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Different from the conventional biocidal agrochemicals, synthetic chemical inducers of
plant immunity activate, bolster, or prime plant defense machineries rather than directly
acting on the pathogens. Advances in combinatorial synthesis and high-throughput
screening methods have led to the discovery of various synthetic plant immune
activators as well as priming agents. The availability of their structures and recent
progress in the mechanistic understanding of plant immune responses have opened
up the possibility of identifying new or more potent chemical inducers through rational
design. In this review, we first summarize the chemical inducers identified through
large-scale screening and then discuss the emerging trends in the identification and
development of novel plant immune inducers including natural elicitor based chemical
derivation, bifunctional combination, and computer-aided design.

Keywords: plant immunity, plant immune inducers, chemical derivation, ionic liquids, diversity-oriented synthesis,
computer-aided design

INTRODUCTION

While plants are important nutritional source of humans, they are also consumed by various
heterotrophic microorganisms, which cause diverse plant diseases and considerable economic loss
to agriculture. To reduce the yield loss, conventional chemical pesticides have been developed.
They exert their functions through direct biocidal effects on the pathogens. However, besides the
toxicity on the pathogens, conventional pesticides may also have negative impacts on the crops,
beneficial microorganisms and the health of farmers and consumers. Furthermore, continuous
application of conventional pesticides can result in the selection of pesticide-resistant pathogen
strains and eventually voids the use of the specific pesticide (Burketova et al., 2015). Synthetic
chemical inducers of plant immunity are attractive and promising alternatives. They stimulate
or prime the endogenous immunity of plants to combat pathogenic invasions rather than kill the
pathogens directly.

Unlike animals that have evolved specific immune cells, nearly each cell in plants is able to
act as an “immune cell” to fight against pathogen attacks. Plants can perceive the presence of
pathogens through recognition of microbe-associated molecular patterns (MAMPs) or damage-
associated molecular patterns (DAMPs) by pattern recognition receptors (PRRs). MAMPs are
highly conserved molecular signature within different classes of microbes, for instance, flagellin and
elongation factor Tu (EF-Tu) from bacteria, chitin and xylanase from fungi and heptaglucan from
oomycetes. DAMPs are plant endogenous immune elicitors released by the pathogen-triggered
mechanical stress or enzymatic activities controlled by pathogens, e.g., oligogalacturonides
(Schwessinger and Ronald, 2012). The downstream defense activation events following PRR
activation include changes of ion fluxes across the plasma membrane, the oxidative burst, activation
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of mitogen activated protein kinase (MAPK) cascades, gene
activation and callose deposition. This MAMPs/DAMPs-
triggered immunity (MTI) is the first layer of plant immune
system (Jones and Dangl, 2006; Zipfel, 2009). Some pathogens
have evolved effectors to interfere with MTI (Dangl et al.,
2013). Through co-evolution, plants have developed intracellular
immune receptors, Resistance (R) proteins, to recognize the
presence of effectors and activate effector-triggered immunity
(ETI), which is the second layer of plant immune system (Spoel
and Dong, 2012). These two layers of immunity are usually
referred to as plant innate immunity (Schwessinger and Ronald,
2012).

The activation of plant innate immunity in local tissue (the
infected part) leads to transportation of the mobile defense
signals to systemic (uninfected) tissue, resulting in a long-
lasting resistance to a broad spectrum of pathogens. This
acquired immunity is known as systemic acquired resistance
(SAR). The induction of SAR usually confers by ETI, however,
it has been reported that MTI can also trigger SAR under
some circumstances (Mishina and Zeier, 2007). In addition to
pathogens, SAR can be induced by exogenous application of
chemical inducers, including salicylic acid (SA), its analogs 2, 6-
dichloroisonicotinic acid (INA) and benzothiadiazole S-methyl
ester (BTH), its derivatives acetylsalicylic acid (aspirin) and
methyl SA (MeSA) (White, 1979; Uknes et al., 1992; Cao
et al., 1994; Lawton et al., 1996; Durrant and Dong, 2004;
Park et al., 2007), nitric oxide (NO), reactive oxygen species
(ROS) (Wang et al., 2014), dicarboxylic acid azelaic acid
(AzA) (Jung et al., 2009), the phosphorylated sugar glycerol-3-
phosphate (G3P) (Chanda et al., 2011), the abietane diterpenoid
dehydroabietinal (DA) (Chaturvedi et al., 2012), the amino-
acid derivative pipeolic acid (Pip) (Navarova et al., 2012), and
N-hydroxypipecolic acid (NHP) (Chen et al., 2018; Hartmann
et al., 2018).

To communicate with the systemic tissue, mobile signals
are generated in local tissue and then transported to systemic
tissue through phloem. Although, it is well-known that SAR is
associated with the accumulation of SA in both local and systemic
tissues, grafting studies demonstrated that SA is not the mobile
SAR signal (Vernooij et al., 1994). Several chemical candidates
for this long-distance signal have been proposed, including MeSA
(Park et al., 2007), AzA (Jung et al., 2009), glycerol-3-phosphate
(G3P) (Chanda et al., 2011), DA (Chaturvedi et al., 2012), Pip
(Navarova et al., 2012), and more recently, its derivative, NHP
(Hartmann et al., 2018). Key protein players involved have
also been identified including Defective in Induced Resistance
1 (DIR1) (Maldonado et al., 2002; Carella et al., 2017), AzA
Insensitive 1 (AZI1) (Jung et al., 2009), and Lipid Transfer
Protein 2 (LTP2). Plasmodesmata (PD) is considered to be the
transportation route of these signals (Lim et al., 2016). These
putative SAR signals might function coordinately to achieve long-
distance signal transduction (Dempsey and Klessig, 2012; Shah
et al., 2014; Wang et al., 2014).

Once SAR signals are perceived, systemic tissues generate
SA to activate a key immune regulator, NON-EXPRESSER OF
PR1 (NPR1) to trigger massive transcriptional reprogramming,
including the induction of Pathogenesis-related (PR) genes and

endoplasmic reticulum (ER)-resident genes, which aid secretion
of PR proteins (Wang et al., 2005, 2006; Spoel and Dong,
2012; Fu and Dong, 2013). Continuous efforts have been made
to study the mechanism of how NPR1 responds to SA and
regulates downstream defense genes. SA or pathogen infection
could cause changes in cellular redox status (Mou et al., 2003).
As a result of the cellular redox changes, the cysteine residues
of NPR1 (C82 and C216) are reduced by thioredoxins, leading
to an oligomer-to-monomer switch in NPR1 conformation and
nuclear translocation of the monomer NPR1 (Tada et al., 2008).
Nuclear NPR1 monomer then undergoes phosphorylation to
promote its transcriptional activity in SAR and its turnover
(Spoel et al., 2009). As a transcription co-factor, nuclear NPR1
interacts with TGAs and NIMI-interacting (NIMIN) TFs to
regulate the expression of downstream defense genes (Despres,
2003; Kesarwani et al., 2007). TGAs mainly activate NPR1-
mediated genes; while NIMIN represses the expression of defense
genes (Zhou et al., 2000; Johnson et al., 2003). After fulfillment
of its function, ubiquitination of “exhausted” NPR1 leads to
its degradation by the proteasomes, allowing “fresh” NPR1 to
reinitiate the transcription cycle (Spoel et al., 2009). Recently
NPR1 and its paralogs, NPR3 and NPR4, have been found
to directly bind SA and serve as its receptors to mediate
transcriptional reprogramming (Fu et al., 2012; Wu et al., 2012;
Ding et al., 2018). Besides SA, indolic compounds, jasmonic acid
(JA), monoterpenes, NO, ROS and intact cuticle also contribute
to the establishment of SAR (Truman et al., 2007, 2010; Xia et al.,
2009; Navarova et al., 2012; Wendehenne et al., 2014; Riedlmeier
et al., 2017).

Induced systemic resistance (ISR) is another form of systemic
immunity, which is triggered by non-pathogenic beneficial
microbes (Pieterse et al., 2014). Although ISR and SAR are both
systemic defense mechanism, they differ in several ways. First,
the triggers of ISR and SAR are fundamentally different. SAR
is triggered by either compatible or incompatible pathogenic
interactions while ISR is initiated by non-pathogenic microbes.
Second, although ISR and SAR are both broad-spectrum, their
effective spectrum only partially overlaps (Ton et al., 2002).
Third, SA is critical to SAR but ISR is less dependent on SA
and mainly regulated by JA and ethylene (ET) (Pieterse et al.,
1998; Pieterse et al., 2014). Fourth, SAR is accompanied with
induction of PR genes and proteins while SA-independent ISR is
not (Hoffland et al., 1995). Instead of direct induction of defense
machineries, ISR-conditioned plants can elicit faster and/or
stronger defenses upon subsequent pathogenic interactions. This
sensitization mechanism is called priming (Conrath et al., 2006).
It has been shown that priming can reduce the fitness cost
associated with constitutive activation of defenses (van Hulten
et al., 2006; Walters et al., 2008; Vos et al., 2013). Despite these
distinctions between ISR and SAR, SA-independent ISR also
depends on NPR1, the key component of SA signaling pathway
(Pieterse et al., 1998; Iavicoli et al., 2003; Ryu et al., 2003; Ahn
et al., 2007; Hossain et al., 2008; Stein et al., 2008; Segarra et al.,
2009; Weller et al., 2012). Cumulating studies suggest that ISR
may mainly rely on the cytosolic function of NPR1 while SAR
more depends on the nuclear role of NPR1 (Pieterse et al.,
2014).
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SYNTHETIC CHEMICAL INDUCERS OF
PLANT IMMUNITY

Synthetic chemical inducers of plant immunity are structurally
different from the natural plant defense elicitors. They may
activate or prime plant immunity by simply mimicking the
structures of natural immune inducers. Alternatively, they can
also be structurally unrelated to natural elicitors and target a
subset of defense signaling components. In general, they do not
have in vitro antimicrobial activity. In this section, we mainly
focus on the legacy inducers related to the recently discovered
ones, which will be discussed in the “Emerging trends” section.

SA Derivatives
As a major plant immune hormone, SA plays a pivotal role
in the establishment of plant immunity. SA is among the
first plant endogenous chemicals reported to induce SAR,
which is accompanied by accumulation of PR proteins and
resistance to TMV in tomato (White, 1979). In the same
study, the famous synthetic SA derivative, Aspirin, was also
shown to induce SAR (White, 1979). Later mono- and di-
chloro substituted SA derivatives including 4-chloro-SA, 5-
chloro-SA and 3, 5-chloro-SA were found to induce PR proteins
accumulation and resistance against TMV infection in tobacco
(Conrath et al., 1995). More comprehensive investigations of
mono- and multiple-substituted SA suggest that 3- and 5-
position substitutions are more active than 4- and 6-position
substitution. Electron-withdrawing substituents are important to
the enhanced activity. Except for 6-fluoro-SA, all fluoro- and
chloro-SA tested induced more resistance against TMV than
SA (Silverman et al., 2005). Aside from the simple substituted
SA, a new class of salicyl glycoconjugates containing hydrazide
and hydrazone moieties were synthesized and studied on their
in vitro and in vivo antifungal activity using cucumber (Cui et al.,
2014). While the SA hydrazine derivative showed little in vitro
antifungal activity, significant in vivo antifungal activity against
Colletotrichum orbiculare, Fusarium oxysporum, Rhizoctonia
solani, and Phytophthora capsici was demonstrated. Intriguingly,
while the SA hydrazine derivative is structurally derived from SA,
it did not induce the expression of SA marker genes but rather
induce JA marker genes. This suggests that the SA hydrazine
derivative may not be an SA agonist and function through
targeting of other immune signaling components.

Isonicotinic Acid Derivatives
INA was first identified by Ciba-Geigy, the predecessor of
Syngenta, through large-scale screening to identify chemicals that
can induce resistance in cucumber against the fungal pathogen
Colletotrichum lagenarium (Metraux et al., 1991). INA has been
shown to induce pathogen resistance in various plants including
Arabidopsis, tobacco, pear, pepper, rice, cucumber, and beans
(Kuc, 1982; Metraux et al., 1991; Ward et al., 1991; Uknes
et al., 1992). INA can trigger similar immune responses as SA
but independent of SA accumulation as it can still induces
SAR in transgenic plants expressing SA hydrolase (NahG) in
which SA accumulation is compromised (Delaney et al., 1994;

Vernooij, 1995). Therefore it functions downstream of the SA
accumulation. Recent identifications of SA receptors, NPR3 and
NPR4 suggest that INA is likely to be a genuine SA agonist.
Similar to SA, INA can also promote the interactions between
NPR1 and NPR3. Furthermore, in a competition binding assay,
INA was shown to compete with SA to bind its receptors, NPR3
and NPR4 (Fu et al., 2012). Besides the interaction with NPR3 and
NPR4, interactions between INA and other SA-binding proteins
may also contribute to its role in elicitation of immunity (Durner
and Klessig, 1995). However, due to its phytotoxicity effects, INA
or its derivatives have not been commercialized for agricultural
use.

N-cyanomethyl-2-chloro isonicotinic acid (NCI) is another
potent plant immune inducer, which belongs to the isonicotinic
acid derivative family. It was identified in a screen of 2-
chloroisonicotinamide derivatives for control of rice blast
(Yoshida et al., 1990a,b). NCI did not show biocidal effects on rice
blast in vitro even when a high dose was used. However, its in vivo
antifungal activity against rice blast can last 30 days after a single
application. In tobacco, NCI induces expression of PR genes even
in nahG plants (Nakashita, 2002). This suggests that the immune
inducing effect of NCI does not rely on SA accumulation.
In Arabidopsis, NCI-induced immunity is independent of SA
accumulation but depends on NPR1 (Yasuda et al., 2003; Yasuda,
2007). Therefore NCI appears to interact with the signaling steps
between SA and NPR1.

Thiadiazole and Isothiazole Derivatives
BTH is another potent synthetic SAR inducer identified by Ciba-
Geigy through a large-scale screening of thiadiazole derivatives
(Schurter et al., 1993; Kunz et al., 1997; Oostendorp et al., 2001).
BTH does not exhibit antimicrobial activity in vitro. However,
it can trigger disease resistance against a diverse spectrum of
pathogens in various plant species. BTH has been tested in more
than 120 pathosystems including resistance in apple and pear
against fire blight, tomato against bacterial canker, grapefruit
against canker, canola against blackleg disease, cowpea against
anthracnose, etc. (Latunde-Dada and Lucas, 2001; Brisset et al.,
2002; Soylu et al., 2003; Potlakayala et al., 2007; Graham and
Myers, 2011). BTH induces the expression of PR genes and BTH-
triggered SAR in Arabidopsis is dependent on NPR1 (Lawton
et al., 1996). In rice, however, BTH-induced defense responses
against rice blast does not require rice ortholog of Arabidopsis
NPR1 but rather involves WRKY family transcription factor,
OsWRKY45 (Shimono et al., 2007). Similar to INA, BTH is also
able to induce SAR and expression of PR genes in nahG plants
(Molina et al., 1998). BTH can be converted by methyl SA esterase
to acibenzolar. This conversion is required for BTH-induced PR
protein expression as BTH failed to induce PR1 in the methyl SA
esterase silenced tobacco seedlings (Tripathi et al., 2010). Besides
direct induction of plant defense responses, low doses of BTH
can prime plant immunity. In Arabidopsis, this priming effect is
dependent on NPR1 (Kohler et al., 2002; Goellner and Conrath,
2008). Induction of MAPKs and histone modifications have also
been found to associate with and may explain this priming effect
(Beckers et al., 2009; Jaskiewicz et al., 2011). Different from INA,
BTH has been commercialized as an effective agrochemical.
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The isothiazole-based synthetic plant immune inducer,
Isotianil, was identified by Bayer AG and Sumitomo Chemical
Co., Ltd., through comprehensive search for this type of
compounds as protectant against both rice blast and rice blight.
Besides rice, Isotianil has also been shown to protect wheat
against powdery mildew, cucumber against anthracnose and
bacterial leaf spot, Chinese cabbage against Alternaria leaf
spot, pumpkin against powdery mildew, strawberry against
anthracnose and peach against bacterial shot hole (Ogawa et al.,
2011; Krämer et al., 2012). Isotianil does not have antimicrobial
activity in vitro but relies on its strong immune inducing power
to protect rice against rice blast. An exceptionally low dosage
is enough to assure its in vivo antimicrobial effect (Ogawa
et al., 2011). Its effective dose is lower than any other existing
plant defense activators (Ogawa et al., 2011). Transcriptome
profiling revealed that Isotianil induces the expression of defense-
related genes in rice including NPR1, NPR3, and WRKY family
transcription factors as well as gene involved in SA catabolism
(Krämer et al., 2012). Up till now, more in-depth molecular basis
of how Isotianil achieves its immune eliciting activity has not
been reported (Maienfisch and Edmunds, 2017).

JA Analog
While SA regulates defense against biotrophic pathogens, JA
and methyl-JA (MeJA) mainly control the immunity against
necrotrophic pathogens and herbivores (Santino et al., 2013). JA
can be metabolized to MeJA and JA-isoleucine (JA-Ile) which is
a biologically active form (Svoboda and Boland, 2010; Pieterse
et al., 2012). JA signal is transduced to transcription through
JA-Ile triggered degradation of Jasmonate ZIM-domain (JAZ)-
type transcriptional repressors by the JA receptor, Coronatine
Insensitive 1 (COI1) (Yan et al., 2013, 2018). With the removal
of these repressors, JA-responsive genes are de-repressed and
JA-dependent defense responses are activated (Browse, 2009;
Pieterse et al., 2012; Monte et al., 2014). The phytotoxin,
coronatine, is a natural structural and functional mimic of JA-
Ile (Weiler et al., 1994; Fonseca et al., 2009). Coronatine can
elicit similar responses as JA. In an effort to identify more potent
mimics of coronatine, the synthetic JA mimic coronalon was
synthesized (Schuler et al., 2001). Coronalon was later shown to
mediate stress responses in various plants species (Schuler et al.,
2004). It can induce known MeJA-activated defense products as
well as MeJA-responsive genes (Pluskota et al., 2007). Besides
coronalon, several synthetic JA mimics have been studied and
shown to induce JA signaling and defense responses in lima bean,
soybean and coyote tobacco (Krumm et al., 1995; Fliegmann
et al., 2003; Pluskota et al., 2007). However, whether these
JA mimics bind COI1 has not been investigated. Based on
the co-receptor structure, a coronatine derivative, coronatine-
O-methyloxime (COR-MO), was synthesized through direct
chemical derivation and identified as a potent competitive
antagonist of jasmonate perception (Monte et al., 2014).

β-Aminobutyric Acid (BABA)
BABA is a non-protein amino acid that has been known to induce
plant resistance since 1963 (Papavizas and Davey, 1963). It has
been shown to protect about 40 different plant species against

a diverse range of pathogen and pests including virus, bacteria,
oomycetes, fungi, nematode, and arthropods (Cohen et al., 2016).
BABA primes multiple defense mechanisms regulated by SA-
dependent and SA-independent pathways (Zimmerli et al., 2000;
Ton et al., 2005). The priming effects elicited by BABA can
be maintained to the next generation, making BABA the first
plant immune inducer with transgenerational efficacy (Slaughter
et al., 2012). BABA is sensed by an aspartyl-tRNA synthetase,
IBI1 (Luna et al., 2014). Binding of BABA to IBI1 primes it for
alternative defense activity. However, the inhibition of BABA on
the aspartyl-tRNA synthetase activity leads to toxicity in plants,
which makes BABA unsuitable for agricultural use. While BABA
has long been considered as a synthetic plant immune priming
agent, a recent study has unequivocally identified BABA as an
endogenously metabolite synthesized by various plant species
including Arabidopsis, Chinese cabbage, maize, teosinte, and
wheat (Thevenet et al., 2017).

EMERGING TRENDS

Large-scale screens performed by the private sector identified
the first-generation synthetic elicitors including INA and BTH.
Over the last 15 years, advances in combinatorial chemistry
and development of high-throughput screening systems have
equipped the scientists outside the private sector with the ability
to carry out comprehensive screens for synthetic plant immune
inducers. This has led to the discovery of a rich arsenal of the
second-generation synthetic elicitors (Bektas and Eulgem, 2015).
While systematic screens will continue to help us unveil new and
better synthetic elicitors, approaches based on the knowledge of
known synthetic and/or natural elicitors are emerging.

Chemical Derivation
Simple chemical derivation of known immune inducers has been
and continues to be a shortcut to the identification of more
potent immune elicitors. Recently, a new class of SA derivative,
benzoylsalicylic acid (BzSA) was identified from seed coats
of Givotia rottleriformis, a soft-wood tree species (Kamatham
et al., 2016). BzSA induces SAR-related gene expression more
effectively than SA. It also induced more local and systemic
resistance against TMV in tobacco than SA. Through relatively
simple chemical derivation, Kamatham et al. (2017) synthesized
14 BzSA derivatives and tested their bioefficacy using the
tobacco-TMV pathosystem. When low dosage was tested, all 14
derivatives caused more reduction of the lesion size than both
SA and BzSA. The immune-inducing effects of BzSA derivatives
are not dependent on SA accumulation as they can still induce
resistance in nahG plants.

With the availability of a diverse collection of known synthetic
and nature plant immune inducers, comparison between known
elicitors may help identify specific moiety critical to the immune
inducing ability. The 3-methylfuran-containing natural products
like menthofuran, furanoeremophilane, caclol, and tanshinone
are plant secondary metabolites involved in plant defense (Hägele
and Rowell-Rahier, 2000; Maffei et al., 2012; Liu et al., 2013).
Based on the prediction that 3-methylfuran moiety may be
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important to the antimicrobial activity of these secondary
metabolites, He et al. (2017) used diversity-oriented synthesis to
generate a small natural-products-like library containing the 3-
methylfuran scaffold. Five 3-methylfuran derivatives were found
to significantly induce the resistance in rice against brown
planthopper, supporting the initial speculation on the critical role
of 3-methylfuran (He et al., 2017).

Besides specific functional moiety, the pattern of known
immune elicitors can also be useful information for the design
of new ones. Rhamnolipids and lipopeptides have been found
as a new class of MAMPs (Jourdan et al., 2009; Sanchez et al.,
2012; Farace et al., 2015). Both rhamnolipids and lipopeptides
are amphiphilic compounds. Due to the biocompatibility and
biodegradability, rhamnoside-based bolaamphiphiles surfactants
have been increasingly recognized and investigated (Gatard
et al., 2013; Akong and Sandrine, 2015). The bolaamphiphiles
surfactants contains a long hydrophobic spacer connecting
two hydrophilic moieties. Luzuriaga-Loaiza et al. (2018)
synthesized rhamnolipid bolaforms (SRBs) and tested their
immune induction activity. Depending on the acyl chain length,
SRBs differentially induce defense responses and confer local
resistance in Arabidopsis against the hemibiotrophic bacteria
Pseudomonas syringae but not the necrotrophic fungal pathogen
Botrytis cinerea.

Chemical derivation based on known natural immune
inducers has great expedited the invention of better synthetic
immune inducers. However, the lack of the mechanistic
understanding of the interactions between the new synthetic
immune inducers and their cognate targets in plants has limited
our ability to improve the efficacy or lower the phytotoxicity
in a more rational manner. More comprehensive biochemical
studies using the new synthetic immune inducers will provide a
promising guide.

Bifunctional Combination
Bifunctional combination approaches combine a known
synthetic plant immune inducer with another compound,
which brings other functions to the final product. Strobilurins
are a class of broad spectrum fungicides. Widespread use of
strobilurins have caused pathogen resistance (Gisi et al., 2002;
Leiminger et al., 2014). 3,4-dichloroisothiazole derivatives have
diverse biological activities including immune-inducing activity.
For example, as mentioned in Section 2.3, Isotianil, a 3,4-
dichloroisothiazole derivative, is a very potent immune elicitor.
In an effort to identify new strobilurins for future market, Chen
et al. (2017) combined 3,4-dichloroisothiazoles with strobilurins.
Through the incorporation of 3,4-dichloroisothiazole, new
strobilurins with good in vivo and in vitro fungicide activities
were identified.

JA-Ile is a natural conjugation of JA and isoleucine and
was previously identified as the sole endogenous bioactive JA
molecule. In an effort to identify additional endogenous bioactive
jasmonates, Yan et al. (2016) coupled 20 natural amino acids with
coronafacic acid (CFA) which is a part of the phytotoxic natural
JA-Ile mimic, coronatine, and identified 5 non-polar amino
acid conjugates of CFA including CFA-Ile, CFA-Leu, CFA-Val,
CFA-Met, and CFA-Ala as new synthetic JA signaling pathway

elicitors. Following these findings, JA-Leu, JA-Val, JA-Met, and
JA-Ala were further discovered as new endogenous bioactive JA
molecules. Through integration of the structural information of
all these bioactive JA molecules, general rules of bioactive JA
conjugates were proposed. Based on these rules, two additional
JA signaling pathway elicitors, CFA-N-Leu and CFA-Ch-Gly were
identified (Yan et al., 2016).

Besides covalent combination, ionic pairing is another
attractive method, since one can choose ions independently.
The same plant immune inducer can be paired with surfactant-
type cation for better wetting or tetrabutylammonium cation
for faster dissolution. Using this strategy, 15 immunity inducers
including SA, BTH, INA, BABA, etc., were paired with the
cholinium cation to form ionic liquids (Kukawka et al., 2018).
Their abilities to induce SAR were tested using the tobacco-
TMV pathosystem. Cholinium is an essential nutrient. Pairing
with cholinium reduced phytotoxicity of these immune inducers
while only mild perturbation to the immune-inducing ability was
recorded.

While bifunctional combination approaches have shown the
potential to either improve the efficacy or reduce phytotoxicity,
the introduction of the second chemical moiety has also brought
more complications. For example, Pip, a SAR mobile signal
candidate, showed significantly reduced SAR-inducing activity
when paired with cholinium (Kukawka et al., 2018). On the
other hand, while isonicotinate did not induce SAR, its cholinium
ionic liquid was shown to induce SAR (Kukawka et al., 2018).
Therefore bifunctional combination is not merely the addition
of the biological activities of the two chemical moieties but
rather results in potentially complicated interactions between
the signaling pathways induced by the two moieties. Careful
characterization is thus essential to understand the full spectrum
of the biological activities of the new synthetic immune inducers
identified through bifunctional combination approaches.

Computer-Aided Design
Manual inspection can only process a handful of immune elicitors
for recognition of potentially critical bioactive substructures and
patterns of known immune inducers (He et al., 2017; Luzuriaga-
Loaiza et al., 2018). Advances in high-performance computing
have made it possible to screen tens of thousands of lead-
like molecules computationally. This computer-aided design
(CAD) drug design strategy has been increasingly recognized and
utilized in pesticide discovery and property analysis (Xia et al.,
2014; Veselinovi et al., 2015; Burden et al., 2016). Using SA,
MeSA, BTH, and Tiadinil, the four known immune inducers as
query templates, Chang et al. (2017) performed virtual screening
against the 5,3000 hit-like and lead-like compounds in the
Maybridge database and identified three benzotriazole scaffolds
as promising leading compounds. One of them, L1 shows high
3D structure similarity to BTH despite their differences in 2D
topology. Furthermore, L1 also shares similar pharmacophore
features to BTH. In vivo screening of L1 derivatives identified new
immune inducers with comparable or improved efficacy against
Mycosphaerella melonis, Corynespora cassiicola, P. syringae,
B. cinerea, and F. oxysporum in cucumber, Phytophthora infestans
in tomato and R. solani in rice.
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Besides the knowledge of the small lead-like compounds,
structural understanding of plant receptors can also lend power
to the virtual screening of new leading compounds. Using the
high quality structural model of JA receptor, COI1, 767 JA analogs
were analyzed in terms of their ability to bind COI1 (Pathak et al.,
2017). Two such analogs ZINC27640214 and ZINC43772052
showed higher binding affinity compared to JA. ZINC27640214
appears to have efficient, stable and good cell permeability
properties, making it a good candidate for experimental
validation. Buswell et al. (2018) combined the knowledge of
the structural information on the BABA receptor, IBI1 and
small-scale screening of β-amino acids using the ibi1 mutant
to search for BABA analogs, which induce plant immunity
without severe growth inhibition. Out of the seven resistance-
inducing compounds, five of them showed no inhibition on
growth. Among these five, (R)-β-homoserine (RBH) showed
the strongest resistance-inducing activity without affecting
vegetative growth or global plant metabolism. Interestingly,
RBH appears to elicit partially different signaling pathways
from those affected by BABA, making it a promising new
crop protectant. Through in silico docking and subsequent
molecular dynamics simulation, the keto group of a stereoisomer
of coronatine showed the potential to control the binding
selectivity between its derivatives and different subtypes of JAZ
(Takaoka et al., 2018). An oxime derivative of this coronatine
stereoisomer was then developed as a synthetic JAZ subtype-
selective agonist, specifically targeting JAZ9 and JAZ10. This
selectivity in JAZ enabled induction of pathogen resistance
without a cost on growth. It is noteworthy that small-scale
targeted characterization of synthetic agonist candidates rather
than large-scale screening was realized in this study owing to the
integration of the structural information on both the ligands and
the receptor.

As an emerging trend, application of CAD in the discoveries
of new synthetic immune inducers awaits further exploitation.
While lead-like compound databases have provided a critical
foundation for virtual chemical screening, they also restrain the
chemical diversity and may potentially hinder the discovery of
completely novel scaffolds. On the other side, CAD based on
the structural information of plant defense signaling components
does not set a limit on the chemical diversity. However,
synthetic immune activators identified through this route may
be only effective in the specific plant species studied due to the
sequence variation among different plant species. Integration
of evolutional conservation information may help alleviate this
issue.

CONCLUSION AND PERSPECTIVES

In this review, we provided a focused overview on the
discovery and functional properties of synthetic plant immune
inducers and emerging trends in the search for new and
improved synthetic inducers. A rich knowledge of the
structural, chemical and pharmacological properties of the
known inducers has opened up some shortcuts to expedite
the discovery procedure. Instead of in vivo screening tens
of thousands small molecules, small-scale screening involves
only a few dozens or even a handful of compounds is able
to identify new inducer derivatives or even completely new
scaffolds through integration of prior knowledge. While
the availability of the structures of small compounds is
the major drive for this advancement, we anticipate that
integration of more prior information will greatly facilitate
the discovery of novel and better plant immune elicitors.
This includes the structural information, biological function
and evolutional conservation of key plant immune-related
signaling components, physical and biochemical features of
the small compounds as well as the structural basis and
evolutional conservation of the molecular interactions between
small compounds and their cognate plant immune signaling
components.

The great expansion of synthetic immune inducers has also
provided opportunities to dissect the signaling networks of plant
immune system that is not accessible to genetic screens due to
the lethality and gene redundancy. With the discovery of the
hidden drug-able targets in plant immune system, new synthetic
immune inducers may be developed to target these hidden points.
Then in turn, these new inducers can again enhance our ability
to dissect plant immune system and keep this discovery cycle
going on.
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