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Germany, ° Section of Microbiology, Department of Biology, University of Copenhagen, Copenhagen, Denmark

Apple replant disease (ARD) is a severe problem in apple production worldwide. It
is caused by a complex of soil biota, leading to small discolorated roots, as well as
increased biosynthesis of phytoalexins, total phenolic compounds and antioxidants. We
sampled soil from randomized field plots with either apple trees affected by ARD, which
were five times replanted every second year, or with healthy trees growing in plots, which
had a grass cover during this period. We investigated the contribution of nematodes to
ARD by dissecting the soil biota from plots infested with ARD and non-infested control
plots into a nematode and a microbe fraction. Nematode communities significantly
differed between ARD and control soil as revealed by high-throughput sequencing of
18S rRNA genes. Plant-parasitic nematodes were too low in abundance to explain root
damage, and did not significantly differ between ARD and control soil. Their separate
and synergistic effect on ARD symptoms of susceptible M26 apple rootstocks was
analyzed 4 and 8 weeks after inoculation in three greenhouse experiments. Inoculants
were either nematodes from ARD plots (Narp), Narp plus microbes from ARD plots
(Marp), Narp plus microbes from control plots (Mgon), nematodes from control plots
Ncon Plus Marp, Ncon PlUs Mcon, Marp, OF Mgon, Or non-inoculated control. In all
three experiments, the combination Narp plus Marp had the strongest adverse effect
on the plants, with respect to growth parameters of shoots and roots, total phenolic
compounds and phytoalexins in roots, and antioxidants in leaves. Narp also induced
ARD but less than Narp plus Marp. Narp plus Mcon had delayed effects on the
plants compared to Narp plus Marp, suggesting that detrimental nematode-microbe
interactions built up with time. Effects of Marp of Ncon PlusS Marp were minor or
not distinguishable from those of Mgy Or non-inoculated control. Overall, the source
of the inoculated nematodes -ARD or control soil- and the interaction between ARD
nematodes and microbes were highly significant factors determining ARD. In conclusion,
exploring the associations of nematodes and microbes in ARD soils will give the chance
to unravel the etiology of ARD.

Keywords: apple replant disease, nematodes, phytoalexins, Malus domestica, nematode-microbe interaction,
soil microbiota
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INTRODUCTION

After the repetitive planting of apple on the same site for extended
periods of time, the soil loses its capacity to support plant
growth. Young apple trees planted on these soils exhibit severe
growth reduction (Mai and Abawi, 1981). This problem has been
named apple replant disease (ARD) (Ross and Crowe, 1973).
Symptoms associated with poor tree growth are characterized
by reduced shoot and root growth, smaller leaves, browning
of roots (Mazzola and Manici, 2012), as well as accumulation
of phenolic compounds in roots and antioxidants in leaves
(Henfrey et al, 2015). The poor plant growth is typically
persistent, and the disease does not spread through sites
(Klaus, 1939). The cause of ARD is unclear although numerous
studies have focused on it for decades (Mazzola and Manici,
2012; Winkelmann et al., 2019). The significantly improved
growth of apple plants after soil pasteurization or fumigation
gives substantial evidence that the disease is caused by biotic
factors (Mai and Abawi, 1978; Hoestra, 1994; Yim et al.,
2013).

Nematodes occupy a key position in the soil food web
and are suitable indicators of soil quality (Yeates et al., 1993).
They preferably move toward the root zone for resources.
A few of the plant-parasitic species invade roots resulting
in crop losses, and therefore are well studied (Jones et al.,
2013). In contrast, the interactions of free-living nematodes
including bacteria, fungi and root feeders with plants have
been hardly studied. The interaction of free-living nematodes
and microbes could affect higher organisms as in the case
of the entomopathogenic nematodes. Specific microbiomes
associated with the surface of nematodes were reported, which
were distinct from the microbiomes of the surrounding soil
with respect to most abundant species (Adam et al., 2014;
Elhady et al., 2017). One of the associations of nematodes
with toxin-producing bacteria has been well studied (Riley
and Reardon, 1995). Fungivorous or bacterivorous nematodes
have feeding preferences and may thereby be associated with
specific microbiomes. Specific associations of microbes with
nematodes may also be the basis for the many soilborne
disease complexes comprised of nematodes and microbes
that were reported (Back et al., 2002; Morris et al., 2016).
Root lesion nematodes (Pratylenchus spp.) cause synergistic
damage to diverse apple hosts by acting in combination with
species of Pythium, Phytophthora, Cylindrocarpon, Fusarium,
and Rhizoctonia (Utkhede et al., 1992; Mazzola, 1998; Isutsa
and Merwin, 2014). Cylindrocarpon-like fungi, Rhizoctonia,
Fusarium, as well as the oomycetes Pythium and Phytophthora
frequently coincided with ARD (Mazzola, 1998; Tewoldemedhin
etal., 2011; Manici et al., 2017, 2018). Recently, a shift in the soil
or rhizosphere microbiome was observed in ARD affected soils
compared to healthy soils (Hewavitharana and Mazzola, 2016;
Nicola et al., 2017, 2018) and could be linked to a possible cause
of ARD although it is not clear if the missing or additional taxa
observed in the shift could be the cause of ARD (Jiang et al.,
2017).

The establishment of the pathogenicity of these agents
is, however, not consistent partly because they vary greatly

in their aggressiveness, or biotic and abiotic factors mediate
their functions (Manici et al., 2015). Previous studies have
shown that growth was not affected when single isolates of
Pythium ultimum, or Rhizoctonia solani, nor in combination
with Fusarium solani were inoculated on apple rootstocks
(Mazzola, 1998). Some studies suggested a role of plant-parasitic
nematodes in the disease development citing notably uneven
distribution pattern of Pratylenchus penetrans in apple orchards
(Mai and Abawi, 1978; Jaffee et al., 1982; Mai et al., 1994).
However, the role of plant-parasitic nematodes in the disease
complex varies among regions and in some cases populations
were either below the damage threshold or not observed at
all (Hoestra and Oostenbrink, 1962). None of the above-
mentioned factors were consistently correlated with ARD in
affected orchards, and might just be opportunistic infections
of apple plants that were etiolated by ARD. Indeed, a recent
comprehensive reanalysis of studies on ARD suggested more
complex disease causes than single pathogens and favored a
multifactorial origin of ARD, i.e., the multivariate ecological
ARD hypothesis (Nicola et al, 2018). Evidence points to
a disease complex of soil biota being responsible for ARD
(Tewoldemedhin et al, 2011; Mazzola and Manici, 2012).
Some observations indicated that nematodes are involved
in such a disease complex. Soil treatments that primarily
affect nematodes, as heating to 50°C or Brassica seed meal
amendments reduced disease symptoms of ARD (Mazzola,
1998; Yim et al, 2013, 2016; Hu et al., 2016). However,
these treatments shifted the microbiome structure (Omirou
et al., 2011; Mazzola et al., 2015; Hu et al, 2016), making
conclusions about the contribution of different soil biota to
ARD difficult. Previous research focused on plant-parasitic
nematodes, mainly P. penetrans, while the involvement of free-
living nematodes in ARD has not been investigated, and the
potential contribution of their associated microbiome has been
ignored.

In this study, we extracted and separated the microbial
fraction and the nematode fraction from soil and investigated
their discrete or synergistic effect on ARD development of
susceptible Malling 26 (M26) apple rootstocks. ARD and control
soils were obtained from an experimental field in complete
randomized design. In plots with replanted apple rootstocks,
the plants showed severe ARD symptoms (Mahnkopp et al,
2018). Control soil was obtained from former grass plots
interspersed in the same field, which were planted with apple
rootstocks for the first time. The objectives were to test in
a controlled experimental system, (i) whether the microbial
community from ARD soil induce the disease symptoms of
ARD in roots of apple rootstocks, in contrast to the microbial
community from control soil; (i) whether the nematode
community from ARD soil in conjunction with the microbes
enhances ARD in contrast to nematodes from the control
soil. We compared the species composition of the nematode
communities from ARD and control plots to investigate
whether structural differences coincide with differences in
their contribution to ARD, and to confirm that plant-parasitic
nematodes did not affect the apple rootstocks in our test
system.
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MATERIALS AND METHODS

Soil Sample Collection

Apple replant disease soils were obtained from a field in the
Pinneberg area, Germany (53°41'57.1”"N 9°40'59.4"E). Since
2009, rootstock of the cultivar ‘Bittenfelder Sémling’ was planted
repeatedly in a 2 years cycle resulting in a 5th replanted
generation in 2017 (Mahnkopp et al., 2018). The site had
four plots randomly arranged with plants showing severe ARD
symptoms (referred to as ARD plots). The ARD plots were
interspersed with four plots previously covered with grass that
have been planted with apple rootstocks for the first time
(referred to as control plots). From each ARD and control
plot, soil was sampled around roots of three individual plants
in a zig-zag pattern at a depth of 0-30 cm. Thereby, 24 soil
samples (250 ml each) were collected for the initial assessment
of nematode composition before the incubation studies. The rest
of the soil samples from the ARD or control soils were pooled
together to form composite samples for total soil nematode
and microbiome extraction. These soil samples were gently
sieved through a 5 mm mesh to homogenize the soil and
to remove visible soil organisms, stones, and plant debris.
They were then stored at 4°C for 2 weeks before the pot
experiments.

Soil Nematode and Microbiome

Extraction

Nematodes (plant-parasitic and free-living) were extracted
from 250 ml portions of ARD or control soil by centrifugal
floatation using MgSOy4 at 1.18 specific density (Hooper et al.,
2005). Nematodes were collected on a 20 pum sieve and
thoroughly washed with sterile water. To extract nematodes
from the roots, a modified Baermann funnel technique was
used (Barker, 1985). Roots were carefully washed, cut into
about 1 cm sized pieces, wrapped in a tissue cloth and
spread on a mesh (1 mm aperture). This was then placed
on a Baermann funnel filled with water to about 5 mm
above the mesh. Nematodes were collected from the stem
of the funnel after 2 weeks of incubation. Nematodes were
transferred to a glass beaker and counted on a counting
slide under an Olympus SZX12 stereomicroscope at 40x-80x
magnification (Olympus, Hamburg, Germany) to adjust the
suspension to 100-125 individuals per ml for the inoculation of
pots.

To prepare the microbial inoculants, 100 g of soil was
added to 100 g of 0.5 mm glass beads (Zolla et al, 2013).
This was suspended in 900 ml sterile saline and shaken for
1 hr with an orbital shaker (200 rpm). After settling for
1 h, the supernatant was centrifuged (1000 x g, 5 min)
to pellet soil particles. The resulting supernatant containing
suspended soil microbes was passed through a 5 pum sieve
in order to remove nematodes. Microbes were pelleted at
4000 rpm (3470 x g) for 30 min at 4°C, and resuspended
in sterile tap water for inoculations in pot experiments. Each
plant received 20 ml of microbial suspension, corresponding

to microbes of 10 g of soil, per 1000 ml sterile sand-perlite
mix.

Community Analysis of the Nematode Inocula

Total community DNA from nematodes was extracted using
the FastPrep FP120 bead beating system and FastDNA SPIN
Kit for Soil (MP Biomedicals, Santa Ana, CA, United States)
as described by the manufacturer. The DNA was purified
with  GENECLEAN SPIN Kit (MP Biomedicals) according
to the manufacturer’s instructions. For the nematode species
composition analysis, primers G18S4F and G18S4-22R were
used to amplify approximately 345 bp of the 185 rRNA gene
(Blaxter et al, 1998). PCR of 25 wl contained 2.5 pl of
10x GoTaq buffer (Promega, Mannheim, Germany), 3.75 pl
25 mM MgCly, 2.5 pl 2 mM dNTP (each), 0.5 pl of each
primer (10 uM), 1.25 pl of 2 mg/ml BSA, 2 pl of 50%
acetamid, 0.2 pl 5 U/pnl GoTaq DNA polymerase (Promega),
ca. 2 ng DNA. The following PCR cycler conditions was
used: initial denaturation of 5 min at 94°C, 27 cycles of
(94°C for 45 s; 54°C for 30 s; 72°C for 1 min) and a
final extension of 5 min at 72°C. The resulting PCR product
was purified using High Pure PCR Purification kit (Roche
Diagnostics GmbH) following the manufacturers instruction.
Barcoded amplicon sequencing of the 185 rRNA genes was
done by 2 x 250 bp paired-end high-throughput sequencing
on an Illumina MiSeq platform (Illumina, San Diego, CA,
United States).

Greenhouse Assay

Perlite and sand mix (1:4) was sterilized by autoclaving (20 min
at 121°C, 3 pulses). In vitro propagated, acclimatized apple
M26 rootstocks (14 days old), were received from Dr. Traud
Winkelmann (Leibniz Universitit Hannover, Germany) and
used as susceptible genotypes (Yim et al,, 2013). Plants were
transferred into pots containing 1 1 of the sterile sand-perlite
mix and grown for 7 days before nematodes and/or microbes
were inoculated. Inoculation of nematodes and/or microbes was
done by digging 5 cm deep 1 cm wide holes in 2 cm distance
around the shoot to enable the equal distributing of 40 ml of
nematode suspension and/or 20 ml of microbial suspension. The
fertilizers NPK (+Mg) [15:10:15(+2)] (0.5 g/1) and 36% Calcium
(2g/1) were applied weekly. Plants were watered by hand as
required. The greenhouse conditions were 22 £ 2.5°C, 60 £ 8.7%
relative humidity and a 16 h photoperiod. In each experiment,
pots were placed in a randomized complete block design in the
greenhouse. Pots were sampled 4 and 8 weeks after inoculation.
Shoot length, shoot fresh mass, leaf count, leaf fresh mass, root
fresh mass were determined. Leaf dry mass and root dry mass
were only determined 8 weeks after inoculation. Additionally,
250 mg of fresh leaves or roots were frozen in liquid nitrogen
and subsequently frozen at —80°C for analysis of antioxidant and
total phenolic compounds.

In the first experiment, we investigated whether nematodes
from ARD soil increased disease symptoms of apple plants. For
this purpose, 40 ml of microbial inocula from ARD soil (Marp)
in combination with 20 ml nematode suspension from ARD soil
(Narp) were inoculated in the root zone of potted apple plants.
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Potted plants also received only Marp. Untreated plants, which
were not inoculated, served as control treatments (U). There were
20 replicates per treatment making a total of 40 treated plants and
20 untreated plants.

In the second experiment, we investigated whether Narp
induced stronger disease symptoms than nematodes from control
soil (Ncon). We hypothesized that the Marp affects the plants
more than the microbial community from control soil (Mcon),
and Narp enhance this negative effect more than Ngon. There
were seven treatments in total for this experiment. This included
NARD+MARD> NarRD + Mcon> Ncon + MarD> Ncon + Mcons
MARD> Mcon, and U, with 20 replicates per treatment.

In the third experiment, we tested whether Nagrp alone are
enough to induce ARD symptoms of apple plants. There were
four treatments including Narp, Narp+Marp, Marp and U
with 20 replicates per treatment, making a total of 80 pots. In
addition to the other parameters, phytoalexins in roots were
analyzed.

Analysis of Antioxidants, Total Phenolics,

and Phytoalexins

To determine if Narp+Marp induce physiological plant
response in apple plants, the concentrations of antioxidants in
the leaves and total phenolic and phytoalexin compounds in the
roots were determined as indicators of ARD. To achieve this,
shock-frozen leaf or root (0.25 g) was disrupted and homogenized
using a tissue lyser IT (QIAGEN, Germany). Homogenization was
achieved with a 3 mm glass bead at 30 Hz for 3 min. The milled
samples were taken up with 0.7 ml ice-cold ethanol (99% vol/vol)
and homogenized for 5 min. Cooled samples were centrifuged
(13000 g for 10 min at room temperature). The supernatant was
transferred to a fresh 2 ml microtube and stored at —20°C until
subsequent analysis.

The antioxidant concentration in the leaves was measured
using the ABTS (3-ethyl benzo- thiazoline-6-sulfonate) assay
at 660 nm as described previously (Erel, 2004). Antioxidant
concentration was measured against the standard trolox
(6-Hydroxy-2,5,7,8-tetramethylchromane-2-carboxylic acid)
(Sigma-Aldrich, Germany) and concentrations expressed as
mg Trolox equivalent per mg fresh mass. Total phenolic
concentrations in the roots were measured using the Folin
Ciocalteau reagent at 765 nm using a spectrophotometer
(Ainsworth and Gillespie, 2007). Total phenolic concentration
was calculated against a gallic acid standard and was expressed
in mg gallic acid equivalents per g fresh mass. Analysis of
phytoalexins was carried out by a gas chromatography-mass
spectrophotometry as described previously (Hiittner et al., 2010).

Data Analysis

The 18S rRNA sequence demultiplexing was done using
the MiSeq Controller Software and diversity spacers were
trimmed using Biopieces'. Overlapping regions within paired-
end reads were aligned to generate “contigs” and primers
removed from both ends of the sequences by PANDAseq
using default settings (Masella et al, 2012). Taxonomic

Lwww.biopieces.org

affiliations were assigned by BlastN against the Silva SSU
128 database (Quast et al., 2013). De-replication, singleton
removal and clustering of sequences to operational taxonomic
units (OTUs, >99% similarity) were performed using BLAST
Parser (Antweiler et al., 2017) implemented in a Galaxy
workflow (Cock et al., 2013). The multivariate analyses on the
OTU abundance table were carried out with the R software
version R3.1.3* with the packages vegan (Oksanen et al,
2015), EdgeR (Robinson et al., 2010), and LabDSV (Roberts,
2016). Significance of differences in nematode communities
were tested by PERMANOVA (Anderson, 2001) based on
Bray-Curtis dissimilarities using 10,000 permutations. Nematode
community composition was visualized on untransformed data
by non-metric multi-dimensional scaling (NMDS) 20 to 100
times randomly computed based on Bray-Curtis similarities
using default settings (McCune et al., 2002). To test for
significantly different abundant OTUs (likelihood ratio test under
negative binomial distribution and generalized linear models,
false discovery rate -corrected P < 0.05) between ARD and
control plots, normalization of read count data was performed
as recommended by the developers (EdgeR) and only OTUs
present in at least three samples were considered. Statistical
analysis of variance using generalized linear models and principal
component analysis were done using SAS 9.4 (SAS Institute Inc.,
Cary, NC, United States).

RESULTS

Nematode Inoculants From ARD and
Control Soil Differ in Species

Composition

Before the start of our experiment, we investigated the nematode
species composition from the five-time apple replanted field
plots with high disease incidence (ARD) and compared it to
the uncultivated grass plots (control) that were planted with
apple for the first time. Twelve soil samples from four blocks
each were taken from the ARD plots or control plots. The 18S
rRNA gene amplicon sequence data revealed that the nematode
species composition in the two soils was significantly different
(PERMANOVA; P < 0.001). Nematode communities from ARD
plots clearly clustered apart from controls in the NMDS plot
(Figure 1). We identified the nematodes that were enriched in
response to ARD at least to the genus level. Some nematode
species were significantly sensitive to ARD (false discovery rate
<0.05) (Supplementary Table S3). The genera Acrobeloides and
Cephalenchus showed a significant increase in abundance in ARD
plots. Steinernema was largely overrepresented in control plots.
Notably, the abundance of the plant parasitic nematodes was
not significantly different between ARD and control plots. Also
the relative abundance of the root-lesion nematode P. penetrans
in the two soils was not significantly different. Extraction of
nematodes from the roots of the diseased apple plants did not
yield any endogenous P. penetrans. The typical symptoms, which
include root lesions or lack of feeder roots, were not observed

Zhttps://www.r-project.org/
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FIGURE 1 | Non-metric multidimensional scaling (NMDS) based on
Bray-Curtis similarities of nematode community structures from field plots
replanted five times with apple or virgin control plots planted one time with
apple, analyzed by high-throughput 18S rDNA amplicon sequencing from total
nematode community DNA. PERMANOVA revealed a significant difference in
the overall nematode community structure between ARD and control soils

(P < 0.001, Stress = 0.246). The site had four plots per treatment randomly
arranged. From each plot, soil was sampled around roots of three individual
plants for extraction of nematodes to obtain total community DNA. Labels: site
Heidgraben (H), replanted apple plot (A_8) or new apple plot (An_1), replicate
plot (a, b, ¢, and d), soil subsample from individual root system (1, 2, and 3).

with the diseased roots. Supplementary Table S4 provides the
total nematode species composition used as inoculants in our
experiments.

Nematodes From ARD Soil Increased
Disease Symptoms of Apple Plants

In the first experiment, we investigated whether the microbial
community from ARD soil (Marp) impaired growth of apple
plants in our system, and whether nematodes from ARD soil
(Narp) added to this effect. Soil microbiota was extracted
from soil of five times replanted field plots, where apple plants
showed severe ARD symptoms. Nematodes were removed from
the microbial suspension by sieving (<5 pm). The nematode
fraction was obtained by floatation on a dense MgCl, solution
and sieving (>20 pm). Apple rootstocks growing in a sterile
pot system were inoculated with Marp or Narp+Marp, or
left untreated. Plants were sampled after 4 and 8 weeks. All
treatments differed significantly among each other in their effect
on plant growth, as revealed by MANOVA of shoot length,
shoot weight, leaf number, leaf weight, and root weight. In a
principal component analysis of these plant growth parameters
8 weeks after inoculation, the first two principal components,

(%1'91) 20d
>
°

° ® NaroMaro

PC1 (76.3%) AU

FIGURE 2 | Apple plant growth affected by nematodes from ARD plots (Narp)
and microbes from ARD plots (Magp), in comparison to the non-inoculated
control (U). The first two principal components (PC1 and PC2) extracted from
the parameters root weight, shoot weight, shoot length, weight of leaves, and
number of leaves as determined 8 weeks after inoculation were plotted (the
percentage of variance explained by PC1 and PC2 is shown in brackets).

which explained together 92% of the variance, clustered plants
according to the treatment (Figure 2). Root systems from
treatments Marp and Narp+Marp were reduced in volume
compared to untreated plants and had the brown spots typical
for ARD (Figure 3). Root lesions, leaf spots, necrosis, lack of
feeder roots or other signs of pathogen attack were not observed.
In addition, nematode extraction from roots did not reveal
any endoparasitic nematodes. The root weight of Marp treated
plants was significantly reduced compared to untreated plants,
suggesting that the microbes induced symptoms of ARD in
our system (Figure 4). The addition of nematodes significantly
enhanced these effects. Shoot length of the MaArp+Narp treated
plants was reduced 4 and 8 weeks after inoculation compared to
plants inoculated with Magrp only, leaf and root dry weight after
8 weeks (Supplementary Table S1). Affected plants had more and
smaller leaves.

The concentrations of total phenolic compounds in the roots
and antioxidants in the leaves were determined as indicators of
the physiological response to ARD. Four and eight weeks after
inoculation, plants challenged by Narp+Marp accumulated
significantly higher concentrations of phenolics and antioxidants
compared to plants inoculated with Marp only, or non-
inoculated controls (Figure 5). The treatment with microbes
alone did not increase the stress indicators compared to the
non-inoculated control.

Nematodes From ARD Soil Induced
Stronger Disease Symptoms Than

Nematodes From Control Soil

At the sampled field site, plots with replanted apple plants
were interspersed with control plots covered with grass. In the
second experiment, we compared the effects of combinations of
nematodes and microbes from ARD plots and control plots on
apple plants. We hypothesized that the microbial community
from ARD soil (Magrp) affects the plants more than the microbial
community from control soil (Mcen), and that nematodes
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FIGURE 3 | Roots of apple rootstocks that were affected by microbes extracted from ARD soil (Marp), or Marp in combination with nematodes extracted from ARD

soil (Narp+Marp) compared to roots of the non-inoculated control (U).

from ARD soil (NaArp) enhance this negative effect more than
the nematodes from control soil (Ncop). Principal component
analysis of the plant growth parameters 8 weeks after inoculation
revealed a cluster of the two treatments with Narp and a cluster
of the treatments without Narp (Figure 6). Treatments were
mainly separated on PC1 that explained 90% of the variance. The
origin of the inoculated nematodes from ARD or control plots
had a significant effect on plant growth, while an effect of the
different soil microbiomes was not detectable (Table 1). When
comparing the inoculated treatments that did not receive Nagrp,
then neither the origin of the microbiomes was a significant
factor nor did the inoculation of nematodes from control plots
significantly affect plant growth (Table 1). The non-inoculated
control was excluded from these analyses because the variation
of plant growth within this treatment was much higher than for
the other treatments.

Four weeks after inoculation, plants inoculated with Narp
already showed a trend for reduced growth, which became
significant 8 weeks after inoculation for aboveground parts
(Supplementary Table S2). Roots of Nagrp treated plants were
clearly affected. The root weight was significantly reduced
compared to treatments with only Marp, Mcon, Or non-
inoculated, while the reduction compared to treatments with
Ncon was statistically not significant due to high variation among
replicates. Plants inoculated with nematodes from control plots
(Ncon+MarD> Ncon+Mcon) did not significantly differ in plant
growth compared to treatments without nematodes (Marp,
Mcon, or non-inoculated control). The concentrations of total
phenolic compounds in roots and antioxidants in leaves were
highest in plants challenged with nematodes from ARD soil,
i.e., treatments Narp+Marp and Narp+Mcon (Figure 7). The
added microbes from ARD soil significantly enhanced the effect
of Narp on total phenolics compared to added microbes from
control soil already after 4 weeks, and antioxidants followed
this trend. Eight weeks after inoculation, both treatments
Narp+Marp and Narp+Mcon became more similar, and
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FIGURE 4 | Root dry mass of apple rootstocks in response to inocula of
nematodes plus microbes from ARD soil (Narp+Magp), or only microbes
(Marp), in comparison to the non-inoculated control (U). Root dry mass was
determined 8 weeks after inoculation. Nematodes and microbes were from
soil of an apple orchard where the plants were highly affected by apple replant
disease. Mean + SD (n = 6), different letters indicate significant differences
revealed by Tukey’s test.

significantly differed in total phenolics from all other treatments
without Nagrp. Overall, the factors nematodes (from ARD or
control) and microbes (from ARD or control) both showed a
significant effect on total phenolic compounds and antioxidants
when applying generalized linear models (P < 0.0001 and
P =0.0003, respectively).

Nematodes From ARD Soil Alone
Induced Disease Symptoms of Apple

Plants
The previous experiments suggested that the nematodes play a
pivotal role in the disease complex. In the third experiment,
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FIGURE 5 | Physiological response of apple rootstocks to inocula of
nematodes plus microbes from ARD soil (Narp+Marp), or only microbes
(Marp), in comparison to the non-inoculated control (U). Mean + SD of
concentrations of antioxidant compounds in leaves (upper panel, n = 10), and
of total phenolic compounds in roots (lower panel, n = 6) are shown. Different
letters indicate significant differences revealed by Tukey'’s test.
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FIGURE 6 | Apple plant growth affected by nematodes from ARD plots (Narp)
or control plots (Ngon), @and microbes from ARD plots (Magp) or control plots
(Mcon), and non-inoculated control (U). The first two principal components
extracted from the parameters root weight, shoot weight, shoot length, weight
of leaves, and number of leaves 8 weeks after inoculation were plotted (PC1
and PC2 with the explained percentage of variance, respectively).

we tested whether Narp alone are enough to induce ARD
symptoms of apple rootstocks. We compared the effect of Narp
on plant growth and stress response to those of Narp+MAaRD,

Marp, and non-inoculated control. Notably, Narp included
the microbiomes associated with the bodies of the nematodes.
Principal component analysis of the plant growth parameters
8 weeks after inoculation revealed a cluster of the two treatments
with Narp and a cluster of the treatments without Narp
(Figure 8). Treatments were mainly separated on PC1 that
explained 87% of the variance. In a generalized linear model
analysis, inoculation of nematodes from ARD had a significant
effect on PC1 (P < 0.0001), but also the effect of the microbes
was significant (P = 0.049). The non-inoculated control was
excluded from this analysis because the variation of plant growth
was much higher than within the other treatments. Length and
weight of shoots, number and weight of leaves, and weight of
roots did not significantly differ among plants of treatments
Narp+Marp and Nagrp, neither 4 nor 8 weeks after inoculation
(Table 2). After 8 weeks, plants inoculated with Narp+Marp
or Narp significantly differed to both treatments Marp and
non-inoculated control in all analyzed plant parameters. Non-
inoculated plants had greater weights of stems, leaves and roots
after 4 weeks, which was not significant anymore but still a trend
after 8 weeks.

Concentrations of phenolic compounds in roots were
significantly higher in plants treated with the combination of
Narp+Marp compared to that of single inoculations of Narp
or Marp, and compared to that of non-inoculated plants, 4
and 8 weeks after inoculation (Figure 9). Roots inoculated with
only Napp produced significantly more phenolic compounds
than the non-inoculated control. In contrast, roots inoculated
with only Marp did not significantly differ from the non-
inoculated control, and they showed only 4 weeks but not
8 weeks after inoculation a trend for higher concentrations
of total phenolics. For all treatments, lower concentrations of
phenolic compounds were detected at the later sampling in this
experiment. Determination of phytoalexins in roots 8 weeks
after inoculation confirmed a significantly stronger defense
response of the plants to Narp+Marp compared to Narp or
Marp alone, or compared to non-inoculated plants (Figure 10).
Roots inoculated with only Narp produced significantly more
phytoalexins than the non-inoculated control. In contrast, roots
inoculated with only Magrp did not significantly differ from
the non-inoculated control. The ARD-responsive phytoalexins
noraucuparin and noreriobofuran as well as hydroxyeriobofuran
and  3,9-dimethoxy-2,4-dihydroxydibenzofuran =~ were only
detected in the two treatments with inoculated nematodes from
ARD soil. Aucuparin was detected in five samples of these
treatments but only in one sample of the treatment with only
Marp. The intermediate 2-hydroxy-4-methoxydibenzofuran of
the biosynthetic pathway of phytoalexins in apple plants was
detected in all treatments, and this was the only compound
detected in the non-inoculated control.

DISCUSSION

A yet unknown complex of soil biota causes ARD (Winkelmann
et al., 2019). We investigated the contribution of nematodes
to ARD by dissecting the soil biota from soil infested with
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TABLE 1 | Analysis of variance of plant growth parameters as represented by the first principal component (PC1) as affected by the soil from which inoculated
nematodes or microbes originated.

Analyzed levels of class variables (source of nematodes/microbes)

Effect on dependent
variable PC1

Nematodes: ARD, control Microbes: ARD,
control Treatments included?: Narp+Magp,
Narp+Mcon; Ncon+Marp; Ncon+Mcon

Nematodes: control, non-inoculated Microbes:
ARD, control Treatments included?:
Ncon+Marp; Marp; Ncon+Mcons Mcon

Source of nematodes P < 0.0001 P =0.89
Source of microbes P =0.38 P =0.80
Interaction P =0.69 P =0.57

93% variance in PC1

75% variance in PC1

@lnoculants: Narp, nematodes from plots with apple replant disease (ARD) causing soil; Ncon, nematodes from control plots; Marp, microbes from ARD plots; Mcon,

microbes from control plots.
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FIGURE 7 | Total phenolic compounds in roots (upper panel) and antioxidants in leaves (lower panel) of apple rootstocks after inoculation with nematodes (N) and/or
microbes (M) from replanted soil (ARD) or control plots (Con), 4 and 8 weeks after inoculation. Mean + SD (n = 10), different letters indicate significant differences
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ARD and non-infested control soil into nematode and microbe
fractions, and challenging susceptible M26 apple plants with
combinations of these fractions. We investigated whether the
microbial community from ARD soil impaired growth of apple
plants, and whether nematodes from ARD or control soil added
to this effect in a sterile substrate system. We could show in
our system that the soil decline leading to symptoms of ARD
in apple plants is enhanced by nematodes extracted from the
ARD affected soil. Nematodes from ARD soil were required for
induction of severe ARD. The microbes synergistically enhanced

ARD together with these nematodes. In contrast, microbes alone
or nematodes from control soil did not cause such an effect,
although ARD microbes when compared to the untreated control
significantly impaired apple plant growth.

In this study, differences in species composition between ARD
and control soils has been shown, thus giving an indication
that the nematode communities associated with the soil decline
syndrome leading to ARD may be unique and could be
explored further. The highest population of nematodes in the
ARD soil were free-living. Probably the shift in nematode
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FIGURE 8 | Apple plant growth affected by nematodes from ARD plots (Narp)
alone, or in combination with microbes from ARD plots (Narp+Magp,) or only
microbes from ARD plots (Marp), and non-inoculated control (U). The first two
principal components extracted from the parameters root weight, shoot
weight, shoot length, weight of leaves, and number of leaves 8 weeks after
inoculation were plotted (PC1 and PC2 with the explained percentage of
variance, respectively).

community structure in addition to the enrichment of the free-
living taxa Acrobeloides and Cephalenchus could explain the
role of non-parasitic nematodes in ARD. Acrobeloides is a non-
pathogenic bacterivore which is abundant in agricultural soils
and associated with a diverse set of microbes (Baquiran et al.,
2013). Cephalenchus was reported to feed on root cells but is
not regarded to cause plant damage (Sutherland, 1967; Siddiqi,
2000). Entomopathogenic Steinernema were strongly enriched in
the control plots. These are, together with their symbiont bacteria
Xenorhabdus, obligate and lethal parasites of insects. The effect is
probably rather related to the legacy of insects associated with the
previous grown grass, than to a protective effect against ARD. The
role of free-living nematodes in disease complexes is most often
neglected partly because they are bio-indicators for soil health
(Mekonen et al.,, 2017), or because of the overwhelming damage
caused by plant parasitic nematodes in general (Jones et al., 2013),
which masks their potential effects.

Microscopic inspection of ARD affected roots coupled with
molecular approaches revealed that plant-parasitic nematodes
were very low in abundance and did not differ significantly

between ARD and control soils. We could not detect P. penetrans
in the diseased roots and the peculiar symptoms of root lesions
and lack of feeder roots associated with these nematodes were not
observed. These findings support evidence reported by Manici
et al. (2018) that plant-parasitic nematodes including the root
lesion nematodes do not cause the disease. In their studies using
three affected orchard soils, they could not recover any plant-
parasitic nematodes from the roots of the affected apple plants.
Although Manici et al. (2013) previously reported the presence of
root lesion nematodes in affected roots, the low frequency of these
nematodes did not give evidence for a contribution to growth
reduction in apple.

In our system, typical symptoms associated with ARD,
which included stunted growth and reduced root systems were
enhanced upon the addition of nematodes extracted from ARD
soil to microbes extracted from ARD soil. We could show that
nematodes extracted from ARD soil when added to microbes
regardless of their origin affected plant growth more severely
than treatments without ARD nematodes. The nematodes from
ARD soil alone (with the microbiome associated with their

51T a 4 weeks 8 weeks

E a

% o b be

£

E .

z c

=

E 3 T b ¢

g e - c
2 ba i

3 é
O

2.
NAI’{I)+ NA‘RI) M/;RI) ':J NA;{I)+ NAIRI) M/;I{l) ll]
Mrp Mrp
Source of inoculum

FIGURE 9 | Total phenolic compounds in roots of apple rootstocks 4 or
8 weeks after inoculation with the nematodes and microbes from ARD soil
(Narp+Marp), only nematodes from ARD soil (Narp), or only microbes from
ARD soil (Marp), @and non-inoculated control (U). Mean + SD (n = 10), different
letters indicate significant differences revealed by Tukey'’s test.

TABLE 2 | Vegetative growth of apple rootstocks in pots inoculated with only nematodes from ARD soil (Narp) or in combination with microbes from ARD plots
(Narp+Maprp,) or only microbes from ARD plots (Magrp), and non-inoculated control (U).

Inoculants Weeks after inoculation Shoot length [cm] Shoot FM [g] Leaf count Leaf FM [g] Root FM [g]
Narp+Marp 4 50+ 1.3a 2.0 +0.58a 15+22 1.5+ 0.2a 3.6+ 1.3a
8 12.4 £ 2.9a 45+ 0.5a 20 + 2.5a 3.2+0.7a 4.6 + 0.5a
NARD 4 5.5+ 0.9a 21 +0.3a 15+ 1.8a 1.4 +0.1a 35+0.7a
8 10.8 + 1.5a 4.4 + 0.6a 18 £ 2.4a 3.0 £0.5a 4.4 +1.0a
Marp 4 10.2 4+ 0.2b 3.4+ 0.4b 19+ 1.7b 2.2+ 0.3a 4.8 +1.4a
8 182+ 29b 6.6 + 1.4b 24 +£1.6b 4.7 +0.7b 6.1 +£0.6b
Non-inoculated 4 10.5 £ 2.5b 4.3 + 0.6¢ 21 £+ 4.6b 3.4 +1.2b 6.6 +£1.1b
8 18.8 +£5.8b 7.0+ 1.4b 24 +£2.2b 5.1+ 0.6b 6.7 +0.9b

Mean + SD (n = 10), different letters indicate significant differences revealed by Tukey's test.
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FIGURE 10 | Phytoalexins in roots of apple rootstocks 8 weeks after
inoculation with the nematodes and microbes from ARD soil (Narp+Marp),
only nematodes from ARD soil (Narp), or only microbes from ARD soil (Marp),
and non-inoculated control (U). Mean and SE of log-transformed
concentrations (ppm); different letters indicate significant differences revealed
by Tukey’s test (n = 10) applied to the first principal component from analysis
of phytoalexins. The first principle component explained 72.3% of the
variance. Compounds that were detected in less than eight samples were
omitted from the analysis. Compound retention index (RI) 2131:
2-hydroxy-4-methoxydibenzofuran; 2121: noraucuparin; 2259:
noreriobofuran; 2289: isomer of noreriobofuran; 2331: hydroxyeriobofuran;
2479: 3,9-dimethoxy-2,4-dihydroxydibenzofuran; 2284: unknown (MW 404);
2377: hydroxynoreriobofuran.

bodies or guts) also had significant effects on the plants but
less pronounced. Our hypothesis that the addition of ARD
nematodes to ARD microbes enhances the disease symptoms
is supported by evidence that nematicidal treatments of ARD
soil by the moderate heat of 50°C or biofumigation alleviated
ARD (Yim et al,, 2013, 2016). Harsh treatments like Basamid
or heating at 100°C, which targets also microbes, even further
reduced ARD symptoms (Yim et al., 2013). Nematodes from
the control soil in combination with microbes, either from ARD
or control soil, did not induce ARD symptoms. This is in
agreement with the observed difference in the nematode species
composition between the ARD and control soil, with specific taxa
being significantly enriched in the ARD soil. However, further
experiments are needed to find out which of the nematode
species are involved in the interaction with microbes that leads
to the reaction of the roots. The progress or induction of ARD
when ARD nematodes were added to ARD microbes started
4 weeks after inoculation and was more evident after 8 weeks of
inoculation when ARD nematodes were added to microbes from
the control soil. Plants at this later stage were severely affected
showing stunted growth. The reduced root systems were brittle
and easily break. Mazzola and Manici (2012) observed that ARD
symptoms are visible 1-3 months after planting in the field while
in a controlled sterile environment, as in our system, symptoms
are already visible 2-5 weeks after inoculation. Our studies clearly
fit these observations and explain why evident symptoms of the
disease start after 4 weeks of inoculation. Depressed plant growth
as a result of the addition of ARD nematodes to microbes (ARD
or control) manifested in the physiological response of the plant.
Plants exposed to ARD nematodes and microbe combinations
did not only react with strong growth depression but also with

a stress response. It has been previously established that apple
plants showing severe growth depression accumulated stress-
related compounds or secondary metabolites compared to non-
diseased plants (Henfrey et al., 2015). Antioxidants, phytoalexins
and phenolic compounds are enhanced in ARD affected roots
(Manici et al., 2013; Franke-Whittle et al., 2015) and considerable
concentrations of some phenolic compounds have been observed
in affected soils as well (Yin et al., 2016). We could show similar
effects as ARD nematodes in combination with microbes induced
higher concentrations of phenolic compounds than either ARD
nematodes or microbes alone. The significant accumulation of
stress-related compounds such as phenolics in roots suggests
an ongoing defense mechanism within the root (Matern and
Grimmig, 1994). Progressively, nematodes alone (with associated
microbiome) induced ARD as indicated by the significantly
higher concentrations of phenolic compounds compared with
non-inoculated control or only ARD microbes. Additionally,
plants inoculated with ARD nematodes in combination with
ARD microbes produced more phytoalexins compared to only
ARD nematodes, microbes or the non-inoculated control. This
is consistent with findings of Ahuja et al. (2012) stating that,
for ARD affected plants in order to deal with stress imposed by
ARD causal agents (Mazzola and Manici, 2012), plants produce
high amounts of phytoalexins. The responsive phytoalexins
noraucuparin and noreriobofuran as well as hydroxyeriobofuran
and 3,9-dimethoxy-2,4-dihydroxydibenzofuran were found in
the ARD nematode or with ARD microbe treatments. This
supports findings of Weifl et al. (2017) that biotic stress inducing
ARD leads to high amounts of phytoalexins in affected roots.

For the first time, the importance of the free-living nematodes
and their synergy with soil microbes to induce ARD has
been shown in this study. Many disease complexes as a result
of nematode-microbe interactions have been reported that
focus only on plant-parasitic nematodes (Powell, 1971; Back
et al.,, 2002; Morris et al., 2016). The pathogenicity of bacteria
(Bacillus subtilis), fungi (Penicillium janthinellum, Constantinella
terrestris, and Trichoderma) or nematodes (P. penetrans) were
tested separately or in combinations (Utkhede et al., 1992).
They could show that P. penetrans alone induced symptoms
similar to ARD in apple plants, although in combination with
bacteria and/or with fungi the disease was equally induced.
In a separate experiment nematodes or microorganisms were
recovered from ARD soil or symptomatic apple plants and
were assessed for pathogenicity (Mazzola, 1998). Multiple species
of the genera Rhizoctonia, Cylindrocarpon (or the related
genus Ilyonectria), and oomycetes (Pythium, Phytophthora)
were most often associated with ARD. The study also
noted that the cited pathogens acted in combination with
the lesion nematode P. penetrans to enhance the disease
severity. The genus Pythium, Cylindrocarpon-like species,
Rhizoctonia and Fusarium most consistently coincided with
symptoms of ARD (Manici et al, 2013; Franke-Whittle
et al, 2015). This was interpreted in a way that multiple
biological agents including nematodes are responsible for ARD
(Tewoldemedhin et al., 2011). In consequence, many different
pathogens would cause the same symptoms. However, a more
parsimonious explanation was that secondary infections of ARD
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affected roots were observed in these studies, and that an
interaction involving two or more soil biota and potentially also
abiotic factors causes ARD (Winkelmann et al., 2019).

The mechanism underlying the synergy between nematodes
and microbes in ARD is yet to be unraveled. However, it
is known that a high abundance of nematodes feeding on
microbes can modify the microbial community by altering the
relative abundance of populations (Djigal et al., 2004; Hai-
Feng et al., 2014; Gebremikael et al., 2016), thus causing a
significant reduction of microbes that may induce plant growth
promotion. Nematodes have a direct or symbiotic association
with the soil microbiome and are specifically attached or native
to their bodies or gut (Baquiran et al., 2013; Adam et al., 2014;
Elhady et al., 2017). Recent findings by Adam et al. (2014) and
Elhady et al. (2017) confirmed that specific bacteria and fungi
are attached to infective stages of Meloidogyne incognita and
P. penetrans in different soil types, indicating an ecological role of
the association. Indirectly, nematodes might contribute to ARD
by dissemination of microbes or activation of specific microbial
growth by the release of growth-limiting nutrients (Freckman,
1988; Wang et al., 2005). In conclusion, an interaction of specific
free-living nematodes with microbes in the rhizosphere of apple
plants seems to be essential for the development of ARD.
Exploring the associations of nematodes and microbes in ARD
soils will give the chance to finally unravel the etiology of ARD.
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