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The Arabidopsis genome annotation include 11 glyoxalase I (GLXI) genes, all encoding
for protein members of the vicinal oxygen chelate (VOC) superfamily. The biochemical
properties and physiological importance of three Arabidopsis GLXI proteins in the
detoxification of reactive carbonyl species has been recently described. Analyses of
phylogenetic relationships and conserved GLXI binding sites indicate that the other
eight GLXI genes (GLXI-like) do not encode for proteins with GLXI activity. In this
perspective article we analyse the structural features of GLXI and GLXI-like proteins, and
explore splice forms and transcript abundance under abiotic stress conditions. Finally,
we discuss future directions of research on this topic with respect to the substrate
identification of GLXI and GLXI-like proteins and the need of reliable quantitative
measurements of reactive carbonyl species in plant tissues.
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INTRODUCTION

The glyoxalase (GLX) system was biochemically characterized almost 70 years ago Racker (1951)
and is one of the most important lines of defense against glycation in most organisms (Thornalley,
2003; Sousa Silva et al., 2013). The GLX system is a two-step scavenging pathway comprising
two phylogenetically unrelated enzymes ultimately detoxifying the reactive dicarbonyl species
methylglyoxal (MGO). In a preceding step, MGO is scavenged by reduced glutathione (GSH)
forming a hemithioacetal that is the actual substrate for the first reaction catalyzed by GLXI
resulting in S-D-lactoylglutathione. In a second step, S-D-lactoylglutathione is converted into
D-lactate by the action of glyoxalase II (GLXII), thereby releasing GSH. The action of the
GLX system prevents the reaction of free MGO with DNA, lipids, and proteins. MGO reacts
preferentially with arginine or lysine residues and any protein with these residues will be prone to
glycation. The modified molecules, which are hampered in their functionality are generally called
advanced glycation end-products (Sousa Silva et al., 2013).

In Arabidopsis three gene loci encode for active GLXI (Kaur et al., 2013; Jain et al., 2016;
Schmitz et al., 2017). These enzymes belong to the group of VOC family proteins, all featuring
bidentate coordination of a substrate to a divalent metal center through vicinal oxygen atoms as
a common trait (He and Moran, 2011). GLXI use either Ni2+/Mn2+ or Zn2+ for its catalytic
activity. Apart from the already characterized GLXI, the remaining eight Arabidopsis proteins fall
into the category of GLXI proteins (GLXI-like), due to related structural features. This structural
feature, the VOC fold, is determined by two tandem βαβββ modules assigned as single VOC domain
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(cd06587) forming an incompletely closed, 8-stranded β-barrel
containing the catalytic center (He and Moran, 2011).
Intriguingly, GLXI and some other VOC family proteins
like the bleomycin resistance protein assemble the VOC fold
from two monomers exchanging part of their structure to form
an intertwined homodimer by a process called domain swapping
(Dumas et al., 1994; Bennett and Eisenberg, 2004).

HOMOLOGY AND CONSERVED BINDING
MOTIFS IN ARABIDOPSIS GLYOXALASE
I AND GLYOXALASE I-LIKE PROTEINS

Recently, we functionally characterized the predominant GLXI
isoform involved in MGO detoxification in Arabidopsis, the
Zn2+-dependent GLXI;3, as well as the Ni2+-dependent GLXI;1
and GLXI;2 (Schmitz et al., 2017). All three GLXI isoforms
convert MGO and glyoxal using GSH. Analyses of Arabidopsis
loss-of-function lines revealed that elimination of toxic reactive
carbonyl species during germination and seedling establishment
highly depends on the activity of the cytosolic GLXI;3 isoform
(Schmitz et al., 2017).

So far, GLXI-like proteins have not been characterized at the
molecular level. The ectopic expression of a GLXI-like protein
ortholog from Xerophyta humilis (DSI;1; desiccation induced 1)
in Escherichia coli conferred low level of MGO tolerance, leading
to the conclusion that DSI;1 homologs are unlikely to have GLXI
activity (Mulako et al., 2008). The substrate specificities of all
GLXI-like proteins of the VOC superfamily in plants remain
unknown. A simple protein blast search in the reference protein
database shows that GLXI-like proteins from Arabidopsis have no
significant hits (e< 10E−13) in the Animalia, Fungi or Archaean
group, but are broadly distributed and diverged in Bacteria and
Viridiplantae.

Nine of the 11 Arabidopsis genes of the VOC family encode
for single VOC domain proteins, GLXI;3 and all GLXI-like
proteins, with molecular sizes of 13–22 kDa. In contrast,
the two Ni2+-dependent GLXI;1 and GLXI;2 are two-domain
(domain A and B) VOC proteins of 33 kDa. While these two-
domain Ni2+-dependent GLXI fold and function as a monomer,
the one-domain GLXI;3 and GLXI-like proteins are likely to
assemble as homodimers to reconstitute the VOC fold by domain
swapping (He and Moran, 2011; Turra et al., 2015). Multiple
sequence alignments (MSA) as well as comparison of conserved
GLXI binding sites revealed essential differences in amino acid
(aa) composition among the 11 VOC superfamily members.
A MAFFT MSA indicated several indels in either the GLXI
or GLXI-like proteins, where the closest GLXI homolog DSI;1
shares only 25% identical aa positions with the Zn2+-dependent
GLXI;3 in relation to the alignment length (Katoh et al., 2005;
Sela et al., 2015). All other GLXI-like proteins share 17–
21% identity with the predominant Zn2+-dependent GLXI;3
indicating a distant relationship of the VOC family members.
As the MAFFT algorithm failed to align all βαβββ modules
correctly, we tested various alignment programs and found that
PROMALS3D (Pei et al., 2008a) performed best in detecting and
aligning the secondary structure features that are responsible

for the VOC fold (Figure 1A). Based on this MSA, Arabidopsis
GLXI and GLXI-like proteins form three distinct clades in
a phylogenetic analysis (Figure 1B). Clade I is composed of
proteins with proven GLXI activity (Schmitz et al., 2017). Clade
II, and Clade III are composed of GLX-like protein for which
no experimental evidence of their biological function exist and
no close homologs from bacteria have been characterized to
date.

Several studies have identified the aa positions responsible
for either metal ion or substrate binding and hence for the
catalytic activity of the GLXI homologs. In Zn2+-dependent
GLXI the metal ion binding center within a β-barrel is formed
by four essential aa, a glutamine, two glutamic acids, and
a histidine (in Human GLXI: Q34, E100, H127, and E173)
(Cameron et al., 1997). In Ni2+-dependent GLXI the glutamine
is exchanged for a histidine (in E. coli GLXI: H5, E56,
H74, and E122) (He et al., 2000). Even though not the aa
but rather an α-structural component determines GLXI metal
selectivity (Clugston et al., 2004; Suttisansanee et al., 2015),
mutation studies on the ion binding aa clearly confirmed
their importance for the catalytic activity (Ridderstrom et al.,
1998; Frickel et al., 2001). The aa of the ion binding site
are strictly conserved among active Ni2+- or Zn2+-dependent
GLXI proteins but are different within the GLXI-like proteins.
In GLXI-like; 4, 7, 8, 9, and 11 the aa at these specific
positions are all changed to H, H, H, E, suggesting a similar
biochemical property for the GLXI-like proteins of Clade II
(Figures 1B,C).

Two conserved arginine and asparagine residues lying in
close proximity to the catalytic site in the tertiary structure are
responsible for glutathione binding and are highly conserved
among GLXI proteins (in Human GLXI: R38, and N104).
Furthermore, Cameron et al. (1997) postulated five important
conserved aa within a hinge region involved in domain
swapping (in Human HsGLXI: G106, Y115, G118, N119,
and G124). Interestingly, position G106 is conserved in all
GLXI but not in GLXI-like proteins. Actually, the putative
hinge region is quite diverse in all VOC family proteins
and predicted to have a disordered structure explaining
why the other aa Y115, G118, N119, and G124 are not
found at the exact positions within the MSA. Notably,
none of the Arabidopsis GLXI-like proteins have conserved
Zn2+ or Ni2+ ion, and GSH binding sites suggesting
a different biochemical function for the GLXI-like proteins
(Figure 1C).

EXPRESSION AND TRANSCRIPTIONAL
REGULATION OF GLYOXALASE I-LIKE
SPLICE FORMS

Methylglyoxal can be produced in several reactions, such
as lipid peroxidation, oxidation of aa, and the enzymatic
oxidation of ketone bodies, but its main source is the action of
triosephosphate isomerase during glycolysis (Semchyshyn, 2014).
The enediol phosphate intermediate of the isomerisation can
escape from the catalytic center and decompose spontaneously

Frontiers in Plant Science | www.frontiersin.org 2 November 2018 | Volume 9 | Article 1618

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01618 November 9, 2018 Time: 16:46 # 3

Schmitz et al. Role of Glyoxalase I and Glyoxalase I-Like Proteins

FIGURE 1 | Molecular phylogenetic analysis of Arabidopsis GLXI and GLXI-like proteins. (A) Aligned amino acid sequences of GLXI- and GLXI-like proteins.
PROMASL3D alignment was constructed with default settings and displayed with Jalview (Pei et al., 2008b; Waterhouse et al., 2009); non-conserved N and
C-terminal parts are partially masked. highlighted: gray = β-sheet, red = α-helix, and orange = hinge region. (B) Molecular phylogenetic analysis. The evolutionary
history was inferred by using the Maximum Likelihood method based on the best fitting Le_Gascuel_2008 model (Le and Gascuel, 2008). The percentage of trees in

(Continued)
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FIGURE 1 | Continued
which the associated taxa clustered together is shown next to the branches based on 1000 bootstrap replicates. A discrete Gamma distribution was used to model
evolutionary rate differences among sites [5 categories (+G, parameter = 3.4527)]. The rate variation model allowed for some sites to be evolutionarily invariable [(+I),
1.49% sites]. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site (Scale bar). The analysis involved 15 amino acid
sequences. All positions containing gaps and missing data were eliminated. There were a total of 101 positions in the final dataset. Evolutionaryanalyses were
conducted in MEGA7 (Kumar et al., 2016). Percent of identical amino acid positions relative to Arabidopsis GLXI;3 (AtGLXI;3) in relation to the length of a pairwise
alignment are displayed to the right (Id%). (C) Conserved amino acid positions for GLXI function. Amino acid positions involved in ion or glutathione binding were
interfered from the structure-based sequence alignment of Human GLXI (HsGLXI), Escherichia coli (EcGLXI), AtGLXI;3, and compared to the Arabidopsis GLXI-like
proteins.

into inorganic phosphate, and MGO, linking in this way,
central sugar metabolism and MGO formation. In line with
the GLXI function in glycation defense, Arabidopsis GLXI
isoforms are highly expressed in heterotrophic as well as
autotrophic tissues (Figure 2A) and the transcription of the
Ni2+-dependent GLXI;2 shows regulation upon alterations in
cellular sugar levels (Schmitz et al., 2017). In silico analyses of
transcriptional responses of GLX to abiotic stress in Medicago,
Glycine, Arabidopsis, and Oryza consistently indicated that
the expression of GLXI-like homologs is highly modulated
by abiotic stresses, while Ni2+- and Zn2+-dependent GLXI
homologs are expressed at a high constitutive level, and
show no, or low transcriptional regulation under abiotic
stress (Mustafiz et al., 2011; Ghosh and Islam, 2016; Ghosh,
2017).

We stringently re-mapped RNAseq data from Liu et al.
(2012) from leaf, root, flower, and siliques, and discriminated
between the different splice forms of the GLXI-like proteins
in Arabidopsis. We found that only the first of the predicted
splice forms is preferentially transcribed (Figure 2A). GLXI-
like;4 transcripts are highly abundant in roots, GLXI-like;7
is moderately expressed in flowers, and GLXI-like;9, and 11
are expressed in all tissues tested, with higher expression in
leaf. GLXI-like;5, 8, 10, and DSI;1 are extremely low expressed
(FPKM < 5) in all organs tested (Figure 2A). Mulako et al.
(2008) demonstrated that Arabidopsis DSI;1 mRNA transcripts
are found at high levels in mature seeds and are not induced
upon desiccation stress in other vegetative tissues. The analysis
of transcriptional regulation of GLXI, and GLXI-like proteins
in Arabidopsis leaves upon 24 h exposure to different NaCl
concentrations (Shafi et al., 2015) shows that the Ni2+-
dependent GLXI;2 is moderately induced at 100 mM NaCl
(Figure 2B). Among the GLXI-like proteins, the homologs 7,
10, and 11 respond to NaCl stress (Figure 2B). However, the
induction of expression is not correlated with increasing NaCl
concentrations. The analysis of an alternative RNAseq study
on 12-day-old seedlings treated during 24 h with different
stresses (Filichkin et al., 2010), indicates increase of transcript
abundance of the Ni2+-dependent GLXI;1, GLXI;2 and of GLXI-
like;11 under high light. In this study, the Zn2+-dependent
GLXI;3, GLXI-like;4, 7, and 11 show induction by 100 mM
NaCl. This analysis also shows the induction of the Ni2+-
dependent GLXI;2, GLXI-like;4, 7, and 11 by drought stress
(Figure 2C). A directed and elaborate qPCR-based approach
discriminating between the GLXI and GLXI-like gene expression
in correlation with abiotic stresses in different plant tissues
and stages is needed. This will help dissecting the role of

GLXI and GLXI-like proteins in housekeeping and abiotic stress
responses.

FUTURE CHALLENGES AND
PERSPECTIVES

Identification of Glyoxalase I-Like
Substrates
Determination of the substrate specificities is fundamental to
dissect the biological functions and to understand the importance
of the GLXI and GLXI-like proteins. The actual substrate of
GLXI is the hemithioacetal formed by the spontaneous reaction
of MGO and GSH. Alternative substrate activities have been
shown for glyoxal and phenylglyoxal in the presence of GSH
(Vander Jagt et al., 1972; Schmitz et al., 2017). Whether the GLXI-
like proteins utilize GSH is unclear. From our present analysis
we hypothesize that GLXI-like proteins do not use GSH, as the
GSH binding sites are not conserved in these proteins. GLXI
use bivalent metal ions as cofactors, these are important for
the catalytic activity and in the case of Ni2+-dependent GLXI
also for substrate specificity (Schmitz et al., 2017). The specific
aa involved in metal ion binding in the GLXI proteins are not
conserved in GLXI-like proteins, but the majority of the VOC
family members need bound metal ions for their catalytic activity
(Fe2+, Mn2+, Zn2+, Ni2+, or Mg2+) (He and Moran, 2011). It is
tempting to speculate that the GLXI-like proteins convert other
α-keto aldehydes, that might be produced during abiotic stress
without using GSH, as in the case of the VOC family member 4-
hydroxyphenylpyruvate dioxygenase (Moran, 2014). Developing
enzymatic assays with purified proteins for substrate screening
should clarify the role of the still uncharacterized GLXI-like
proteins (Hüdig et al., 2018).

Reliable Measurements of Quantitative
Methylglyoxal Levels in Plants
Unraveling the physiological significance of GLXI and GLXI-like
proteins requires a detailed and precise knowledge of steady state
concentrations of reactive carbonyl species, such as MGO, in
different plant organs and cell compartments under physiological
as well as adverse environmental conditions. Measurement of
MGO is hampered by the high reactivity of this compound,
the need for a derivatization reaction, and its rather low
accumulation levels. Several studies have used different methods
for extraction, derivatization and detection in different plant
species and conditions. This might explain why quantitative
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FIGURE 2 | Transcript abundance of GLXI and GLXI-like splice forms and gene expression under abiotic stress conditions. (A) FPKM (fragments per kilo base of
exon per million fragments mapped) values of GLXI and GLXI-like splice forms in Arabidopsis leaf, root, siliques, and flowers. Raw data was taken from Liu et al.
(2012) (PRJNA168212). (B) GLXI, and GLXI-like transcript abundance in FPKM in 21-days-old Arabidopsis plants after 24 h treatment with 50, 100, and 150 mM
NaCl. Raw data taken from Shafi et al. (2015) (PRJNA217812). (C) GLXI, and GLXI-like transcripts in FPKM in whole 12-days-old Arabidopsis seedlings after 24 h of
abiotic stress exposure. Raw data taken from Filichkin et al. (2010) (SRA009031). Raw data was re-mapped with high stringency to the TAIR 10 annotation as
described in Schmitz et al. (2017).

reports on MGO range between 3 nmol·gFW−1 (Rabbani and
Thornalley, 2014) and 100 µmol·gFW−1 (Yadav et al., 2005a).
Due to its reactive nature, MGO extraction procedures might
impact on the results and lead to an overestimation of the
levels (Sousa Silva et al., 2013; Rabbani and Thornalley, 2014).
Taking into account that triose phosphates and glucose are
the major sources of MGO in physiological metabolism and
that their steady state concentrations in Arabidopsis leaves
are ∼50 nmol·gFW−1 in the case of triose phosphates and
∼1 µmol·gFW−1 in the case of glucose (Arrivault et al., 2009),
free MGO levels far beyond these levels are only possible
with a completely abolished GLXI function. Considering a
steady state MGO concentration of 3 nmol·gFW−1, it can be

deduced that under physiological conditions the GSH:MGO
ratio would be around 100:1 (Krueger et al., 2009; Noctor
et al., 2011). Thus, conditions that induce a depletion of the
GSH pools would imply a fundamental increase in MGO
content.

Each abiotic stress factor, like high light, heat, cold, salt or
drought has particular as well as overlapping effects and will
perturb metabolism by formation of reactive oxygen species,
alteration in osmotic potential or disruption of enzymatic
functions. Thalmann et al. (2016) demonstrated the importance
of starch degradation during the day to regulate osmotic
adjustment and growth upon short term osmotic stress. Hence,
increase in soluble sugar content may also increase steady state
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fluxes through glycolysis and with it MGO formation. Under
abiotic stress conditions other sources of MGO, such as lipid
peroxidation induced by reactive oxygen species, may become
important and would explain the vast number of publications
reporting that overexpression of Zn2+-dependent GLXI or its
expression together with a GLXII can confer tolerance toward
general stresses in plants (Veena et al., 1999; Yadav et al.,
2005b; Gupta et al., 2018). A reproducible and standardized
MGO quantification method as that established by Rabbani and
Thornalley (2014) should be used to determine the in vivo
concentrations of MGO in different stress conditions.

CONCLUDING REMARKS

Even though all GLXI and GLXI-like proteins share the structural
features of VOC superfamily proteins, they belong to three
distinct clades in a phylogenetic analysis. Through analysis
of homology and aa conservation, we found that Arabidopsis
GLXI-like proteins do not have GLXI conserved substrate and
metal binding sites, and in contrast to GLXI proteins their
phylogenetic occurrence seems to be restricted to Bacteria and
the green lineage. GLXI expression is high and rather constitutive

in different plant organs, whereas expression of GLXI-like;4,
7, and 11 mainly respond to abiotic stresses in our analyses.
Quantitative measurements of MGO and other reactive carbonyl
species from different plant tissues, in different physiological
and abiotic stress conditions using loss-of function mutant lines
will support the characterization of GLXI-like proteins and will
pinpoint their physiological significance. It seems plausible that
GLXI-like proteins diverged in plants to fulfill a different function
other than MGO detoxification.
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