Flower

Appearance

Economically most important horticultural traits in bitter gourd
for getting early and high yield are early flowering and sex ratio
which are highly variable, affected by genetic, environmental
and hormonal factors. Five major additive QTLs were identified
for days to first pistillate flower appearance, two each on
the linkage groups LG-5 and LG-16; and one on LG-14.
The QTLs gDPF5a-F; and gDPF5b-F3 were located between
flanking markers TP_11213 and TP_11334 on LG-5, showed
LOD value of 3.20 and 3.30 explaining 15.13 and 15.33% of
phenotyping variation (R?%), respectively. The QTLs gDPF16a-
F3 and qDPF16b-F3 were located between flanking markers
TP_74581 and TP_74591 on LG-16 had shown LOD value of
35.80 and 35.90, respectively (R* = 58.75% individually). The
qDPF14-F3 was located between flanking markers TP_67682 and
TP_67839 on LG-14 with LOD value of 4.40 and explaining
17.34% of phenotyping variation (R*%) and both QTLs explained
25.97% of phenotyping variation. The QTL gDPF14-F3 showed
positive additive effect, indicating allele for increasing days to
first pistillate flower appearance was contributed by PVGy-
201, whereas QTLs gDPF5a-F3, qDPF5b-F3, qDPF16a-F3, and
qDPF16b-F3; showed negative additive effect, indicating allele
for increasing days to first pistillate flower appearance was
contributed by Pusa Do Mousami.

DISCUSSION

To date, there is no precise report on QTL mapping for any
trait in bitter gourd and only few studies have been reported.
Kole et al. (2012) mapped five of each qualitative and five
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FIGURE 10 | Genetic map of putative gynoecious locus (gy-7) on linkage group-12.

10.04 cM

quantitative trait loci by using AFLP markers; Wang and Xiang
(2013) did the genetic linkage map for 13 horticulture traits by
RAD-seq analysis; Matsumura et al. (2014) identified one SNP
marker, GTFL-1 linked to the gynoecious locus at a distance of
5.46 cM and Cui et al. (2018) identified SNP markers relate to
sex expression, fruit epidermal structure and fruit color. In our
present study, we applied high throughput GBS technology with
type-II restriction endonuclease ApeKI (GCWGC) (Elshire et al.,
2011) to identify SNPs in F, and F,.3 segregated populations
for economically important traits like, sex and earliness in bitter
gourd. The draft genome of bitter gourd not available in public
domain, we performed non-reference based GBS with UNEAK
pipeline (Lu et al., 2013) and a total 2013 SNP markers used to
construct 20 LGs spanned over 2329.2 cM. GBS technology in
the present study provided the high mean marker density genetic
map 0.86 (marker/cM), which higher than the 0.30 mean marker
density reported by Matsumura et al. (2014), 0.42 by Urasaki
et al. (2017), and 0.46 by Cui et al. (2018). Our genetic map
had an excess of LGs (20) relative to the haploid chromosome
number (n = 11) (Bharathi et al., 2011) even though a significant
number of markers (2013 SNPs) were binned to genetic map. The
failure to obtain the basic chromosome number was likely due
to a relatively small F, population size (Silva et al., 2007) and
type of mapping population. To address these problems, it will be
necessary to increase the size of mapping population or increase
the marker density further or replace the mapping population
with RILs.

Inheritance pattern of qualitative traits were investigated
in bitter gourd cross DBGy-201 x Pusa Do Mousami of F,
population revealed that, the gynoecious trait (gy-1) single
recessive gene (Ram et al., 2006; Behera et al., 2009; Matsumura
et al., 2014; Mishra et al., 2015), in contrary two pairs of genes
reported by Cui et al. (2018). We succeeded in finding a SNP
marker for most important trait in bitter gourd, i.e., gynoecy
(gy-1), marker TP_54890 was very close to gy-I gene, with a
distance of 3.04 cM. Gynoecy (gy-1) trait useful for low cost and
quality hybrid seed production, early and high yielding hybrids.
The gy-1 gene flanked to markers TP_54865 and TP_54890 on
LG 12 are extremely useful in marker development and MAS

for rapid development of various gynoecious lines with different
genetic background of best combiner for development of early
and high yielding hybrids. Based on a RAD-seq analysis of F,
progeny Matsumura et al. (2014) identified one SNP marker,
GTFL-1 linked to the gynoecious locus at a distance of 5.46 cM
and similarly Cui et al. (2018) located the two QTLs gyI.1 and
gyl.2 at distal end of linkage map by RAD-based genetic map
for anchoring scaffold sequences in bitter gourd. We identified
two SNPs within 5 cM distance from gy-1 gene, TP_54890
(3.04 cM) and TP_54923 (4.14 cM). In this study we have
taken highly diversified parents with highly segregated mapping
population and less base recognition restriction endonuclease
ApeKI (GCWGC) and constructed linkage map with high
number (2013) quality SNPs.

The three quantitative traits were mapped with 22 QTLs were
identified using CIM. Out of 22 QTLs, 13 QTLs were derived
from the commercial variety Pusa Do Mousami those showed
negative additive effect and 9 QTLs were derived from PVGy-
201 showed positive additive effect. Earliness is an important
trait for realizing the potential economic yield in as less time
as possible which is an important consideration for a vegetable
grower in bitter gourd (Behera et al., 2010). Earliness in bitter
gourd is attributed to node and days to first pistillate flower
appearance and sex ratio. One of the most interesting thing in
frequency distribution of F, and F,.3 populations in bitter gourd
was bimodal distribution of sex ratio (¢: Q) which revealed that
sex ratio is governed by semi-quantitative genes and some major
genes may be modified by other minor genes (Matsumura et al.,
2014). The inheritance of sex ratio (J": @), node and days to first
pistillate flower appearance, among monoecious F, individuals
and F,.3 families revealed that more tendency of pistillate flower
might have a semi-dominant effect on the sex ratio or that
additional genes around the gy-1 locus might be responsible for
the determination of the sex ratio (Matsumura et al.,, 2014) and
predominance of major genes toward lower node and days to first
pistillate flower appearance.

In bitter gourd, yield may be increased by altering plant
architecture to produce gynoecious, early flowering (node and
days to first pistillate flower appearance) and cultivars with better
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sex ratio. In the present study we identified QTLs that explain
significant portions of the observed phenotypic variation for
plant architecture. The appearance of the first pistillate flower at a
lower node number is an indication of the earliness of the variety
(Trivedi, 1983). On the other hand, the higher the node number
for the position of the first pistillate flower, the greater would
be the production of pistillate flowers, and a shorter interval
between the appearance of the first staminate flower and the first
pistillate flower indicates shorter plant life (Mini Raj et al., 1993).
Manipulation of sex expression can influence fruit quality, yield,
cropping methods, and breeding strategies. Similarly, gynoecy in
bitter gourd has been associated with earlier fruit production and
higher yield (Behera et al., 2009).

Two major QTLs together with 25.97% phenotyping variation
for node to first pistillate flower appearance and both QTLs
qNPF9-F3; and qNPFI4-F, showed positive additive effects
contributed from PVGy-201 alleles increased the nodes for first
pistillate flower appearance at 1.24 and 0.91 node number,
respectively. Similarly, Wang and Xiang (2013) identified three
QTLs (fffn4.1, fif5.1, and fffn9.1) two QTLs in two different
locations by Cui et al. (2018) in bitter gourd. Three (Fazio et al.,
2003) and six (Yuan et al., 2008) QTLs in cucumber and nine
QTLs based on an interspecific genetic map of Luffa (Cui et al,,
2015) for node to first pistillate flower appearance.

Three major QTLs (qDPF14-F3, qDPF5a-F3, and qDPF5b-
F3) together explained 47.80% of phenotyping variation and
other two major QTLs (gDPF16a-F3 and gDPF16b-F3) explained
58.75% of phenotyping variation individually for days to first
pistillate flower appearance. The QTL gDPFI4-F3 showed
positive additive effect, thus PVGy-201 alleles for increased
7.92 days to first pistillate flower appearance, whereas QTLs
qDPF5a-F3, qDPF5b-F3, gDPF16a-F3, and gDPF16b-F3 showed
negative additive effect, thus Pusa Do Mousami alleles increased
days to first pistillate flower appearance by 7.25, 7.30, 19.22, and
19.22 days, respectively. Similarly four QTLs mapped for days
to anthesis in cucumber (Fazio et al., 2003). Two QTLs were
identified in zucchini based on GBS technology (Pau et al., 2017)
for days to first female pistillate flower appearance.

Four major QTLs together explained 65.60% of phenotyping
variation for sex ratio. The QTLs gSR14a-F3, qSR14b-Fs, and
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