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In the light, photosynthetic cells can potentially suffer from oxidative damage derived
from reactive oxygen species. Nevertheless, a variety of oxygenic photoautotrophs,
including cyanobacteria, algae, and plants, manage their photosynthetic systems
successfully. In the present article, we review previous research on how these
photoautotrophs safely utilize light energy for photosynthesis without photo-oxidative
damage to photosystem I (PSI). The reaction center chlorophyll of PSI, P700, is kept in
an oxidized state in response to excess light, under high light and low CO2 conditions,
to tune the light utilization and dissipate the excess photo-excitation energy in PSI.
Oxidation of P700 is co-operatively regulated by a number of molecular mechanisms on
both the electron donor and acceptor sides of PSI. The strategies to keep P700 oxidized
are diverse among a variety of photoautotrophs, which are evolutionarily optimized for
their ecological niche.
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INTRODUCTION

Nothing ventured, nothing gained. In oxygenic photosynthesis, CO2 is converted into sugar using
H2O and light energy. Additionally, O2 is released from oxygenic photosynthesis as a by-product.
Thus, oxygenic photoautotrophs (i.e., cyanobacteria, algae, and plants) support life on Earth with
only sun light energy. However, this process is not risk-free, and every photoautotroph is constantly
exposed to potential photo-oxidative damage.

Oxygenic photosynthesis is achieved through the assimilation of CO2 from the atmosphere
in the Calvin-Benson cycle (dark reaction) and the utilization of light for the production of
nicotinamide adenine dinucleotide phosphate (NADPH) and adenosine triphosphate (ATP) to
meet the demand for CO2 assimilation in the photosynthetic electron transport system (light
reaction). Light energy from the sun is absorbed by pigments, such as chlorophyll (Chl), in light-
harvesting complexes (LHC) around two photosystems (PSII and PSI) on the thylakoid membrane,
and excites the reaction center Chls (P680 and P700 in PSII and PSI, respectively) to drive charge
separation and photosynthetic linear electron flow from PSII to PSI via plastoquinone (PQ) pool,
cytochrome (Cyt) b6/f complex, and plastocyanin (PC) or Cyt c6 (Barber and Andersson, 1994).
On the electron donor side of PSII, photo-oxidized P680 (P680+) oxidizes H2O with O2 evolved
with the help of the oxygen-evolving complex (Nathan and Wolfgang, 2015). On the electron
acceptor side of PSI, NADP+ is reduced to NADPH with electrons from P700 via ferredoxin
(Fd) and Fd-NADP+ reductase (FNR). Photo-oxidized P700 (P700+) is reduced with electrons
from PSII via the Cyt b6/f complex and PC (or Cyt c6) in photosynthetic linear electron flow
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(Jensen et al., 2007). The proton gradient across the thylakoid
membrane (1pH), which is the motive force of the chloroplast
ATP synthase (ATPase), is established at both the steps of H2O
oxidation on the luminal side of PSII and electron transport in
the Q-cycle of the Cytb6f complex (Cramer et al., 2006). NADPH
and ATP produced in the photosynthetic electron transport
system are utilized for driving CO2 assimilation in the Calvin-
Benson cycle (Calvin and Benson, 1948) and are required to
be in concordance. However, dynamic natural environmental
variations can easily unbalance the production and utilization
of NADPH and ATP, resulting in photo-oxidative damage to
photosynthetic cells.

Absorption of light energy exceeding the demand for
photosynthetic CO2 assimilation can cause inactivation of
these photosystems. This light-dependent inactivation of
photosynthesis was first observed in the green alga Chlorella
sp. more than 50 years ago and was termed photoinhibition by
Kok (1956). Based on the characterization of photoinhibition
using isolated thylakoid membranes, it has been separately
recognized as deriving from the inactivation of PSII or PSI
(Satoh, 1970). Photoinhibition of PSII leads to light-dependent
degradation of the reaction center subunit (D1 protein), which
is observed in vivo under various stress conditions, such as high
light, high temperature, and drought. Photoinhibited PSII can
rapidly recover by replacing the degraded D1 protein with a
newly synthesized D1 protein in several hours. The processes
that lead to the photo-oxidative damage of PSII are still under
debate, although numerous studies have provided extensive and
remarkable insights into the mechanisms of PSII photoinhibition
(Krause et al., 1985; Aro et al., 1993; Sundby et al., 1993;
Andersson and Barber, 1996; Neidhardt et al., 1998; Melis, 1999;
Allakhverdiev and Murata, 2004; Hakala et al., 2005; Murata
et al., 2007; Tyystjärvi, 2008; Fischer et al., 2013; Pospíšil, 2016;
Jimbo et al., 2018).

In this review, we concentrate on the photoinhibition of PSI,
which depends on both O2 and electrons produced by PSII
(Satoh, 1970). Compared with studies on PSII photoinhibition,
those on PSI photoinhibition are relatively rare, since it hardly
occurs in vivo, even if oxygenic photoautotrophs are exposed
to a stress treatment with excess light (e.g., continuous light
illumination with high light) (Critchley, 1981; Powles and
Björkman, 1982; Havaux and Eyletters, 1991). Previous studies,
using isolated thylakoid membranes and chloroplasts, have
suggested that PSI photoinhibition is derived from a dysfunction
in the [4Fe–4S] clusters on the acceptor side of PSI (i.e.,
FX, FA, and FB), caused by reactive oxygen species (ROS)
(Satoh, 1970; Inoue et al., 1986). PSI photoinhibition was first
observed in vivo in the intact leaves of the chilling-sensitive plant
Cucumis sativus under chilling stress (Terashima et al., 1994). The
characterization of PSI photoinhibition under such conditions
corroborated previous findings from in vitro studies and worked
toward establishing the present theory of the mechanisms of PSI
photoinhibition (Sonoike, 2011).

On the electron acceptor side of PSI, excess photo-
excitation energy can reduce O2, generating ROS, including
superoxide anion radical (O2

−), hydrogen peroxide (H2O2),
and hydroxyl radical (·OH) (Mehler, 1951; Asada, 2006;

Rutherford et al., 2012). Owing to their high reactivity, ROS can
immediately inactivate PSI (Sonoike, 1996; Sonoike et al., 1997).
In comparison with PSII, the damaged PSI takes a long time
(days or weeks) to completely recover (Kudoh and Sonoike,
2002; Zivcak et al., 2015b). Therefore, PSI photoinhibition is
a lethal event for oxygenic photoautotrophs. That is why PSI
photoinhibition hardly occurs in vivo except for under specific
conditions, such as chilling. The mechanisms of prevention of PSI
photoinhibition had remained unknown for long.

P700 OXIDATION AND ITS
PHYSIOLOGICAL SIGNIFICANCE

The generation of ROS in PSI should be strictly suppressed
for the purpose of preventing PSI photoinhibition in vivo.
Based on the simple concept of oxygenic photosynthesis,
the electron acceptor side of PSI is expected to be over-
reduced when the Calvin-Benson cycle cannot follow the
production of NADPH in the photosynthetic electron transport
system. Nevertheless, PSI is always kept in an oxidized
state in response to situations where the Calvin-Benson
cycle is suppressed, which has been observed using in vivo
spectroscopic measurement techniques for P700+ (Foyer et al.,
1990; Harbinson and Hedley, 1993; Klughammer and Schreiber,
1994; Golding and Johnson, 2003; Miyake et al., 2005). The
universal physiological response of oxygenic photoautotrophs
is termed “P700 oxidation” and refers to the increase in the
ratio of P700+ to the total amount of photo-oxidizable P700.
In comparison with P700, P700+ cannot drive its photo-
oxidation/reduction cycle but directly dissipate the photo-
excitation energy as heat (Nuijs et al., 1986; Trissl, 1997; Bukhov
and Carpentier, 2003). Therefore, P700 oxidation is expected
to be directly linked to the quenching of excess light energy
in PSI.

Recently, the impact of P700 oxidation on the alleviation of
PSI photoinhibition has been demonstrated by a method to easily
and selectively induce PSI photoinhibition in intact plant leaves
at room temperature (Sejima et al., 2014). In the method named
“repetitive short-pulse (SP) illumination (rSP illumination),” SP
light (e.g., 300-1000 ms, 2000-20,000 µmol photons m−2 s−1)
is repetitively applied to plant leaves (e.g., every 10 s) under
darkness. This experimental procedure is similar to continuously
shooting the plants with a camera with a strobe light at night
and can be defined as a severe form of artificial fluctuating light.
This is different to illumination with continuous light; during rSP
illumination, PSI is inactivated significantly faster than PSII in
intact plant leaves, depending on the intensity and length of the
SP light (Sejima et al., 2014; Zivcak et al., 2015b). Eliminating
or limiting O2 suppress the inactivation of PSI, indicating that
PSI photoinhibition during rSP illumination is caused by ROS
(Sejima et al., 2014). This observation corresponds to results
of previous studies on chilling-induced PSI photoinhibition
(Sonoike, 1996; Sonoike et al., 1997). Therefore, rSP illumination
is a useful tool to induce PSI photoinhibition in vivo (Zivcak et al.,
2015a,b; Kono and Terashima, 2016; Takagi et al., 2017b; Mikko
and Steffen, 2018).
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Sejima et al. (2014) have applied rSP illumination to sunflower
leaves under constant actinic light at different intensities,
producing different P700 oxidation levels (Figures 1A,B),
resulting in a linear relationship of P700 oxidation with the
alleviation of PSI photoinhibition (Figure 1C) (Sejima et al.,
2014). The effects of P700 oxidation on the protection of PSI
against photoinhibition is also evidenced by the kinetics of P700+
in response to SP light during rSP illumination. In the intact
leaves of angiosperms, P700 is excited by SP light and is kept
in a reduced state during exposure to SP light (Figure 2A),
which suggests that electron transport in PSI is limited on the
acceptor side, but not on the donor side, during exposure to
SP light. Contrarily, in the presence of a continuously high
intensity background light, P700 is kept in an oxidized state
during exposure to SP light (Figure 2B), which is due to a change
in the limitation step of the electron transport system in PSI from
acceptor to donor sides by P700 oxidation system (described in
the next chapter). Furthermore, the addition of a far-red light
in the background during rSP illumination can also stimulate
P700 oxidation in the SP light to suppress PSI photoinhibition
(Kono et al., 2017), which might suggest that shaded plants in
an understory can efficiently keep P700 oxidized during natural
“sunflecks.”

The impact of P700 oxidation on the alleviation of PSI
photoinhibition has been observed not only during rSP
illumination but also continuous light. In cyanobacteria, the
progenitor of oxygenic photosynthesis, P700, is kept in an
oxidized state in response to a suppression of photosynthesis
under CO2 limitation, similarly to that in intact plant leaves
(Badger and Schreiber, 1993). Shimakawa et al. (2016b) validated
the common response of the redox state of PSI to CO2 limitation
in three different cyanobacteria species, Synechocystis sp. PCC
6803, Synechococcus elongatus PCC 7942, and Synechococcus
sp. PCC 7002 (Figure 3). Among the mutants deficient in
flavodiiron protein (FLV) in each species, only the mutant of
Synechococcus sp. PCC 7002 cannot keep P700 oxidized under
CO2 limitation and suffers from PSI photoinhibition. These
facts led us to suggest that the fate of PSI is determined by
whether P700 can be kept in an oxidized state under excess light
conditions. Furthermore, the inactivation of PSI in the mutant of
Synechococcus sp. PCC 7002 has been observed even in the range
of photon flux density between 200 and 300 µmol photons m−2

s−1 (Shimakawa et al., 2016b), which indicates that PSI has the
potential to generate ROS and suffer from PSI photoinhibition
even under constant light 10 times less intense than sunlight, if
the light exceeds the demand of the electron sinks, such as the
Calvin-Benson cycle. Overall, without P700 oxidation, oxygenic
photoautotrophs would easily suffer from PSI photoinhibition
under natural environmental variation. The diverse strategies to
keep P700 oxidized in these cyanobacteria species are further
discussed at the section “Flavodiiron Protein (FLV)” in the chapter
“Regulatory Mechanisms to Keep P700 in an Oxidized State, P700
Oxidation System.”

Besides being a quencher of light energy to suppress the
generation of ROS in PSI, P700+ is assumed to play other
important roles. For example, the charge recombination of P700+
with the electron acceptors in PSI (e.g., FX) can occur in the range

FIGURE 1 | Relationship of P700 oxidation with the alleviation of the
photo-oxidative damage in PSI during exposure to repetitive short-pulse (rSP)
illumination. The sunflower plant leaves were exposed to rSP illumination
(20,000 µmol photons m−2 s−1, 300 ms, every 10 s) in different light
intensities producing different P700 oxidation levels (A). Residual
photochemical activity of PSI was evaluated as the residual total
photo-oxidizable P700 after rSP illumination for 4 h (B), and the decrease in
the total photo-oxidizable P700 was plotted against the P700 oxidation levels
(C). Data were from Sejima et al. (2014).
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FIGURE 2 | Kinetic model of oxidized P700 during exposure to short pulse
(SP) illumination (2000-20,000 µmol photons m−2 s−1, 1 s) in the leaves of
angiosperms in the absence (A) and presence (B) of background high light.
Black bars, darkness; red bars, high light; orange bars, SP light. Purple and
sky-blue shadings indicate P700 in the reduced and oxidized forms,
respectively.

of the µs- or ms-order half times (Semenov et al., 2000). That
is, P700+ can act as an electron sink to oxidize [4Fe–4S] clusters
on the acceptor side of PSI, which might suppress the generation
of ·OH (Sonoike, 1996). Additionally, P700+ possibly thermally
dissipate excess light energy not only in PSI but also around PSII
via energy transfer mechanisms, including state transition and/or
spillover (Ueno et al., 2018; Yokono and Akimoto, 2018), which
ultimately, also has the potential to alleviate PSII photoinhibition.

REGULATORY MECHANISMS TO KEEP
P700 IN AN OXIDIZED STATE, “P700
OXIDATION SYSTEM”

P700 oxidation is strictly regulated by diverse molecular
mechanisms (collectively termed P700 oxidation system) in
oxygenic photoautotrophs (Figure 4). Importantly, the redox
state of P700 depends on both the electron donor and
acceptor sides of PSI. There are various regulatory mechanisms
functioning on both sides of PSI. P700 oxidation is commonly
observed in oxygenic photoautotrophs in response to excess

light conditions, and the strategies to keep P700 in an oxidized
state are diverse. Many diverse ways to oxidize P700 have
been recognized already in the photosynthetic prokaryote
cyanobacteria (Shimakawa et al., 2016b; Figure 3), which have
supposedly developed and changed during the evolutionary
history of oxygenic photoautotrophs.

Limiting Electron Transport in Cyt b6/f
On the donor side of PSI, the suppression of electron transport
into PSI causes P700 oxidation. Photosynthetic linear electron
flow has been recognized as being limited to the oxidation of
reduced PQ (i.e., plastoquinol, PQH2) in Cyt b6/f without any
specific regulatory mechanisms at moderate lumen pH values
(6.5-7.5). This is based on the understanding that the oxidation
of PQH2 is the slowest step in the photosynthetic electron
transport system, and that the amount of Cyt b6/f is normally
smaller than those of PSII and PSI in plant leaves (Stiehl and
Witt, 1969; Anderson, 1992; Schöttler and Tóth, 2014), which
is supported by a linear relationship between QA reduction and
P700 oxidation (Shimakawa and Miyake, 2018a). The limitation
of electron transport in Cyt b6/f is likely to be a common strategy
to keep P700 in an oxidized state in oxygenic photoautotrophs,
considering the following regulatory mechanisms.

Electron transport in Cyt b6/f is modulated by a regulatory
mechanism, which is believed to be strongly associated with
lumen acidification (Nishio and Whitmarsh, 1993). Lumen
acidification is linked to photosynthetic linear electron flow
since 1pH is provided by both the oxidation of H2O at the
luminal side of PSII and the Q-cycle in Cyt b6/f (Schreiber
and Neubauer, 1990; Avenson et al., 2005). Additionally, cyclic
electron flow around PSI (CEF) can also promote the formation
of 1pH (Nandha et al., 2007). Contrarily, lumen acidification
is stimulated by narrowing the proton efflux in ATPase and
ion channels on the thylakoid membrane (Takizawa et al., 2008;
Armbruster et al., 2014), leading to P700 oxidation for the
alleviation of PSI photoinhibition (Takagi et al., 2017a). These
processes are often considered as photosynthetic control (Foyer
et al., 1990; Schöttler and Tóth, 2014).

Electron transport in Cyt b6/f can be suppressed in response
to not only 1pH but also the reduction in the PQ pool, which
has been recently proposed as reduction-induced suppression
of electron flow (RISE) in cyanobacteria (Shaku et al., 2016;
Shimakawa et al., 2018b). In the Q-cycle (Mitchell, 1966), PQH2
donates one electron to Cyt f through a [2Fe–2S] cluster at Qp
(or Qo) site in Cyt b6/f and the other electron to a PQ at Qn (or
Qi) site in Cyt b6/f. The PQ at the Qn site is reduced with the
second electron originating from PSII. Therefore, a shortage of
PQ can inhibit the operation of the Q-cycle and suppress electron
transport in Cyt b6/f. Unfortunately, the molecular mechanisms
of RISE remain poorly understood and have not yet been properly
characterized. However, suppression of electron transport in Cyt
b6/f is relieved by alternative electron flow mediated by FLV
(Shaku et al., 2016) and exogenously added H2O2 (Shimakawa
et al., 2018b). Here, we use the term “alternative electron flow”
as the electron transport uncoupled with photosynthesis (i.e.,
the Calvin-Benson cycle). In cyanobacteria, FLV mediates the
electron transport to O2 in PSI (Helman et al., 2003) and
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FIGURE 3 | Relationship of P700 oxidation with the alleviation of the photo-oxidative damage in PSI during exposure to constant light. Both wild types and
flavodiiron protein (FLV)-deficient mutants of the three cyanobacteria species grown under high-[CO2] conditions show the different responses of the photosynthetic
electron transport system to the suppression of the Calvin-Benson cycle under CO2 limitation: Synechocystis sp. PCC 6803 expresses FLV2/4 to mediate
O2-dependent alternative electron transport but can keep P700 oxidize even without the FLV-mediated alternative electron sink; Synechococcus elongatus PCC
7942 suppresses photosynthetic linear electron flow and oxidizes P700 regardless of the existence of FLV; and Synechococcus sp. PCC 7002 suppresses
photosynthetic linear electron flow and oxidizes P700 with the FLV-mediated alternative electron sink. Among these cyanobacterial cells, PSI photoinhibition is
observed only in the mutant of Synechococcus sp. PCC 7002 that cannot keep P700 oxidized (Shimakawa et al., 2016b). All arrows indicate electron transport
direction, and suppressed electron transport is represented by dashed arrows.
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FIGURE 4 | Hypothetical model for P700 oxidation system (A) and summary table of the diversity observed in a variety of oxygenic photoautotrophs (B). Pink and
red arrows represent photosynthetic linear and alternative electron transport respectively. Black lines represent various reactions, including oxidation, reduction, and
phosphorylation. Dashed lines indicate suppressed reactions. Each P700 oxidation system is shown in italics. Limiting Cyt b6/f indicates the suppression of electron
transport in Cyt b6/f by lumen acidification and/or reduction-induced suppression of electron flow (RISE). Cox, aa3-type Cyt c oxidase; Cyd, Cyt bd quinol oxidase;
PTOX, plastid terminal oxidase; PCO, photorespiratory carbon oxidation; FLV, flavodiiron protein; PGR5, proton gradient regulation 5; NDH, chloroplast NADPH
dehydrogenase. The mechanisms inducing P700 oxidation by PGR5 and NDH are still controversial. #Basal plants mean liverworts, mosses, ferns, and
gymnosperms. †Secondary algae contain many different groups, including Chlorarachniophyta, Euglenophyta, Cryptophyta, Haptophyta, Heterokontophyta, and
Dinophyta, and we note that the molecular mechanisms for P700 oxidation are still poorly understood in all these groups. The Euglenoid E. gracilis possibly utilize
photorespiration (Yokota and Kitaoka, 1987; Shimakawa et al., 2017b). The dinoflagellate Symbiodinium sp. exceptionally have analogous genes for FLV and present
a large O2-dependent alternative electron sink (Roberty et al., 2014). Micro and macro algae categorized into Cryptophyta, Haptophyta, and Heterokontophyta show
P700 oxidation in response to short-pulse illumination with different dependencies on O2 (Shimakawa et al., 2018a). Generally, Glaucophyta is characterized by the
same definition (Archaeplastida) as Chlorophyta (green algae) and Rhodophyta (red algae), but in this study we do not review P700 oxidation system in Glaucophyta
because of scant existing literature on the subject. But recently, the glaucophyte Cyanophora paradoxa has been reported to develop cyanobacteria-like regulatory
mechanisms of the photosynthetic electron transport system (Misumi and Sonoike, 2017).

exogenously added H2O2 stimulates the electron transport via
peroxidase utilizing the electrons in PSI (Miyake et al., 1991),
both of which theoretically consume the electrons on the acceptor

side of PSI but produce 1pH (Schreiber and Neubauer, 1990).
These facts, the electron transport in Cyt b6/f is modulated by not
only lumen acidification (Trubitsin et al., 2003) but also another
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mechanism sensitive to the reduction of the photosynthetic
electron transport system in cyanobacteria. The effect of RISE
on P700 oxidation is possibly observed also in C3 plants (Takagi
et al., 2016a; Shimakawa and Miyake, 2018a), but further research
is required.

Thylakoid Terminal Oxidases
Terminal oxidases on the thylakoid membrane, including plastid
terminal oxidase (PTOX) and cyanobacterial respiratory terminal
oxidases (Cox, aa3-type Cyt c oxidase; and Cyd, Cyt bd quinol
oxidase), are also defined as a P700 oxidation system, on the
electron donor side of PSI. These oxidases are localized on the
thylakoid membrane and donate electrons from the interchain
of the photosynthetic electron transport system: i.e., PQH2, PC,
and Cyt c6 to O2 (Pils et al., 1997; Joët et al., 2002). Thus,
the electrons on the donor side of PSI can be leaked to O2,
which has an impact on the redox state of P700 during the
transition from dark to light (Bolychevtseva et al., 2015; Feilke
et al., 2016).

Particularly in cyanobacteria, the respiratory electron
transport system shares the same PQ pool with the
photosynthetic electron transport system and can have a
large effect on photosynthesis, compared with photosynthetic
eukaryotes (Shimakawa et al., 2014; Misumi et al., 2016).
Recently, in the cyanobacterium Synechocystis sp. PCC 6803,
both Cox and Cyd have been found to contribute to P700
oxidation and the alleviation of PSI photoinhibition during rSP
illumination (Shimakawa and Miyake, 2018b). Unfortunately,
the electron transport capacities of these terminal oxidases are
yet to be quantitatively determined to be established as a suitable
alternative electron sink for P700 oxidation in the cyanobacterial
cells in vivo (Schuurmans et al., 2015). Oxidation of the PQ
pool by both Cox and Cyd in the darkness is likely to help P700
oxidation to be induced in response to a light illumination.
Further, these respiratory terminal oxidases can pump H+ into
the luminal side of the thylakoid membrane (Paumann et al.,
2005), possibly stimulating the limitation of electron transport in
Cyt b6/f by photosynthetic control.

The chloroplast of photosynthetic eukaryotes harbors PTOX,
a non-heme diiron carboxylate protein showing sequence
similarity to the mitochondrial alternative oxidase, which binds
strongly to the stromal side of the thylakoid membrane and
functions in the process of chlororespiration to oxidize the PQ
pool (McDonald et al., 2011; Johnson and Stepien, 2016). It has
been reported that the alternative electron flux through PTOX
is not functional for the protection of PSII and PSI against
photoinhibition at the steady-state photosynthesis (Rosso et al.,
2006). At least in the mature tissues of plants the amount of
PTOX is 100 times smaller than that of PSII (Lennon et al.,
2003). On the other hand, the recombinant PTOX protein
of rice harbors the enough O2 reducing activity comparable
to photosynthetic linear electron transport (kcat, >20 s−1;
Yu et al., 2014). Additionally, the heterologous expression of
Chlamydomonas reinhardtii PTOX in the tobacco leads to P700
oxidation (Feilke et al., 2016). These facts indicate that PTOX has
the potential to contribute to P700 oxidation for the alleviation
of PSI photoinhibition in photosynthetic eukaryotes in the

situations where the relative amount of PTOX to photosystems
increases (Rumeau et al., 2007).

Photorespiration
On the electron acceptor side of PSI, an alternative electron
sink, uncoupled with photosynthesis, supports P700 oxidation by
relieving limitation of PSI on the acceptor side. Photorespiration
is initiated by the oxygenation reaction of ribulose 1,5-
bisphosphate (RuBP) carboxylase/oxygenase (so-called Rubisco)
with 3-phosphoglycerate and 2-phosphoglycolate produced from
RuBP and CO2 (Berry et al., 1978; Ogren, 1984). In the processes
for regeneration of 3-phosphoglycerate from 2-phosphoglycolate
in photorespiratory carbon oxidation (PCO) cycle, both reduced
Fd and ATP are required. Additionally, both RuBP and CO2
regenerated by photorespiration are utilized again for CO2
assimilation in the Calvin-Benson cycle. That is, photorespiration
can function as an O2-dependent alternative electron sink to
dissipate excess light energy (Powles et al., 1979; Kozaki and
Takeba, 1996; Takahashi et al., 2007). Indeed, photorespiration
functions as the largest alternative electron flow to O2 (Badger
et al., 2000; Ruuska et al., 2000; Driever and Baker, 2011; Sejima
et al., 2016), and is responsible for P700 oxidation and the
protection of PSI against photoinhibition in C3 plant leaves
(Wiese et al., 1998; Takagi et al., 2016a; Wada et al., 2018).

In contrast to C3 plant leaves, photorespiration does not
function as an alternative electron sink for P700 oxidation
in cyanobacteria and algae. Though the genes for PCO cycle
enzymes are commonly conserved in oxygenic photoautotrophs,
a variety of algae, including cyanobacteria, green algae, and
diatoms, show little O2-dependent electron sink capacity derived
from photorespiration, even under CO2 limitation (Bidwell and
McLachlan, 1985; Weger et al., 1989; Hayashi et al., 2014;
Shimakawa et al., 2015, 2016a, 2017b). In aquatic environments
the air-equilibrated O2 concentration is approximately 250 µM
at 25C◦ and the diffusion coefficient of O2 decreases to
approximately 0.01% of that in the atmosphere, which probably
makes it difficult to utilize photorespiration, considering that
the oxygenation reaction of RuBP catalyzed by Rubisco has
significantly low affinity for O2. Despite of the large varieties,
the Km values have been recently reported to be in the
range between 100 and 1600 µM at 25C◦ in diverse oxygenic
photoautotrophs except for the Rubisco of Archaea (Tcherkez,
2016; Orr et al., 2016). As mutants of cyanobacteria and algae
deficient in the genes for the PCO cycle are impaired in their
growth, photorespiration is assumed to play other important
roles, rather than acting as an alternative electron sink in these
photoautotrophs (Eisenhut et al., 2006; Rademacher et al., 2016).
O2-dependent electron transport activity with low affinity is
observed in Euglena gracilis (Euglenophyta) (Shimakawa et al.,
2017b); the secondary alga harboring chloroplasts is believed
to be derived from green algae (Falkowski et al., 2004), which
may suggest that E. gracilis uniquely utilizes photorespiration
as an electron sink (Yokota and Kitaoka, 1987). Interestingly,
photorespiration-derived electron sink comparable to the Calvin-
Benson cycle is observed in liverworts, ferns, gymnosperms, and
angiosperms except for in C4 plants (Hanawa et al., 2017). These
data indicate that photorespiration had started to function as a
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large alternative electron sink since oxygenic photoautotrophs
were first exposed to high partial pressures of O2 in the
atmosphere.

Flavodiiron Protein (FLV)
The protein family of FLV (or FDP) is defined based on
two domains: a diiron center and a flavin mononucleotide-
binding, and reduces O2 and NO directly into H2O and N2O
using coenzymes such as rubredoxin and F420 (Romão et al.,
2016). In addition, FLV in oxygenic photoautotrophs harbors
a unique domain, similar to a flavin:NAD(P)H oxidoreductase,
and therefore has been characterized by an ability to catalyze
the reduction of O2 directly to H2O, with NAD(P)H as the
electron donor (Vicente et al., 2002). The physiological function
of FLV has been well characterized in the cyanobacterium
Synechocystis sp. PCC 6803 in the pioneering work of Helman
et al. (2003). The authors indicate that FLV mediates an O2-
dependent alternative electron flow, probably on the acceptor
side of PSI, and supports P700 oxidation. The electron sink
capacity of FLV-mediated electron transport is evidenced by
both the measurement of 18O2 photoreduction (Helman et al.,
2003; Allahverdiyeva et al., 2013; Burlacot et al., 2018) and the
simultaneous evaluation of O2 evolution with Chl fluorescence
(Shimakawa et al., 2015). On the contrary, the physiological
electron donor for FLV is still unknown. Some recombinant FLV
proteins of the cyanobacterium Synechocystis sp. PCC 6803 show
NAD(P)H-dependent O2 reduction into H2O, but the reduction
rates are more than 100 times smaller than those of anaerobic
bacteria (Vicente et al., 2002; Di Matteo et al., 2008; Shimakawa
et al., 2015). In addition, it has been suggested that FLV interacts
with Fd in Synechocystis sp. PCC 6803 (Hanke et al., 2011). The
molecular mechanisms of FLV still await biochemical validation
in vitro.

The impact of FLV on P700 oxidation is diversified
already in the photosynthetic prokaryote cyanobacteria.
Three cyanobacterial species show the different responses of
the regulation of photosynthetic electron transport to CO2
limitation: Synechocystis sp. PCC 6803 expresses FLV2/4 to
induce the large alternative electron flux to O2 uncoupled with
photosynthesis; Synechococcus elongatus PCC 7942 suppresses
the electron transport in Cyt b6/f ; and Synechococcus sp. PCC
7002 keeps the electron transport capacity with the alternative
electron transport to O2 through FLV1/3 dependent on the CO2
concentration of the growth conditions (Figure 3; Shimakawa
et al., 2016a,b). Among these three cyanobacteria species, only in
Synechococcus sp. PCC 7002 the FLV-knockout mutant suffers
from PSI photoinhibition due to the inability to keep P700
oxidized in the situation where photosynthesis is suppressed
under CO2 limitation (Figure 3; Shimakawa et al., 2016b). That
is, FLV is the dominant regulator for the redox state of P700
in this species. On the other word, the other two species can
keep P700 oxidized even in the absence of FLV by relying on the
other regulatory mechanisms (Figure 3). Unfortunately, it is still
unclear what regulatory mechanisms complement the capacity
for P700 oxidation in the FLV-knockout mutants of these two
species. Shaku et al. (2016) suggests that the limitation of electron
transport in Cyt b6/f by RISE has the large impact on P700

oxidation in Synechococcus elongatus PCC 7942. Additionally,
from the fact that the genes for Cyd are missed in the genome of
Synechococcus sp. PCC 7002, different from the other two species
(Shimakawa et al., 2016b), the terminal oxidase is suggested to be
one possibility to complement P700 oxidation in the absence of
FLV in Synechocystis sp. PCC 6803 and Synechococcus elongatus
PCC 7942 (Shimakawa and Miyake, 2018b).

Among the oxygenic photoautotrophs, the genes for FLV are
conserved in Cyanophyta (cyanobacteria), Chlorophyta (green
algae), Bryophyta (liverworts and mosses), Pteridophyta (ferns),
gymnosperms, and limited secondary algae (e.g., Symbiodinium
sp.), in which P700 is rapidly oxidized in response to light
exposure in the presence of O2 to alleviate PSI photoinhibition
(Allahverdiyeva et al., 2013; Shirao et al., 2013; Roberty et al.,
2014; Gerotto et al., 2016; Shimakawa et al., 2016b, 2017a;
Chaux et al., 2017; Ilík et al., 2017; Noridomi et al., 2017;
Takagi et al., 2017b). Interestingly, angiosperms have lost FLV
at the genetic level (Allahverdiyeva et al., 2015; Yamamoto
et al., 2016; Alboresi et al., 2018). Most importantly, P700
oxidation, but not FLV, is essential for oxygenic photoautotrophs
to protect PSI against photoinhibition (Shimakawa et al., 2016b).
In other words, FLV is not required if P700 can be kept
oxidized in excess light conditions without it. Indeed, wild-type
plant leaves of angiosperms can rapidly induce P700 oxidation
except for during artificial severe stress conditions such as
rSP illumination (Takagi et al., 2017b; Shimakawa and Miyake,
2018a). Additionally, most of the red algae (Rhodophyta) and
secondary algae that have red plastid, including Cryptophyta,
Haptophyta, and Heterokontophyta (diatoms, brown algae, etc.),
can rapidly induce P700 oxidation in response to excess light
and alleviate PSI photoinhibition during rSP illumination in
the absence of FLV (Shimakawa et al., 2018a), implying that
FLV is not completely required for oxygenic photoautotrophs
already at the time that red algae had birthed. It would not
be unexpected for angiosperms to have lost FLV during their
evolutionary history. In these oxygenic photoautotrophs without
FLV, P700 oxidation should be relying mainly on other regulatory
mechanisms as mentioned in this chapter (e.g. limiting electron
transport in Cyt b6/f ).

The requirements of FLV are diverse in a variety of oxygenic
photoautotrophs, likely depending also upon their ecological
niche. The liverwort M. polymorpha preferably utilizes the
alternative electron sink of FLV, but not photorespiration, when it
is submerged (Shimakawa et al., 2017a). Taking the high affinity
of the reaction with O2 (Km, a few or less µM) (Vicente et al.,
2002; Shimakawa et al., 2015) into consideration, FLV probably
provides better benefits than photorespiration under water.
Additionally, the exposure to a far-red light in the terrestrial fields
possibly affect the strategies to utilize FLV in a variety of basal
land plants (Kono et al., 2017).

Proton Gradient Regulation 5 (PGR5)
A number of studies have reported that the 10 kDa thylakoid
membrane-associated protein, called PGR5, is essential to keep
P700 in an oxidized state in green algae and land plants.
A lack of PGR5 creates a profound limitation in PSI on
the electron acceptor side, resulting in PSI photoinhibition
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under excess light conditions (Munekage et al., 2002). Despite
the clear experimental evidence from mutant plants, the
molecular mechanisms of PGR5 for P700 oxidation remain
poorly understood and controversial. Since the protein was first
identified, PGR5 has been proposed to drive CEF together with
PGR5-like 1 protein (i.e., PGRL1) for the alleviation of the
limitation of PSI on the electron acceptor side and for inducing
lumen acidification (Munekage et al., 2002; Yamori and Shikanai,
2016; and references therein). Additionally, a lack of PGR5
impairs the association of FNR with the thylakoid membrane
(Mosebach et al., 2017), indicating that PGR5 possibly affects
photosynthetic linear electron flow (Takagi and Miyake, 2018).
Furthermore, Kanazawa et al. (2017) suggests that PGR5 may
function in adjusting the activity of ATPase rather than driving
CEF, which is supported by the fact that the profiles of the
mutants impaired in ATPase are strikingly similar to those of the
PGR5 mutants (Kanazawa et al., 2017). Overall, the relationship
of PGR5 with the photosynthetic electron transport system
remains controversial.

The impact of PGR5 on P700 oxidation has changed from
cyanobacteria to angiosperms. Although PGR5 is essential for
P700 oxidation in angiosperms (Munekage et al., 2002), a
lack of PGR5 has no effect on cyanobacterial photosynthesis
(Allahverdiyeva et al., 2013). The contribution of PGR5 to
P700 oxidation is observed in the green alga C. reinhardtii
(Mosebach et al., 2017), indicating that a PGR5-dependent
mechanism started to function as a P700 oxidation system after
photosynthetic eukaryotes had evolved.

Chloroplast NADPH Dehydrogenase
(NDH)
Recently, it has been reported that NDH can also function
as a P700 oxidation system under fluctuating light in
C3 plant leaves. During a study using artificial, angularly
incident, fluctuating light, mutants deficient in NDH showed
impaired induction of P700 oxidation in Arabidopsis thaliana
and Oryza sativa (Kono and Terashima, 2016; Yamori
et al., 2016). The impact of NDH on P700 oxidation has
also been tested during studies using sine-like artificial
fluctuating light, named Umibozu, at different frequencies
in A. thaliana, indicating that NDH is required for P700
oxidation only following a rapid change in light intensity
under rapidly fluctuating light (Shimakawa and Miyake,
2018a). In chloroplasts of C3 plant leaves, NDH has effects
on CEF (Shikanai et al., 1998) and chlororespiration
(Sazanov et al., 1998). One hypothesis of the mechanism of
NDH to support P700 oxidation is that NDH-dependent
CEF functions under fluctuating light to produce 1pH,
limiting the electron transport in Cyt b6/f by photosynthetic
control and accelerating the induction of photosynthesis
to relieve the limitation of the electron acceptor side of
PSI (Martin et al., 2015; Ishikawa et al., 2016; Kono and
Terashima, 2016; Yamori et al., 2016). Other is that NDH
contributes to oxidation of the chloroplast NADP+ pool in
the darkness or low light in the process of chlororespiration,
which can support the rapid start of P700 oxidation in

response to the illumination with a fast fluctuating light
(Shimakawa and Miyake, 2018a). Further studies are
required on the detailed mechanisms of P700 oxidation by
NDH.

In cyanobacteria, NDH can have a large effect on the redox
state of both PQ and NADPH pools within cells, compared
with that in plant leaves, because NDH also functions in the
respiratory electron transport system (Mi et al., 2000; Ogawa
et al., 2013). Similar to the case of terminal oxidases, it should be
noted that the effects of NDH on P700 oxidation cannot be easily
compared between cyanobacteria and photosynthetic eukaryotes.

RETHINKING THE MECHANISM OF PSI
PHOTOINHIBITION AND THE DYNAMICS
OF ROS IN PSI

Recent studies have not only supported the hypothetical model
of the mechanisms of PSI photoinhibition, established on the
basis of the experimental findings of a study based on chilling
stress (Sonoike, 2011), but have also provided novel insights into
mechanisms for the generation of ROS in PSI. In this review,
we revisited the hypothetical model of the mechanisms of PSI
photoinhibition and the dynamics of ROS in PSI in oxygenic
photoautotrophs. Originally, in chloroplasts the production of
the ROS O2

− on the electron acceptor side of PSI has been
defined as the Mehler reaction (Mehler, 1951). There are four
electron acceptors for photo-excited P700 in PSI: chlorophyll
A0 (primary acceptor), phylloquinone A1, and [4Fe–4S] clusters
FX and FA/FB. Both phylloquinones exist asymmetrically in the
heterodimeric reaction centers of each of PsaA and PsaB (i.e.,
A0A, A0B, A1A, and A1B) (Joliot and Joliot, 1999). Among these
acceptors, the Mehler reaction has been proposed to mainly
occur at A1B (Kruk et al., 2003) or FX (Takahashi and Asada,
1988), which is supported by the lower midpoint redox potential
(versus NHE) for A1B (−820 mV) and FX (−730 mV) (Brettel
and Leibl, 2001; Kozuleva and Ivanov, 2010) than estimated
(O2/O2

−) in the lipid bilayer (from −500 to −600 mV versus
NHE) (Wardman, 1990).

The increase in the photo-oxidative damage in PSI during
rSP illumination in the range of light intensity for SP light,
from 2000 to 20,000 µmol photons m−2 s−1 (Sejima et al.,
2014), corresponds to the non-light saturation manner of the
production of O2

− at phylloquinones in PSI (Kozuleva et al.,
2014), which implies that O2

− produced by A1B is likely to cause
PSI photoinhibition. The production of O2

− can occur on both
the stromal and luminal sides of PSI (Takahashi and Asada, 1988;
Mubarakshina et al., 2006). O2

− produced during this process
should immediately be disproportionated into H2O2 by the
oxidation of ascorbate and superoxide dismutase in chloroplasts
(Scarpa et al., 1983; Miyake and Asada, 1992). Further, H2O2 can
react with the reduced [4Fe–4S] centers to produce ·OH where
the acceptor side of PSI is reduced (Youngman and Elstner, 1981;
Sonoike et al., 1997). The addition of methyl viologen, which
strongly oxidizes the [4Fe–4S] centers and reduces O2 to O2

−

on the stromal side of PSI, clearly alleviates PSI photoinhibition,
which suggests that the photo-oxidative damage in PSI is caused
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by ·OH produced, depending on the reduced [4Fe–4S] centers
(Sonoike, 1996) and/or ROS generated inside PSI (Takagi et al.,
2016b).

Although all oxygenic photoautotrophs develop a variety of
scavenging enzymes for ROS, including superoxide dismutase,
ascorbate peroxidase, and catalase (Asada, 2006), at least
in a physiological sense, these scavenging enzymes possibly
have no impact on the alleviation of PSI photoinhibition.
Originally, Terashima et al. (1998) has found the slight
accumulation of H2O2 with the lower activity of thylakoid-
bound ascorbate peroxidase in the C3 plant Cucumis sativus
in the transition to chilling stress where PSI photoinhibition
occurs in this plant. Whereas this finding clearly suggests that
the ascorbate peroxidase modulates the H2O2 concentration
in the plant leaves, it is still unclear if the accumulated
H2O2 causes PSI photoinhibition. Overall, the effects of P700
oxidation can be lost in the isolated thylakoid membrane.
Indeed, it has been proposed that the addition of superoxide
dismutase and catalase do not alleviate PSI photoinhibition
during a high light-stress treatment in an isolated PSI
submembrane (Subramanyam et al., 2005). In the cyanobacterial
FLV mutant that cannot keep P700 oxidized under CO2
limitation, PSI photoinhibition is rapidly induced even under
constant light with approximately 200 µmol photons m−2 s−1

(Shimakawa et al., 2016b). In chloroplasts of plant leaves, PSI
photoinhibition is observed during rSP illumination even in
the presence of sufficient activities of superoxide dismutase
and ascorbate peroxidase (Takagi et al., 2016b). These data
clearly suggest that the scavenging enzymes of ROS cannot
prevent PSI photoinhibition. That is, once produced, O2

−

is supposed to immediately attack PSI and/or trigger the
production of ·OH before it is scavenged, which may be
supported by the significantly shorter lives of O2

− (2−4
µs) and ·OH (<1 µs) than that of H2O2 (1 ms; Van
Breusegem et al., 2001). Contrarily, the production and
diffusion of H2O2 can be easily detected in photosynthetic cells
(Michelet et al., 2013; Roach et al., 2015), which is reasonable
considering that H2O2 functions as a signaling molecule in
oxygenic photoautotrophs (Van Breusegem et al., 2001; Gläßer
et al., 2014; Dietz et al., 2016). Overall, we propose that
the production of ROS leading to PSI photoinhibition can
be completely distinguished from those related to dynamic
metabolic and signaling mechanisms. It is possible that the
different production site of O2

− causes the different effects of
ROS on photosynthetic cells (Takagi et al., 2016b). Unfortunately,
identification of the primary site in PSI attacked by ROS
is still controversial (Tjus et al., 1999; Subramanyam et al.,
2005; Takagi et al., 2016b), and more research is needed to
identify the proper dynamics of ROS around PSI in vivo. The
qualitative and quantitative relationships between the production
of ROS and PSI photoinhibition should be addressed in
future.

Besides O2
− and ·OH, singlet O2 (1O2) has been recently

suggested to be generated in PSI and cause PSI photoinhibition.
In the core and LHC complexes associated with PSI, triplet
Chl can produce 1O2 to cause PSI photoinhibition, unless
carotenoids such as β-carotene quench the triplet Chl

(Subramanyam et al., 2005; Cazzaniga et al., 2012, 2016),
which is considered a potential mechanism for alleviating PSI
photoinhibition, in addition to P700 oxidation system. Long-
lived triplet P700 suggests that 1O2 is unlikely to be generated
from triplet P700 (Setif et al., 1981; Rutherford et al., 2012).
Nevertheless, the generation of 1O2 originating from triplet P700
has recently been suggested during rSP illumination (Takagi
et al., 2016b, 2017b). Ultimately, it is difficult to exclude the
possibility that 1O2 has an impact on the photo-oxidative damage
in PSI under severe excess light and in specific mutants.

CONCLUDING REMARKS

Oxygenic photoautotrophs can safely undergo photosynthesis
owing to P700 oxidation system. Despite the current poor
understanding of the mechanisms of PSI photoinhibition, the
effects of P700 oxidation on the alleviation of PSI photoinhibition
discussed herein are likely to be true based on a number
of experimental results (e.g., Figures 1–3). On the contrary,
a recent study has reported an inconsistency between PSI
photoinhibition and P700 oxidation in two different shade-
established tropical tree species (Huang et al., 2015). Indeed, the
degrees of PSI photoinhibition are diverse among a variety of
oxygenic photoautotrophs, regardless of P700 oxidation levels
(Takagi et al., 2017b), which probably reflects the different
levels of robustness of PSI against ROS in each species.
Most importantly, P700 oxidation is not directly linked to
photosynthesis. Nevertheless, it is impossible for oxygenic
photoautotrophs to live without P700 oxidation system because
PSI photoinhibition is the lethal event for them (Shimakawa et al.,
2016b). These facts reflect that all oxygenic photoautotrophs are
confronted with the potential risk of photo-oxidative damage
inevitably accompanied with exposure to light and O2. Diverse
molecular mechanisms, i.e., P700 oxidation system, support
P700 oxidation (Figure 4). On the contrary, almost all the
agents of P700 oxidation system are still not characterized
at the molecular level. There would be various ways to keep
P700 oxidized. Intriguingly, the cyanobacterium Leptolyngbya
sp., the species thriving in the harsh conditions of the desert,
has been suggested to induce P700 oxidation by constricting
the thylakoid lumen to limit diffusion of PC (Bar-Eyal et al.,
2015). Unimaginable diversity of the strategies for P700
oxidation are possibly still unexplored in a variety of oxygenic
photoautotrophs.
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