
fpls-09-01556 November 2, 2018 Time: 19:47 # 1

ORIGINAL RESEARCH
published: 06 November 2018
doi: 10.3389/fpls.2018.01556

Edited by:
Luis Valledor,

Universidad de Oviedo, Spain

Reviewed by:
Jesús Pascual Vázquez,

University of Turku, Finland
Federico Valverde,

Consejo Superior de Investigaciones
Científicas (CSIC), Spain

*Correspondence:
Wolfram Weckwerth

wolfram.weckwerth@univie.ac.at

†These authors have contributed
equally to this work

Specialty section:
This article was submitted to

Plant Systems and Synthetic Biology,
a section of the journal

Frontiers in Plant Science

Received: 30 March 2018
Accepted: 04 October 2018

Published: 06 November 2018

Citation:
Nagler M, Nägele T, Gilli C,

Fragner L, Korte A, Platzer A,
Farlow A, Nordborg M and

Weckwerth W (2018)
Eco-Metabolomics and Metabolic
Modeling: Making the Leap From

Model Systems in the Lab to Native
Populations in the Field.
Front. Plant Sci. 9:1556.

doi: 10.3389/fpls.2018.01556

Eco-Metabolomics and Metabolic
Modeling: Making the Leap From
Model Systems in the Lab to Native
Populations in the Field
Matthias Nagler1†, Thomas Nägele1,2†, Christian Gilli1, Lena Fragner1,3, Arthur Korte4,
Alexander Platzer5, Ashley Farlow5, Magnus Nordborg5 and Wolfram Weckwerth1,3*

1 Department of Ecogenomics and Systems Biology, University of Vienna, Vienna, Austria, 2 LMU Munich, Plant Evolutionary
Cell Biology, Munich, Germany, 3 Vienna Metabolomics Center (VIME), University of Vienna, Vienna, Austria, 4 Center for
Computational and Theoretical Biology, University of Würzburg, Würzburg, Germany, 5 Gregor Mendel Institute of Molecular
Plant Biology, Austrian Academy of Sciences, Vienna, Austria

Experimental high-throughput analysis of molecular networks is a central approach
to characterize the adaptation of plant metabolism to the environment. However,
recent studies have demonstrated that it is hardly possible to predict in situ metabolic
phenotypes from experiments under controlled conditions, such as growth chambers
or greenhouses. This is particularly due to the high molecular variance of in situ
samples induced by environmental fluctuations. An approach of functional metabolome
interpretation of field samples would be desirable in order to be able to identify and
trace back the impact of environmental changes on plant metabolism. To test the
applicability of metabolomics studies for a characterization of plant populations in
the field, we have identified and analyzed in situ samples of nearby grown natural
populations of Arabidopsis thaliana in Austria. A. thaliana is the primary molecular
biological model system in plant biology with one of the best functionally annotated
genomes representing a reference system for all other plant genome projects. The
genomes of these novel natural populations were sequenced and phylogenetically
compared to a comprehensive genome database of A. thaliana ecotypes. Experimental
results on primary and secondary metabolite profiling and genotypic variation were
functionally integrated by a data mining strategy, which combines statistical output
of metabolomics data with genome-derived biochemical pathway reconstruction and
metabolic modeling. Correlations of biochemical model predictions and population-
specific genetic variation indicated varying strategies of metabolic regulation on a
population level which enabled the direct comparison, differentiation, and prediction
of metabolic adaptation of the same species to different habitats. These differences
were most pronounced at organic and amino acid metabolism as well as at the
interface of primary and secondary metabolism and allowed for the direct classification
of population-specific metabolic phenotypes within geographically contiguous sampling
sites.

Keywords: eco-metabolomics, in situ analysis, metabolomics, metabolic modeling, SNP, natural variation,
Jacobian matrix, green systems biology
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INTRODUCTION

Natural variation, as first described by Darwin (1859), is the
ultimate point of attack for natural selection and still the only
known process that is able to produce adaptive evolutionary
change. Arabidopsis thaliana has become a powerful model
organism for studying many aspects of plant biology and
adaptation to the environment (Somerville and Koornneef,
2002; Hancock et al., 2011). After the publication of a first
complete reference genome sequence (Arabidopsis, 2000), it
was discovered that it is inappropriate to think about ‘the’
genome of a species (Weigel and Mott, 2009). In fact, all
species are exposed to specific environmental clines differently
affecting individual plants’ phenotypic performance (Turesson,
1922; Ellenberg, 1953; Hoffmann, 2002; Weckwerth, 2003, 2011a;
Lasky et al., 2012; Weigel, 2012). Therefore, they comprise
different populations colonizing different habitats. These habitats
may impose differing directions of natural selection upon
the coenospecies, and thus, together with genetic drift, lead
to diverging allele frequencies and to an inhomogeneous
genetic structure. This inhomogeneity is called natural genetic
variation and potentially provides insights in genome evolution,
population structure, and selective mechanisms (Mitchell-Olds
and Schmitt, 2006). However, the genetic side represents only
one level in the complex molecular architecture, which builds up
the basis for physiological and morphological responses of plants
to environmental stimuli (Pigliucci, 2010). The experimental
analysis and interpretation of these molecular architectures
is nonintuitive, particularly because of the highly complex
organization of plant molecular networks. Numerous studies
have shown that a multitude of genes, proteins, metabolites,
and underlying regulatory processes are involved in plant-
environment interactions (Koornneef et al., 2004; Wienkoop
et al., 2008; Keurentjes, 2009; Chan et al., 2010; Macel et al.,
2010; Lasky et al., 2012). However, interpreting these findings
in the context of environmental conditions and, particularly, in
an ecological context is highly challenging. This is particularly
due to a missing stringent definition of the genotype–phenotype
relationship, which can hardly be expected to be derivable from a
single methodology but rather from a comprehensive platform
of experimental and theoretical strategies (Weckwerth, 2003,
2011a; Diz et al., 2012). Recording environmentally induced
fluctuations in a metabolic homeostasis has been shown to be a
promising approach to unravel complex patterns of metabolic
regulation and adaptation. For example, the metabolism of
floral anthocyanins, which is a central group of secondary
metabolites, was found to represent a suitable metabolic
system to characterize the process of environmental regulation
(Lu et al., 2009). The authors suggested that environmental
regulation of the anthocyanin pathway is mainly affected by
daily average temperature and UV light intensity modulating
anthocyanin transcript levels at floral developmental stages. In
another study, a metabolomics approach has been applied to
elucidate in situ allelopathic relationships of individual species
to phytosociological gradients (Scherling et al., 2010). We
demonstrated that in situ metabolic signatures of five different
plant species correlated with a biodiversity gradient. More

general, metabolomics approaches can be expected to provide
detailed information about metabolic processes in context of
genomic signatures (Chae et al., 2014). Particularly in model
systems with functionally annotated genomes this makes it the
method of choice to unravel and interpret molecular ecological
properties.

For the genetic and molecular biological model plant
A. thaliana, one of the best functionally annotated genomes
(Baerenfaller et al., 2012; Lavagi et al., 2012) and a comprehensive
catalog of genome information is available1. Recently, an in vitro
study of the physiological homeostasis of 92 A. thaliana
accessions in multiple growth settings has demonstrated the
devastating impact of varying environmental conditions on the
correlation of in vitro metabolism to geographic origin (Kleessen
et al., 2012). Yet, as microhabitats may vary significantly
on relatively small spatial scales and are not necessarily
corresponding to geographic distance, the investigation of the
molecular performance of plants in situ seems inevitable to
get a realistic picture of plant–environment interactions and
their ecophysiological consequences. A well-known example
indicating the need of such in situ studies is Ellenberg’s
Hohenheimer groundwater table experiment (Ellenberg, 1953;
Hector et al., 2012). Here, it was shown that the phenotypic
performance of plants in vitro significantly differ from their
in situ physiological homeostasis, as important microhabitat
parameters may not be included in the in vitro growth
setting (Shulaev et al., 2008). Both plant communities and
plant populations seem to be an appropriate target for the
development and tuning of in situ methodologies due to their
sessile nature and the availability of a large set of in vitro
reference data for some species. This enables the intersection
of individual molecular with environmental data, and even
ecosystem properties can be accounted for via geographic
information systems. Genotyping approaches in A. thaliana
have already been established (Atwell et al., 2010; Platt et al.,
2010; Todesco et al., 2010; Hancock et al., 2011; Horton
et al., 2012; Long et al., 2013) and are easily transferable
to in situ samples (Hunter et al., 2013). Metabolomics and
proteomics technologies provide the means for generating
upstream molecular phenotypes (Morgenthal et al., 2005;
Hoehenwarter et al., 2008; Wienkoop et al., 2008; Scherling
et al., 2010; Weckwerth, 2011a; Doerfler et al., 2013). Thus,
these techniques are suitable for experimental high-throughput
analysis at the molecular level, representing the basis for
strategies of multivariate statistics and mathematical modeling to
identify biochemical perturbation sites and gain predictive power
(Nägele and Weckwerth, 2013; Nägele, 2014). In this context,
particularly metabolomic analysis has proven to be a suitable
approach for the comprehensive and representative investigation
of complex metabolic networks with respect to the underlying
phenotypic diversity (Weckwerth et al., 2004a; Keurentjes, 2009;
Scherling et al., 2010).

In the present study, the genomes and metabolomes of
in situ samples from three Austrian natural populations
of A. thaliana were characterized. Applying a combination

1http://www.1001genomes.org
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FIGURE 1 | By the application of metabolomics, multivariate statistics and mathematical modeling based on genome-derived biochemical pathway information,
biochemical and physiological signatures of in situ Arabidopsis populations can be identified. Different metabolic steady states on a population level and general
patterns common to all populations can be distinguished by this metabolic modeling approach in combination with eco-metabolomics. This finally allows for the
prediction of characteristic processes of in situ metabolic adaptation. For details see text and Materials and Methods.

of metabolomics, multivariate statistics, and mathematical
modeling based on genome-derived biochemical pathway
information, biochemical and physiological signatures of in situ
Arabidopsis populations could be identified (Figure 1). Different
metabolic steady states on a population level and general
patterns common to all populations were distinguished
by this integrative approach, which finally allowed the
prediction of characteristic processes of in situ metabolic
adaptation.

MATERIALS AND METHODS

Plant Material and Sampling Strategy
In situ sampling of A. thaliana leaf rosettes was performed
in three Austrian locations (see Figure 2) The first location
(OOE1) was a hay meadow, the second (OOE2) was a
rocky spot with variable substrate thickness, and the third
sampling site (OOE3) was an unused meadow with steep
slope and a nearby valley. All populations were located in
close proximity to intensively used grassland. Each sample
consisted of one whole leaf rosette without inflorescence. Global
positioning system (GPS) coordinates of the sampling sites
were recorded using a Garmin Oregon300 handheld GPS
receiver (Garmin R©, Schaffhausen, Switzerland) with an accuracy
of approximately 3 m. The waypoints were imported into
Garmin Mapsource Version 6.15.6 (Garmin R©, Schaffhausen,
Switzerland) and projected on the OpenStreetMap2. The

2http://www.freizeitkarte-osm.de/de/oesterreich.html

sampling was performed according to Scherling et al. (2010)
with a minimized cycle of time accounting for diurnal changes.
The sampling began at 12 am at OOE1, then OOE2 and
OOE3. The sampling was repeated three times at the same
day comprising about 20 min each and was finished at 4
pm. The sampling day had continuous cloudy and constant
weather conditions. All Arabidopsis rosettes were sampled at
a developmental stage in which inflorescence and mature leaf
rosettes had been established (example pictures are provided
in Supplementary Data Sheet S1). Altogether we sampled
n = 13, 15, and 15 biological replicates for OOE1, OOE2,
and OOE3, respectively, for GC-MS and n = 10, 7, and 13
biological replicates for OOE1, OOE2, and OOE3, respectively,
for LC-MS analyses. Rosettes were cut and immediately frozen
in liquid nitrogen. Samples were stored at −80◦C until further
processing.

DNA Sequencing and SNP Calling
Sequencing was performed for individual plants of the
different populations OOE1, OOE2 and OOE3. Genomic
DNA preparation, and SNP calling was performed as described
previously (Alonso-Blanco et al., 2016). The samples were
sequenced using 100 bp paired-end reads on an Illumina
HiSeq platform. Pairwise genetic differences (θp) between these
accessions and a set of additional 24 accessions for which
DNA sequence is publically available (see footnote 1) has
been calculated by dividing the number of polymorphic sites
by the number of informative sites. These values have been
used to create a hierarchical clustering using the McQuitty
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FIGURE 2 | Projection of sample coordinates within OpenStreetMap R©

(http://www.openstreetmap.org). The air-line distance between populations is
given in meters.

method within the function hclust in R (McQuitty, 1966)3. To
extract the most diverse genes from the three populations, we
calculated the amount of variation between the populations
for each gene. We used only sides where we had SNP calls for
one representative of each population. We created a list for
each population containing only genes that differ by at least 50
polymorphisms from the other two populations. These lists are
available as Supplementary Data Sheets S2–S4. Furthermore,
we created population-specific clustered protein interaction
networks with these genes using STRING (Szklarczyk et al.,
2017). In Supplementary Presentation S1 the networks and
gene functions are shown. All SNP data are stored at the public
repository (see footnote 1).

Gas Chromatography Coupled to
Time-of-Flight Mass Spectrometry
Frozen sample rosettes were homogenized in a ball mill
(Retsch R©, Haan, Germany) under frequent cooling with liquid
nitrogen for 3 min. Polar metabolites were extracted and
derivatized as described previously (Weckwerth et al., 2004b).
Gas chromatography coupled to mass spectrometry (GC-MS)
analysis was performed on an Agilent 6890 gas chromatograph
(Agilent Technologies R©, Santa Clara, CA, United States) coupled
to a LECO Pegasus R© 4D GCxGC-TOF mass spectrometer (LECO
Corporation, St. Joseph, MI, United States). Compounds were
separated on an Agilent HP5MS column (length: 30 m length,
diameter: 0.25 mm, film: 0.25 µm). Deconvolution of the total
ion chromatograms was performed using the LECO Chromatof R©

software. All details about injection, gradient, deconvolution, and
library search parameters can be found in Doerfler et al. (2013).
A calibration curve was recorded for absolute quantification of
central primary metabolites.

3https://www.rdocumentation.org/packages/stats/versions/3.5.1/topics/hclust

GC–MS Data Analysis and Inverse
Approximation of Jacobian Matrix
Entries
For ANOVA and computation of p-values adjusted for sample
size by Tukey Honest Significant Differences R was used (R,
2013). For multivariate analysis, outliers (all values that were
lower/higher than 1.5∗interquartile range from the 25%/75%
quantile) were removed from the dataset. Missing values
of variables, which were missing in more than half of all
measurements in a population were filled with half of the
matrix minimum. The remaining missing values were imputed
by random forest computation (Stekhoven and Buhlmann, 2012;
Gromski et al., 2014). This dataset was centered and scaled to
unit variance prior to sPLS regression. Sparse partial least squares
(sPLS) regression analysis was performed using the mixOmics
package (Le Cao et al., 2009; Gonzalez et al., 2011, 2012) for the
statistical software environment R (R, 2013).

The functional integration of GC–MS metabolomics data into
a metabolic network was performed, as previously described
(Nägele et al., 2014), by the approximation of the biochemical
Jacobian matrix. This approximation directly connects the
covariance matrix C, which was built from the experimental
metabolomics data, with a metabolic network structure derived
from Arabidopsis genome information. Linkage of covariance
data with the network structure follows equation 1 (Steuer et al.,
2003; Sun and Weckwerth, 2012):

JC + CJT
= −2D (1)

Here, J represents the Jacobian matrix and D is a fluctuation
matrix which integrates a Gaussian noise function simulating
metabolic fluctuations around a steady state condition. In context
of a metabolic network, entries of the Jacobian matrix J represent
the elasticity of reaction rates to any change of metabolite
concentrations which are characterized by equation 2:

J = N
∂r
∂M

(2)

N is the stoichiometric matrix or a metabolic interaction
matrix if reactions and reactants have been modified in the
original network. r represents the rates for each reaction,
and M represents metabolite concentrations. As stated before,
the Jacobian approximation comprises the stochastic term D.
Therefore, we performed 10 × 105 inverse approximations for
each population, finally resulting in 10 technical replicates of the
Jacobian matrices.

All calculations of Jacobian matrices were performed based on
a modified version of the toolbox COVAIN (Sun and Weckwerth,
2012) within the numerical software environment MATLAB R©

(V8.4.0 R2014b).

LC–MS Analysis
The frozen plant leaf material was homogenized and extracted
as the samples for the GC–MS analysis as described recently
(Weckwerth et al., 2004b; Doerfler et al., 2013). The polar fraction
of metabolites was dried in a speedvac. Extracts were weighed
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FIGURE 3 | Absolute levels of primary metabolites. Metabolites are grouped
according to the substance classes of (A) sugars, sugar alcohols, and
polyamines; (B) organic acids; (C) amino acids. Significant differences
evaluated by ANOVA are indicated by asterisks (∗p < 0.05). Metabolite levels
from samples of OOE1 are indicated by blue bars, OOE2 by orange bars, and
OOE3 by gray bars.

and dissolved in 5% Acetonitrile 0.5% Formic acid to an extract
concentration of 0.5 g/L. From these solutions, 3 µL where
injected to an Agilent Ultimate 3000 LC-system and separated
on a reversed-phase column on a 60-min effective gradient prior
to data-dependent mass spectrometric analysis of +1 – charged
ions (Doerfler et al., 2013, 2014). Acquired LC–MS runs were
converted to the open mzXML data format using the MassMatrix
File Conversion Tools. Subsequently, MS1 intensities of all mass
traces that were fragmented at least once in a sample were
summed over the whole runs with ProtMAX2012 (Hoehenwarter

et al., 2011; Doerfler et al., 2013; Egelhofer et al., 2013). The data
set was filtered for features that were measured in at least half
of the replicates of one population and remaining variables were
normalized to the sum of all variables of the respective sample.
The resulting values were used to fit ANOVA models. Tukey
Honest Significant Differences were used to estimate sample-size
adjusted p-values in R (R, 2013). VENNY was used to visualize
the number of detected significant differences (Oliveros, 2007).

For multivariate analysis, outliers (all values that were
lower/higher than 1.5∗interquartile range from the 25%/75%
quantile) were removed from the dataset. Missing values
of variables, which were missing in more than half of all
measurements in a population were filled with half of the
matrix minimum. The remaining missing values were imputed
by random forest computation (Stekhoven and Buhlmann, 2012;
Gromski et al., 2014). This dataset was centered and scaled to unit
variance prior to sPLS regression (see above).

RESULTS

Metabolomic Analysis of in situ Samples
In situ sampling of A. thaliana leaf rosettes was performed
on three nearby locations in Upper Austria (Oberoesterreich;
OOE; see Figure 2 and See section “Materials and Methods”).
All Arabidopsis rosettes were sampled at a developmental stage
in which inflorescence and mature leaf rosettes had been
established (example pictures are provided in Supplementary
Data Sheet S1). For a set of metabolites from untargeted
GC–MS based metabolomics data, we performed absolute
quantification using calibration curves. This set of metabolites
comprised concentrations of 39 central compounds of the C/N
metabolism including sugars and sugar alcohols, organic acids,
amino acids, and polyamines (Figure 3). Results of an ANOVA
indicated that only levels of fumaric acid discriminated all three
populations significantly (Figure 3B). Populations OOE1 and
OOE3 could be discriminated significantly by the concentrations
of galactose, melibiose, threitol, ascorbic acid, fumaric acid,
gluconic acid, malic acid, threonic acid, alanine, and proline
(p < 0.05; Figure 3). For populations OOE2 and OOE3,
significant differences were found to exist for absolute levels of
galactinol, raffinose, threitol, myo-inositol, ascorbic acid, fumaric
acid, succinic, and threonic acid as well as for the amino
acids alanine, glutamic acid, lysine, methionine, and ornithine
(p < 0.05; Figure 3). Populations OOE1 and OOE2 could be
discriminated by levels of citric acid, fumaric acid, gluconic acid,
and malic acid. To summarize these findings, most significant
differences between absolute metabolite levels of populations
OOE1, 2, and 3 were determined for the class of organic acids
(13 out of 27, i.e.,∼50%).

Multivariate Analysis Indicates a
Discrimination of in situ Populations by
Metabolic Phenotypes
Sparse partial least squares (sPLS) regression analysis of primary
metabolites versus a response matrix comprising geographical
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FIGURE 4 | Projection of samples on latent variables of the primary metabolite matrix (GC-MS data) after sPLS regression. Detailed information on the loadings are
provided in the supplement (Supplementary Table S1).

coordinates and altitude above sea level indicated a separation
of population OOE3 from populations OOE1 and OOE2 across
latent variable 1 (Figure 4). The metabolite levels of fumaric
acid, melibiose, alanine, putrescine, gluconic acid, threonic acid,
myo-inositol, galactinol and succinic acid were identified to
contribute most to this separation with elevated levels in OOE3
whereas mainly ascorbic acid and threitol were elevated in OOE1
and OOE2. Discrimination of populations OOE1 and OOE2
was indicated on latent variable 2 (Figure 4). Here, a higher
abundance of 2-oxoglutaric acid, glutamic acid, raffinose, glycine,
succinic acid, serine and threonic acid in OOE1 and malic
acid, gluconic acid and citric acid in OOE2 was observed (see
Supplementary Table S1 for a complete list of loadings, table
sheet “Loadings GCMS”, and Supplementary Figure S1 for a
PCA analysis of the primary metabolites).

Entries of Jacobian Matrices Indicate
Different Biochemical Phenotypes of the
in situ Populations at the Interface of
Primary and Secondary Metabolism
While absolute metabolite levels can provide a representative
view on a metabolic homeostasis, it can hardly be directly
interpreted in terms of biochemical regulation. Instead, strategies
of multivariate statistics and modeling were shown to be essential
to provide a comprehensive view on the biochemical regulation
of a metabolic homeostasis (Weckwerth, 2011b). Based on
a biomathematical strategy developed and applied in former

studies, entries of Jacobian matrices were directly inferred from
experimental metabolomic covariance data (Doerfler et al., 2013;
Nägele et al., 2014) (Figure 1). As described in our previous work,
we derived a metabolic network model comprising reactants
and reactions indicated in the Supplementary Table S2. The
metabolic covariance information was linked to a genome-
information derived biochemical network structure, finally
satisfying a Lyapunov matrix equation [for more details about
the method and the metabolic network model, we refer to
the section Materials and Methods as well as to our previous
work (Nägele et al., 2014)]. The calculation procedure, that
is, solving the equation after stochastic perturbation, was
performed 10 × 105 times and median values of all entries of
the Jacobian matrices were determined. Principal component
analysis (PCA) of the entries revealed a clear separation of the
population-specific Jacobian information in which the technical
variance was found to be significantly lower than the biological
variance (Figure 5). Loadings of the PCA revealed that the
strong separation of population OOE1 from OOE2 and 3 on
component 1 (PC1) was predominantly due to differences in
organic and amino acid, polyamine, and raffinose metabolism
but also aromatic amino acid biosynthesis and interconversion
(Supplementary Tables S2, S3). This output indicated a
potential difference in the regulation of secondary metabolism,
or, at least, at the interface between primary and secondary
metabolism. Hence, secondary metabolite abundance of the three
Austrian Arabidopsis populations was recorded applying LC–MS
analysis. The quantitative analysis of specific mass traces in the
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FIGURE 5 | Principal component analysis (PCA) of Jacobian matrix entries for populations OOE1, OOE2, and OOE3. PC1 strongly separates OOE1 (black filled
circles) from OOE2 (black filled crosses) and OOE3 (gray filled diamonds). PC2 separates OOE2 from OOE1 and OOE3 most significantly. Detailed information about
the Jacobian entries and the loadings can be found in Supplementary Tables S2, S3.

FIGURE 6 | Venn diagram showing the number of LC–MS features, which
significantly discriminated the three Arabidopsis populations OOE1, 2, and 3.

chromatograms showed that there was no feature separating all
of the populations significantly (ANOVA, p < 0.05). Yet, we were
able to identify 70 features that discriminated at least two of the
populations (Figure 6).

To statistically evaluate the separation of populations by
secondary metabolites, LC–MS data were analyzed by sPLS
regression analysis. The first latent variable was found to
separate OOE1 from OOE2 and OOE3 (Figure 7; Loadings
are provided in Supplementary Table S1, table sheet “Loadings
LCMS”). The second latent variable indicated a separating effect
of several putative anthocyanins attached to sinapoyl moieties

[A6, A7/A17, A8, A10, A11, and m/z 1329, respectively, for
further annotation see Doerfler et al. (2014)] in the OOE2
population by which it was discriminated from OOE1 and
OOE3.

Genotyping of in situ Natural A. thaliana
Populations
A SNP-based genotyping approach was performed to unravel
the genomic relationship of the three populations. Genotyping
showed clear differences between the three populations
(Figure 8). Different individual plants of population OOE2
were found to be nearly identical (12, 23, and 13 SNPs,
respectively). The population OOE2 was found to differ by
approximately 300,000 SNPs from both populations OOE1 and
OOE3, which were likewise separated by more than 300,000
SNPs. Interestingly, individual plants that have been sequenced
from the OOE3 population were genetically different as well
but to a minor extent (∼260,000 SNPs). The comparison with
genomic data from other ecotypes show the expected genetic
differences not only between these populations but also with
respect to global samples, in which accessions from Austria,
Italy, and the Czech Republic are most similar (Figure 8). To
extract the most diverse genes from the three populations,
we created a list for each population containing only genes
that differ by at least 50 polymorphisms from the other
two populations. These lists are available as Supplementary
Data Sheets S2–S4. Furthermore, we created population-
specific clustered protein interaction networks with these
genes using STRING (Szklarczyk et al., 2017). These protein
interaction networks showed highly diverse functional pattern
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FIGURE 7 | Projection of samples on latent variables of the secondary metabolite matric (LC–MS data) after sPLS regression. Detailed information on the loadings
are provided in the supplement (Supplementary Table S1).

between the three different populations (see Supplementary
Presentation S1).

DISCUSSION

Eco-Metabolomics and Metabolic
Modeling
The importance and central role of metabolomics in an ecological
context has extensively been outlined in previous studies and
overview articles [see e.g., Sardans et al., 2011; Jones et al.,
2013). One of the central issues of eco-metabolomic approaches
is the detection and characterization of environmentally induced
phenotypic mechanisms in context of key metabolic processes
and ecologically relevant parameters, that is, all kinds of
environmental cues (Scherling et al., 2010). Yet, due to the
non-linear relationship between single levels of molecular
organization, the reliable interpretation of metabolomics results
is highly challenging. The metabolic output or homeostasis of a
biochemical system depends on numerous molecular parameters
and variables, and, finally, a metabolic network sums up to a
highly branched, interlaced and non-linearly behaving molecular
system (Nägele, 2014).

While under controlled conditions such plasticity of molecular
systems already significantly limits our ability to intuitively
draw conclusions about regulatory mechanisms, in situ data
interpretation has to cope even more with a potential
ambiguousness introduced by environmental dynamics and
fluctuations (Macel et al., 2010). In the present study, such
fluctuations were taken into account by considering (co)variance
information of metabolite pools and by a modeling approach,
which focuses on the characterization of dynamical behavior
of metabolic systems around a metabolic homeostasis (Nägele

et al., 2014) (see Figure 1). In detail, data dimensionality
reduction via PCA indicated a clear separation of all populations
by Jacobian entries being related to the biochemistry at the
interface of primary and secondary metabolism as well as the
metabolism of metabolic stress-markers, such as polyamines
and raffinose, which have been discussed to be involved in
the protection of the photosynthetic apparatus against various
stress types (Bouchereau et al., 1999; Alcázar et al., 2006, 2011;
Knaupp et al., 2011).

Plasticity of Plant Primary Metabolism in
in situ Populations and Correlation With
Geographical Coordinates
Statistics on absolute primary metabolite levels revealed major
differences between natural in situ Austrian A. thaliana
populations. Almost all classes of analyzed substances,
comprising sugars, carboxylic, and amino acids displayed
significant differences indicating different homeostasis in
primary metabolism of all three populations. The TCA
intermediate fumaric acid was found to significantly differ
between all in situ samples indicating suitability to classify
these populations. While it has been shown that fumaric
acid metabolism plays a central role in diurnal carbon allocation
(Pracharoenwattana et al., 2010), and, hence, indirectly affects the
orchestration of photosynthesis in Arabidopsis leaves, it remains
to be demonstrated whether it can directly report on changes in
plant–environment interactions. In addition, due to the complex
regulation of plant primary metabolism, it can hardly be assumed
that one metabolite level provides representative information
for robust metabolic in situ classification. Yet, together with
the finding of a significant difference in potential photosystem-
protective substances, for example, polyamines and flavonoids,
it can be hypothesized that differential metabolic homeostasis
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FIGURE 8 | SNP genotyping of three Austrian Arabidopsis populations. All three plants that have been sequenced from the population OOE2 are nearly genetically
identical. OOE2 differs by nearly 300,000 SNPs from both the OOE1 and OOE3 population, which are likewise separated by more than 300,000 SNPs. The
comparison with genomic data from other ecotypes showed the expected genetic differences not only within these populations but also to global samples, in which
accessions from Austria, Italy, and the Czech Republic are most related. The genome information of all accessions is publically available at www.1001genomes.org.
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evolved due to differences in the microenvironment of the
three populations being characteristic enough to separate them
according to the resulting metabolic signatures. We further asked
the question whether we can identify metabolite marker, which
show significant correlations with geographical coordinates
even within this proximate distribution of populations. In
Supplementary Presentation S2 a correlation network is shown
between geographical coordinates and primary metabolites
of the three different populations. Indeed, there is a clear
distinction between several metabolites showing significant
correlations to altitude, E and N coordinates. This further
provides evidence that metabolic homeostasis is related to
environmental differences between these different locations of
the natural populations.

The Interface of Primary and Secondary
Metabolism as a Key Regulatory Point
for Genotypic and Phenotypic Plasticity
Predictions about the differentiation via signatures in secondary
metabolism were validated by LC–MS metabolomics focusing
on a central set of secondary metabolite backbones with
close similarity to previously identified anthocyanins attached
to sinapoyl moieties (Doerfler et al., 2014). Such metabolic
differences are in line with previous findings reporting on
metabolic signatures, which are due to characteristic differences
in specialized or secondary metabolism (Wink, 2003; Lu
et al., 2009; Scherling et al., 2010; Doerfler et al., 2013;
Chae et al., 2014; Moore et al., 2014). The accumulation of
anthocyanin pigments in vegetative tissue of plants represents
an approved metabolic stress and acclimation output (Winkel-
Shirley, 2002). Moreover, we demonstrated earlier that most
of the statistical significant metabolic responses of individual
plant species to in situ biodiversity are attributed to secondary
metabolism including flavonoid structures (Scherling et al.,
2010). Hence, the molecular analysis provided a detailed view
on the differential population-specific metabolic composition
of secondary metabolites and anthocyanin-related leaf color.
With this, evidence is provided for the suitability of metabolic
phenotyping of in situ samples by a combined GC–MS and
LC–MS platform (Scherling et al., 2010; Doerfler et al., 2013).
While, at this point, we can only speculate on the environmental
cues which initiated the observed differences in secondary stress-
associated metabolism, flavonoid metabolites in general are
heavily discussed in context of their UV absorption and reactive
oxygen species (ROS) scavenging properties (Winkel-Shirley,
2002; Agati and Tattini, 2010; Doerfler et al., 2014; Hectors et al.,
2014). Together with the finding of a differentially regulated
polyamine metabolism between the populations, which became
visible rather by covariance information than by mean values,
our results point toward a differential macro- or microclimatic
environment at the three Austrian in situ sampling sites
(see also description of the sampling sites in Materials and
Methods).

In addition, results of SNP-based genotyping revealed three
genetically different populations, which are, however, closer
related to each other than to other European accessions

(Figure 8). In terms of temperature regimes and low temperature
tolerance, which can be expected to have major influence
on the geographic range of A. thaliana (Hoffmann, 2002),
the genetic distance between the Austrian populations can be
regarded as relatively small when compared to sensitive (Cvi,
Co-1) and tolerant accessions (Rsch-4) (Hannah et al., 2006).
Based on this observation, we hypothesize that the variance
in observed metabolic phenotypes are a mixture of plasticity
effects and conceptual differences in the acquisition of abiotic
stress tolerance. This again might indicate a high intraspecific
metabolic variation, which would affect the evolutionary capacity
of Arabidopsis in context of adaptation to macro- and micro-
environmental fluctuation (Moore et al., 2014).

Jacobian Entries Are Potentially Linked
to Intraspecific Genotypic Variation
The combination of in depth genotypic and metabolomic
profiling and modeling opens up the opportunity to search for
direct correlations of polymorphisms and metabolic changes.
Here, we applied this concept to an in situ study for the
first time and revealed a significant intraspecific biochemical
plasticity within three close-by natural populations in their
natural habitat. We have extracted the genes of the individual
populations which distinguish them most (Supplementary
Data Sheets S2–S4). By further analysis of the corresponding
clustered protein interaction networks different functional
modules between the different populations became visible
(Supplementary Presentation S1). The three populations
OOE1, 2, and 3 showed severe differences in these protein
interaction networks. Especially, the OOE3 population showed
a cluster of genes which is clearly involved in organic acid
and amino acid metabolism including genes for pyruvate
dehydrogenase, aconitase, NAD-malic enzyme 1, pyruvate–
phosphate dikinase, lactate-dehydrogenase, and several others
(see Supplementary Presentation S1). These functional patterns,
which distinguish OOE3 from OOE1 and 2 coincide with the
calculation of Jacobian entries. The strongest loadings separating
OOE3, 2, and 1 on PC1 in Figure 4 include df(Glu)/d(Pyr),
df(Mal)/d(Fum), df(Cit)/d(Pyr), df(Glu)/d(Asp), df(Glu)/d(2-
oxoglutarate), df(Succ)/d(Put). All of these entries point to
organic acid metabolism and key entry points for amino acid
metabolism, especially nitrogen assimilation and transamination
reactions. In future studies, we will investigate these relationships
in more detail also by integrating proteomics studies. There
is a great potential that the calculation of Jacobian entries
of a biochemical matrix gives important clues about different
dynamics in the same set of metabolites based on intraspecific
but also interspecific genetic variance and biochemical regulation.
This is due to the explicit linkage of the metabolite covariance
matrix C – representing the dynamic part of the equation –
and the Jacobian J, which relies on the metabolite interaction
matrix defined by genome-scale metabolic reconstruction and
biochemical pathways. Accordingly, the covariance matrix C
is representative for the different ecotype dynamics whereas
the Jacobian structure preserves the reconstructed metabolic
network. Just the combination of both J and C in the
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Lyapunov matrix equation will reveal the dynamics of each
ecotype individually (for further details see also Weckwerth,
2011a,b).

CONCLUSION

In summary, it was demonstrated that intraspecific metabolic
phenotypes of geographically nearby-grown Arabidopsis plants
can be characterized and differentiated by their primary–
secondary metabolic signature. In future studies, monitoring
of micro-climatic properties will enable the characterization
of sampling sites by continuous quantitative environmental
data and thus improve the understanding of the ecological
context of in situ molecular profiles. Additionally, biotic
and abiotic habitat parameters, such as soil properties
and phytosociological association, might even promote
our current understanding of individual plants’ physiology.
Finally, our study points to the importance of considering
variance and covariance information in biological data
sets (Weckwerth et al., 2004b; Violle et al., 2012) which,
together with genome-derived pathway information, potentially
provide information about environmental fluctuations, and
associated biochemical system properties. The findings
contribute to the comprehensive understanding of ecological
processes and may contribute to the design of future
studies focusing on the estimation of the impact of climate
change on plant societies and evolution using combined
multiomics and modeling strategies (Ward and Kelly, 2004;
Weckwerth, 2011a).
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