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The cell wall, a complex macromolecular composite structure surrounding and
protecting plant cells, is essential for development, signal transduction, and disease
resistance. This structure is also integral to cell expansion, as its tensile resistance
is the primary balancing mechanism against internal turgor pressure. Throughout
these processes, the biosynthesis, transport, deposition, and assembly of cell wall
polymers are tightly regulated. The plant endomembrane system facilitates transport of
polysaccharides, polysaccharide biosynthetic and modifying enzymes and glycoproteins
through vesicle trafficking pathways. Although a number of enzymes involved in cell wall
biosynthesis have been identified, comparatively little is known about the transport of
cell wall polysaccharides and glycoproteins by the endomembrane system. This review
summarizes our current understanding of trafficking of cell wall components during
cell growth and cell division. Emerging technologies, such as vesicle glycomics, are
also discussed as promising avenues to gain insights into the trafficking of structural
polysaccharides to the apoplast.

Keywords: post-Golgi trafficking, trans-Golgi Network, endosome, polysaccharide trafficking, cell wall,
endomembrane trafficking, glycome analysis, SNARE

THE PLANT CELL WALL

Consisting of a complex weaving of macromolecules, the cell wall is essential for many cellular
processes such as development, cell integrity, signal transduction, defense, and maintenance of
turgor pressure (Collins et al., 2003; Cosgrove, 2005, 2016). Roughly 40 cell types make up a
plant with their cell walls determining their unique shape and function (Somerville et al., 2004;
De Souza et al., 2015; Cosgrove, 2016; Chebli and Geitmann, 2017). The structurally dynamic
and heterogeneous primary walls of young plant cells are predominantly comprised of cellulose
microfibrils embedded in a matrix of pectin, hemicellulose, and glycoproteins (McCann et al.,
1992; Somerville et al., 2004; Burton et al., 2010). Although during the last 20 years many cell
wall biosynthetic enzymes have been identified, the understanding of the mechanisms facilitating
polysaccharide transport is far from comprehensive. With a better understanding of cell wall
component trafficking pathways, detailed models of cell wall deposition and maturation can be
constructed, providing insights into the dynamic organization of cell wall during plant growth and
in response to environmental cues. This review focuses on transport and deposition of cell wall
components during primary cell wall formation. For a comprehensive review of secondary cell wall
biosynthesis see (Meents et al., 2018).

Xyloglucan (XyG) represents the predominant hemicellulose in the primary cell walls of eudicots
and non-graminaceous monocots. XyG is a β-1,4 glucan featuring a regular pattern of substitutions
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occurring along the xylose residue on the glucan backbone.
Xylose substitutions consist of galactose, O-acetylated galactose
and fucose residues (Keegstra, 2010; Scheller and Ulvskov, 2010;
Pauly and Keegstra, 2016; Kim et al., 2018). Pectin, a complex
heterogeneous assembly of polysaccharides whose structural
backbones contain galacturonic acid residues, constitutes a
major part of the matrix into which cellulose microfibrils are
embedded (Atmodjo et al., 2013). Both pectin and hemicellulose
are synthesized by Golgi localized enzymes and thus require
transport to the plasma membrane (PM), a critical yet poorly
understood role of the endomembrane system. In contrast,
cellulose, another key component of cell walls, is synthesized
at the PM by Cellulose Synthase Complexes (CSCs) (McFarlane
et al., 2014). Although the transport of pectin, hemicellulose
and CSCs to the PM is currently thought to utilize the
conventional ER–Golgi–trans-Golgi Network (TGN)–PM traffic
route, unconventional pathways have been postulated. This
review primarily focuses on TGN dependent pathways. For
recent reviews on unconventional protein secretion (UPS) see
(Davis et al., 2016; van de Meene et al., 2017; Wang X. et al., 2017).

MULTIPLE FACTORS MAY COORDINATE
TGN-MEDIATED TRANSPORT OF CELL
WALL COMPONENTS

Accurate spatial and temporal delivery of cell wall material is
essential in choreographing cellular responses to the environment
such as those elicited by pathogens. The endomembrane system’s
intricate array of molecular players orchestrates the timely
delivery of cargos crucial to cell functions, and cell wall
components are no exception. The TGN is the membrane
compartment on the trans-side of Golgi responsible for sorting
and packaging cargo molecules targeted to the PM or vacuoles
(Roth et al., 1985; Griffiths and Simons, 1986; Kang et al.,
2011; Rosquete et al., 2018). Unlike in other eukaryotes, plant
TGN also serves as an early endosome (Dettmer et al., 2006;
Viotti et al., 2010). A specialized role of the Golgi apparatus
and the TGN in plants is the biosynthesis and sorting of
cell wall components including biosynthetic enzymes, structural
proteins and the matrix polysaccharides hemicellulose and pectin
(Cosgrove, 2005; Worden et al., 2012; Kim and Brandizzi, 2016;
van de Meene et al., 2017).

The function of the TGN is regulated by a plethora of factors
including RAB GTPases, soluble N-ethylmaleimide-sensitive
factor attachment protein receptors (SNAREs), tethers, accessory
proteins, as well as vesicle pH and lipid composition (Ebine and
Ueda, 2015; Zhen and Stenmark, 2015; Rosquete et al., 2018)
SNARE proteins mediate membrane fusion (Ueda et al., 2012;
Bombardier and Munson, 2015), with syntaxins representing a
sub-family of SNAREs. Arabidopsis contains distinct syntaxins
of plants (SYPs) localized to different compartments of the
endomembrane system (Sanderfoot et al., 2000). SYP61, a plant
SNARE interacting with SYP42/3 and VTI12 members in the
TGN, appears central to the organelle’s trafficking functions
(Drakakaki et al., 2012; Hofmann, 2017; Li et al., 2017), discussed
in depth in this review.

RAB GTPases have been shown to confer specificity to vesicle
traffic and mediate membrane fusion between a donor and
an acceptor compartment (Woollard and Moore, 2008; Ebine
et al., 2011; Lunn et al., 2013b; Bhuin and Roy, 2014). There
are 57 Arabidopsis RAB genes, split into 8 clades and further
classified into subclades of various sizes (Zhang et al., 2007).
Vernoud et al. (2013) in trafficking of cell wall components. In
a study that used Fourier transformed infrared spectroscopy to
evaluate cell wall composition, the percentage of pectin, cellulose
and hemicellulose within the cell wall was affected by single
mutants of RABA1, RABA2, and RABA4, respectively (Lunn
et al., 2013a). Based on this, the authors hypothesized specialized
roles for those GTPases in the transport of specific types of
polysaccharides from Golgi to the cell surface (Lunn et al.,
2013a). Interestingly, RABA2, together with RABA3, has also
been implied in trafficking of material to forming cell plates
during cytokinesis (Chow et al., 2008) opening the question
whether these two RABs are involved in the trafficking and
deposition of polysaccharides at the cell plate. Though exciting,
further investigation is needed into the possible specificity of
these RAB GTPases (see Figure 1).

Although the roles of TGN resident tethers, adaptor
proteins and vesicle lipid composition in post-Golgi protein
trafficking and TGN functional compartmentalization have
started to emerge, very little or nothing is known on how
they regulate/impact TGN-mediated polysaccharide trafficking
(Kim and Bassham, 2011; Bashline et al., 2013; Di Rubbo et al.,
2013; Vukasinovic and Zarsky, 2016; Wattelet-Boyer et al., 2016;
Ravikumar et al., 2017; Boutte, 2018).

TRAFFICKING OF CELL WALL
STRUCTURAL PROTEINS

Structural cell wall proteins such as arabinogalactan proteins
(AGPs), extensins and proline-rich proteins (PRPs) play a
role in defining the cell wall’s physical functional properties
(Showalter and Basu, 2016a; Johnson et al., 2017a,b). However,
we know very little about their location within the cell wall, their
specific roles and even less about their intracellular trafficking
routes. Regarding the latter, both Golgi-dependent and Golgi-
independent pathways have been suggested to contribute to the
secretion of cell wall proteins (Ellis et al., 2010; Tan et al., 2012;
Poulsen et al., 2015; Showalter and Basu, 2016a,b).

Glycosylation is a common post-translational modification
amongst PM and cell wall proteins (Nguema-Ona et al.,
2014). Interestingly, a recent work combining high-resolution
tandem mass spectrometry and available subcellular localization
data, established links between the most prominent N-glycan
structures present in a given glycoprotein and the protein’s
distribution in the endomembrane system, in turn reflecting the
glycoprotein’s trafficking pattern. The presence of complex
N-glycans correlated with Golgi/PM localization while
paucimannose structures were associated with extracellular
glycoproteins (Zeng et al., 2018).

Arabinogalactan proteins are thought to be secreted through
a Golgi-dependent pathway, supported by proteomic analysis
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of Golgi-enriched fractions (Ford et al., 2016). Contrary to
this model, a study using tobacco cells detected transiently
expressed AGPs glycosyltransferases in a double-membraned,
Exocyst-Positive Organelle (EXPO) (Poulsen et al., 2014). EXPO
has been implicated in Golgi-independent, unconventional
secretion of, mostly, proteins that do not carry a signal peptide
(leaderless proteins) (Wang et al., 2010; Poulsen et al., 2014,
2015; Davis et al., 2016). These findings suggest that Golgi-
independent pathways may also mediate secretion of AGPs.
However, such a view requires further examination as both the
glycosyltransferases and the AGP protein core are not leaderless
and are thus expected to follow the canonical secretory pathway.

TRAFFICKING OF CELL WALL
BIOSYNTHETIC AND MODIFYING
ENZYMES

The Cellulose Synthase Complexes assemble in the Golgi
apparatus and are then transported to the PM, both events
likely being assisted by STELLO proteins (McFarlane et al., 2014;
Lampugnani et al., 2018). Tracking of CSCs at the PM has
shown them moving linearly along cortical microtubules (MT)
supporting the MT-cellulose alignment hypothesis (Paredez et al.,
2006).

Perhaps the most studied cell wall-related trafficking process,
the transport of CESAs has been proposed to be mediated
by the plant specific endomembrane compartments SmaCC
(small CESA compartment) and MASCs (microtubule-associated
cellulose synthase compartments) (Crowell et al., 2009; Gutierrez
et al., 2009). The role of MASCs/SmaCCs are involved in
secretory and endocytic/ recycling routes of CESAs (Crowell
et al., 2009; Gutierrez et al., 2009). Recently, the plant-specific
protein PATROL1 (PTL1) and members of the exocyst complex
have been associated with vesicle docking and secretion of CSCs
during primary cell wall formation (Zhu et al., 2018).

Clathrin-mediated endocytosis and recycling rates influence
the steady-state levels of CSCs at the PM (Bashline et al., 2013;
Lei et al., 2015; Sanchez-Rodriguez et al., 2018). The plant-
specific T-PLATE complex, a major adaptor module for clathrin-
mediated endocytosis, was recently shown to recognize CSCs for
their internalization (Gadeyne et al., 2014; Sanchez-Rodriguez
et al., 2018).

CESAs are cargo of the SYP61 vesicles, implicating the SYP61
TGN compartment in the post-Golgi trafficking of these enzymes
(Gutierrez et al., 2009; Drakakaki et al., 2012). This is supported
by the finding that CESTRIN, a small molecule that reduces the
motility of CSCs at the PM, increases the association of CESAs
with SYP61 vesicles (Worden et al., 2015). However, it remains
unclear whether the CESAs found in the SYP61 compartment
represent endocytic or secretory pools, or both. Further, CESAs
secretion is affected in mutants of VHA-a1, a TGN specific proton
pump isoform that partially localizes to the SYP61 compartment
where it plays a prominent role in the establishment of the vesicle
luminal pH (Luo et al., 2015).

Similarly to CSCs, callose biosynthesis enzymes such as
Glucan Synthase-Like (GSLs) are trafficked to the PM prior

to the initiation of polysaccharide synthesis (Brownfield et al.,
2007, 2008; Toller et al., 2008). Not much is known about
the trafficking routes of the twelve Arabidopsis GSL isoforms
although several of them were identified in the proteome of
SYP61 TGN/EE vesicles (Drakakaki et al., 2012). The latter
suggests a canonical secretory route to the PM, with the
likely involvement of the EXOCYST tethering complex in
the final event of fusion to the PM, as indicated by callose
deposition studies in Arabidopsis trichomes (Kulich et al.,
2018). Interestingly, trafficking of the GSL isoform PMR4 to
sites of callose accumulation during the plant response to the
pathogen Blumeria graminis f. sp. hordei has been suggested
to occur via unconventional pathways, with the involvement of
either multivesicular bodies (Bohlenius et al., 2010) or exosomes
(Ellinger et al., 2013). Despite these observations, the trafficking
of GSLs during different growth stages and stress conditions
needs further investigation.

Cell wall associated enzymes such as apoplastic glycosidases
contribute to the modification of polysaccharides during cell wall
assembly creating cell wall structural diversity (Showalter, 1993;
De Caroli et al., 2011; Gunl et al., 2011a,b; Sampedro et al.,
2012; Frankova and Fry, 2013; Pauly and Keegstra, 2016). These
proteins are thought to traffic through the secretory pathway;
however, recent evidence indicates that multiple pathways may
be involved. The main known cell wall modifying enzyme acting
on XyG, β-GALACTOSIDASE 10 (AtBGAL10), has three distinct
N-glycosites, two with multiple high-mannose structures and
the third containing paucimannose structures (Sampedro et al.,
2012). Based on the presence of high-mannose structures, Zeng
et al. (2018) speculated that an UPS pathway could be involved in
the trafficking of β-GALACTOSIDASE 10.

Pectin methylesterase1 (AtPME1), a pectin modifying
enzyme, was identified in the proteome of Golgi and also
in those of SYP61 and VHA-a1 TGN vesicles, indicating
that a Golgi-TGN route is involved in its trafficking to the
PM (Drakakaki et al., 2012; Nikolovski et al., 2012; Groen
et al., 2014; Heard et al., 2015). However, a different, Golgi-
PM pathway that bypasses TGN was identified for the
trafficking of tobacco’s pollen-specific NtPPME1 (Wang H.
et al., 2016).

TRANSPORT OF STRUCTURAL
POLYSACCHARIDES

Compared to the number of studies that have provided insights
into the secretion of cell wall biosynthetic proteins, less is known
on the secretion of structural polysaccharides. Our current
knowledge of cell wall polysaccharide transport results primarily
from immunoelectron microscopy studies (EM) (Moore et al.,
1986, 1991; Moore and Staehelin, 1988; Lynch and Staehelin,
1992; Young et al., 2008; Kang et al., 2011). However, limitations
arise from the incompatibility of staining with traditional
antibodies, and electron microscopy itself, with live imaging,
restricting the experiments to sections of embedded tissue.
Despite such limitations, a few studies have shed light into the
intracellular distribution of plant polysaccharides.
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FIGURE 1 | Simplified outline of post-Golgi transport pathways involved in trafficking of cell wall components. The plant trans-Golgi Network/early endosome
(TGN/EE) mediates the post-Golgi trafficking of the cell wall structural polysaccharides pectin and hemicellulose and cell wall biosynthetic and modifying enzymes,
such as Cellulose Synthase Complexes (CSC) and Pectin Methylesterase1. Pectin and hemicellulose are synthesized in Golgi, from where they are transported to the
plasma membrane (PM) in secretory vesicles (SV) whose identity is under study. An important question remains whether pectin and hemicellulose are transported in
the same type of TGN vesicles. Genetic evidence points toward a role of the SYP61/ECH/YIP4 compartment in the secretion of pectin and hemicellulose. SCAMP2
vesicles have also been shown to transport pectin. Based on the analysis of mutants’ cell wall composition, a functional specialization of RABA GTPases has been
suggested, with RABA1 and RABA4 specifically regulating the transport of pectin and hemicellulose, respectively. A hemicellulose structural checkpoint that feeds
back to post-Golgi secretory traffic has been proposed. Not only TGN dependent but also TGN independent routes have been shown to mediate the trafficking of
cell wall polysaccharides. Two examples of the latter are the secretion of the specialized Xylogalacturonan (XGA) in border root cells of alfalfa and the secretion of
Pectin Methylesterase1 in tobacco cells (NtPPME1). CSCs are assembled in Golgi, aided by STELLO proteins. Various compartments (MASCs/SmaCCs and SYP61)
have been implied in both the biosynthetic and recycling traffic of CSCs. The exocyst complex is provided as an example of a tethering complex with a crucial
function in post-Golgi trafficking by facilitating the secretion of CSCs. The SYP61 compartment is involved in the transport of not only CSCs but also cell wall
modifying enzymes, as indicated by the presence of Arabidopsis Pectin Methylesterase1 (AtPME1) in the SYP61 vesicle proteome. RE, Recycling Endosome; A1,
RABA1; A4, RABA4.

A seminal study in sycamore maple (Acer pseudoplatanus)
cells detected the XyG backbone in trans-Golgi cisternae, whereas
fucosylated XyG side chains were identified in both the trans
cisternae and the TGN (Zhang and Staehelin, 1992). This
suggests a developmental “assembly line” consisting of the initial
biosynthesis of the backbone followed by the addition of side
chains in Golgi sub-compartments, with the TGN transporting,
mostly, fully substituted XyG (Zhang and Staehelin, 1992). In
the same study, low-methylesterified pectin backbone, detected

by the antibody JIM5, was found distributed in the cis- and
medial-Golgi and at the cell wall whereas high-methylesterified
pectin, detected by JIM7, was localized to the medial- and trans-
Golgi, in secretory vesicles and at the cell wall. These observations
indicate that pectins undergo maturation while they are delivered
to the trans-Golgi, and that high-methylesterified pectin is the
predominantly secreted form (Zhang and Staehelin, 1992). They
also suggest that conventional post-Golgi trafficking pathways are
used by both XyG and pectin. Importantly, the colocalization of
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XyG and pectin epitopes in transport vesicles of clover root tips
indicate that TGN vesicles can potentially carry both polymers
(Lynch and Staehelin, 1992).

Recent studies point to a role of cortical MTs in pectin
deposition at the cell wall. Mucilage secretion was shown
to be targeted to PM domains lined by abundant cortical
MTs. Corroborating this observation, the temperature-sensitive
MT mutant mor1-1 exhibited a decreased mucilage secretion
in seeds, in the same study (McFarlane et al., 2008). In
addition, the fragile Fiber1 (FRA1) kinesin has been implicated
in pectin deposition (Kong Z. et al., 2015; Zhu et al.,
2015).

Not surprisingly, the cell type has been shown to determine the
trafficking fate of vesicles transporting cell wall polysaccharides.
Xylogalacturonan (XGA), a pectin variant secreted by root
border cells, is transported by distinct large vesicles, released
from the trans-Golgi cisternae. XGA-loaded vesicles were
shown to fuse with the PM in alfalfa border root cells but
not in peripheral cells indicating the existence of regulatory
mechanisms conferring cell type specificity to the trafficking and
secretion of specialized polysaccharides (Wang P. et al., 2017; see
Figure 1).

As aforementioned, proteomic analysis of SYP61 vesicles
identified proteins involved in cell wall development (Drakakaki
et al., 2012). These include the TGN-resident complex formed
by ECHIDNA (ECH) and the YPT/RAB GTPase interacting
Proteins 4a and 4b (YIP4a and YIP4b), implicated in the secretion
of pectin and XyG (Gendre et al., 2011, 2013). Inhibition of
cell elongation and altered secretion of XyG and RGI pectins
were shown in mutants of YIP4A, YIP4B, and ECH (Gendre
et al., 2011, 2013). Further, antibodies for fucosylated XyG
have been shown to label a RABA4b TGN compartment in
Arabidopsis (Kang et al., 2011). Because RABA4b and SYP61
colocalize at TGN, this observation further supports a role
for the SYP61 compartment in the trafficking of structural
polysaccharides. The PM resident syntaxin SYNTAXIN OF
PLANTS121 (SYP121) has been shown to form a SNARE
complex with SYP61 mediating the secretion of PM protein
cargo (Geelen et al., 2002; Hachez et al., 2014). A role for
SYP121 in the secretion of SYP61 polysaccharide cargo is thus
likely. Interestingly, the AtSYP121 homolog, NtSyr1, seems
dispensable for polysaccharide transport in tobacco cells based
on transient studies, an observation that awaits thorough testing
in Arabidopsis and other plant systems (Leucci et al., 2007; see
Figure 1).

Anti-pectin antibodies stain SCAMP2 (Secretory Carrier
Membrane Protein 2) vesicles in tobacco BY-2 cells,
suggesting the involvement of that vesicle population in the
transport of pectins (Toyooka et al., 2009). The SCAMP
protein structure is well conserved in eukaryotes (Law
et al., 2012). In humans, SCAMP2 regulates exocytosis
by forming a membrane fusion complex with the small
GTPase Arf6 (ADP-ribosylation factor 6), phospholipase
D1 (PLD1), and SYNTAXIN 1 (Liu et al., 2002, 2005). It is
plausible that SCAMP2, via a similar mechanism, regulates
exocytosis of pectin and other polysaccharide cargo in plant
cells.

A role for the Exocyst complex in pectin deposition has been
suggested, based on genetic evidence. Mutants of the Exocyst
subunits SEC8 and EXO70A1 show reduced pectin accumulation
in the seed coat. Further, reduced pectin deposition was also
observed in a gain-of-function mutation of ROH1, an interactor
of the exocyst subunit Exo70A1, supporting the involvement of
this tethering factor in polysaccharide transport (Kulich et al.,
2010).

Intriguingly, the structure of cell wall polysaccharides,
rather than their levels, seems to influence their trafficking,
as suggested by the formation of intracellular aggregates
containing xyloglucan and deesterified homogalacturonan in
mutants of the XyG biosynthetic enzyme galactosyltransferase
MUR3 (Kong Y. et al., 2015). It is thus likely that XyG
structure checkpoints that feedback to post-Golgi secretory
traffic exist. Interestingly, a role for MUR3 in maintaining
the organization of Golgi via its interaction with actin
filaments has been suggested, hinting at a link between actin
cytoskeleton and structural polysaccharides transport (Tamura
et al., 2005).

POLYSACCHARIDE TRANSPORT TO
THE CELL PLATE

During plant cytokinesis, a cell plate that partitions the
cytoplasm of the dividing cell is formed de novo (Samuels
et al., 1995; Staehelin and Hepler, 1996; Jurgens, 2005;
Drakakaki, 2015). Such event requires the coordinated
action of cytoskeletal transitions and endomembrane
trafficking (Samuels et al., 1995; Otegui et al., 2001; Otegui
and Staehelin, 2004; Segui-Simarro et al., 2004; Lee and
Liu, 2013; Smertenko et al., 2017). Cell plate development
occurs in four stages that exist simultaneously. It requires
the directed and choreographed accumulation of post-
Golgi vesicles to the phragmoplast at the division plane
and removal/recycling of excess material (Samuels et al.,
1995; Segui-Simarro et al., 2004; Drakakaki, 2015; Smertenko
et al., 2017). The deposition of cell wall polymers transforms
the lumen of this membrane compartment into a new cross
wall, physically separating the daughter cells (Drakakaki,
2015; Smertenko et al., 2017). Whereas a number of studies
have investigated membrane dynamics (van Oostende-
Triplet et al., 2017), few reports exist on polysaccharide
deposition and its explicit role during cell plate maturation as
summarized in recent reviews (Drakakaki, 2015; Chen et al.,
2018).

Vesicle trafficking during cell plate formation is controlled
by many molecular players, including Rab GTPases, SNAREs,
tethering factors and other regulatory proteins (reviewed in
(McMichael and Bednarek, 2013; Boruc and Van Damme, 2015;
Drakakaki, 2015; Smertenko et al., 2017). Two well-studied
factors are RABA2A, which regulates the delivery of TGN derived
vesicles to the leading edge of the cell plate (Chow et al., 2008)
and the cytokinesis specific SNARE KNOLLE, which catalyzes
homotypic fusion of vesicles at the cell plate (Lauber et al.,
1997; Assaad et al., 2001; Heese et al., 2001; Zheng et al.,
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2002; Zhang et al., 2011; El Kasmi et al., 2013; Karnahl et al.,
2018).

The delivery and deposition of cell wall materials to the cell
plate has been primarily studied with electron and fluorescence
microscopy utilizing polysaccharide-specific antibodies. The
current notion is that structural polysaccharides such as
hemicellulose and pectins are transported in trans-Golgi derived
secretory vesicles to the expanding and maturing cell plate
(Moore and Staehelin, 1988; Samuels et al., 1995; Toyooka
et al., 2009; Drakakaki, 2015). The presence of XyG is detected
at early stages with enrichment in later stages (Moore and
Staehelin, 1988). In Arabidopsis, the pectin backbone has been
detected at the cell plate in methylesterified form (Clausen
et al., 2003; Rybak et al., 2014). In red clover root tips, RGI
and polygalacturonic acid labeling were observed at the middle
lamella, the mature central layer of the cell plate that serves as
a glue between adjacent cells. However, RGI was not detected
at the early cell plate, suggesting that acidic polysaccharides
may be deposited at later stages of cross wall development
(Moore and Staehelin, 1988). In addition to Golgi/TGN derived
polysaccharides (Moore and Staehelin, 1988), internalized pectin
glycans have been implicated in cell plate formation (Baluska and
Volkmann, 2002; Dhonukshe et al., 2006), a notion that awaits
further investigation.

Callose and cellulose are vital luminal polysaccharides of the
cell plate as supported by genetic evidence (Zuo et al., 2000;
Beeckman et al., 2002; Chen et al., 2009; Thiele et al., 2009;
Guseman et al., 2010; Gu et al., 2016). The relative spatiotemporal
distribution of callose, cellulose and their biosynthetic enzymes
during the different stages of cell plate formation is not fully
elucidated. According to current thinking, callose is transiently
incorporated for mechanical support during the middle/late
stages of cell plate formation and is ultimately replaced by
cellulose, for a more rigid luminal network (Samuels et al., 1995;
Thiele et al., 2009). However, recent live imaging of cellulose
synthase has shown that it accumulates at the early tubulo-
vesicular network stage, concomitant with cellulose (Miart et al.,
2014). Cell wall biosynthetic enzymes in the Cellulose Synthase
Like-D family (CslD) exhibit high homology to CESAs and are
also involved in cell plate formation (Gu et al., 2016). The cell
cycle-regulated CslD5 is localized at early cell plate stages where
it presumably produces a cellulose-like molecule, as previously
shown for CslD3 in polarized root hair growth (Park et al.,
2011).

Stains with both the synthetic chemical dye β-glycosyl
Yariv and the monoclonal antibody LM14 have shown that
AGPs, together with polysaccharides, contribute to cell plate
expansion (Yu and Zhao, 2012; Rybak et al., 2014). In addition,
EXTENSIN3, a hydroxyl-proline-rich glycoprotein has been
implicated in cytokinesis (Hall and Cannon, 2002; Cannon et al.,
2008). It is hypothesized that the self-assembled EXTENSIN
network can provide mechanical support during the expansion
of the cell plate, presumably via interaction with pectins (Cannon
et al., 2008).

Although several endomembrane proteins have been
associated with cell plate assembly, including the aforementioned
SCAMP2 and the exocyst complex, little is known on their

direct involvement in polysaccharide transport to the cell plate
(Toyooka et al., 2009; Rybak et al., 2014).

EMERGING TECHNOLOGIES TO
DISSECT POLYSACCHARIDE
TRANSPORT

Live imaging of polysaccharides remains technically very
challenging, making it difficult to assess the colocalization of a
particular polysaccharide cargo with subcellular protein markers
for specific vesicle populations. However, thanks to recent light
microscopy advances that allow the use of photoactivatable
and photoconvertible forms of cell wall associated proteins,
combined with improved resolution imaging of carbohydrates,
our knowledge of cell wall components trafficking and deposition
is expected to quickly expand (Fernandez-Suarez and Ting,
2008; Toyooka and Kang, 2014; Mishin et al., 2015; Wang
B. et al., 2016; Komis et al., 2018; Voiniciuc et al., 2018). In
addition, field emission scanning electron microscopy (FESEM)
with nanogold affinity tags affords resolution of spatial location
and conformation of cell wall polymers and has proved useful
to study XyG-cellulose interactions at the cell wall although this
approach does not allow for live imaging (Zheng et al., 2018).

Live imaging of cell wall glycans using small oligosaccharide
probes modified via click chemistry, together with polysaccharide
dyes, can also contribute useful insights (Mravec et al., 2014).
However, the toxicity of click chemistry reagents limits their
use in live imaging experiments (Anderson et al., 2010, 2012;
Wallace et al., 2012; Wang B. et al., 2016). The ever-expanding
palette of metabolically labeled glycans could become a great
asset for the dissection of cell wall metabolism once adapted for
live imaging (Hoogenboom et al., 2016; Zhu and Chen, 2017).
Cell wall glycan-directed antibodies are an elegant alternative
for the identification of plant cell carbohydrates, and can be
arrayed on automated large scale enzyme-linked immunosorbent
assay (ELISA) platforms (glycome profiling) (Moller et al.,
2008; Pattathil et al., 2010, 2012; Ruprecht et al., 2017).
Cell-permeable, live imaging-compatible nanobodies represent
another promising tool (Herce et al., 2017). Exemplifying
their potential, a very recent study using a nanobody–epitope
interaction-based protein labeling and tracking approach helped
dissect a TGN/EE-to-cis-Golgi recycling pathway for vacuolar
sorting receptors in Nicotiana tabacum cells (Fruholz et al., 2018).

To date, there are no suitable glycomic approaches that
capture both the polysaccharide contents of specific vesicle
populations and the detailed polysaccharide structures. By
combining a vesicle isolation methodology, such as that
established for the SYP61 compartment (Drakakaki et al.,
2012), with vesicle glycome profiling, the roles of different
vesicle populations in polysaccharide transport, in relation with
developmental stages and responses to environmental stimuli,
can be defined. In addition, glycomes of isolated vesicles, as
described above, can be coupled with their respective proteomes,
obtained with advanced mass spectrometry analysis (Parsons
and Lilley, 2018), and with vesicle lipid composition profiling
(Haraszti et al., 2016; Wattelet-Boyer et al., 2016; Boutte, 2018)
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for a better understanding of how the endomembrane system
regulates cell wall transport and deposition.

Oligosaccharide mass profiling (OLIMP) utilizes specific
glycosyl-hydrolases to digest cell wall polysaccharides to soluble
oligosaccharides detectable by MALDI-TOF mass spectrometry
(Obel et al., 2009; Gunl et al., 2010, 2011a) Analyzing Arabidopsis
Golgi-enriched microsomal fractions by OLIMP showed that
in the Golgi apparatus XyG oligosaccharides (XyGOs) with
a lower level of xylose residue substitution by galactose and
fucose are more abundant than XyGOs with a higher degree
of substitution (Obel et al., 2009; Gunl et al., 2010, 2011a).
However, overall this approach has limitations since it is not
possible to separate contributions of the Golgi from the TGN
or from endoplasmic reticulum contamination. The adequacy of
OLIMP to characterize the polysaccharide cargo of specific vesicle
populations has yet to be demonstrated.

Proximity tagging methods for protein localization at
subcompartmental resolution, such as APEX, BioID, and
SPPLAT, have the potential of not only solving the components
of large protein complexes involved in cell wall biosynthesis
and deposition but also their spatial distribution in membrane
microdomains of subcellular compartments (Parsons and Lilley,
2018).

Further, a number of methodologies that have proved
useful to study post-Golgi trafficking in other eukaryotes could
be successfully implemented in the Plant field. One such
method assessed the effect of ectopic intracellular localization
of tethering factors on the trafficking fate of cognate vesicles

(Wong and Munro, 2014). A set of Golgi-localized Golgin tethers
was artificially targeted to mitochondria of mammalian cells,
after which their ability to redirect Golgi-bound carriers to the
ectopic destination was monitored. By adapting this and other
methodologies, the role and specificity of putative polysaccharide
trafficking regulators can be investigated.

All these approaches offer the potential to deepen our
spatiotemporal understanding and help model the highly
choreographed trafficking events leading to cell wall deposition
during both normal and stressful growth conditions.
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