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PLANT “BIO”-STIMULANTS

Plant biostimulants are applied to improve crop production and nutritional quality of agrifood
products. They are often included in agricultural management practices aimed at reducing chemical
inputs, increasing productivity and recovering the natural equilibrium in agro-ecosystems.

The widely accepted definition of plant biostimulants (see EBIC, 2013; du Jardin, 2015) is:
substance(s) and/ormicro-organisms whose function when applied to plants or the soil rhizosphere
stimulates the natural processes to enhance/benefit nutrient uptake and efficiency, tolerance to
abiotic stress, and crop quality. Typically, biostimulants do not have a direct action against pests.

Commercial formulations may contain a mix of: humic and fulvic acids, amino acids, seaweeds
or plant extracts, natural poly- and oligo-mers, chemical elements (Al, Co, Na, Se, and Si),
beneficial fungi or bacteria (du Jardin, 2015; Yakhin et al., 2017). Not all listed components are
“biological,” which makes the term “bio”-stimulant somewhat ambiguous. The “bio” designation
may be attributed to the living organism components, and their natural substances. Instead, the
non-organic factors can be considered as positive effectors of the “biological” processes that regulate
the plant physiology, metabolism, morphology and interactions within the agroecosystem.

REGULATORY LEGISLATION—PLANT PROTECTION PRODUCTS

VS. PLANT FERTILIZERS

The registration of agricultural products in Europe follows two distinct legislation pathways: Plant
Protection Products (PPPs) or Fertilizers. PPPs, including microbes and chemicals, as defined in
Regulation (EC)1, protect plants or plant products against harmful organisms, influence the life
process of plants (i.e., affect plant growth, but are not nutrients), preserve plant products, destroy
undesired plants or their parts. The PPP registration process is cumbersome and often not suitable
for plant biostimulants (du Jardin, 2015), for which companies seek permission for their use as
Fertilizers (see Regulation (EC)2, that would also reduce time and expenses required for product
registration.

1Regulation (EC) No 1107/2009 of the European Parliament and of the Council of 21 October 2009 Concerning the Placing
of Plant Protection Products on the Market and Repealing Council Directives 79/117/EEC and 91/414/EEC. Available online
at: https://eur-lex.europa.eu/legal-content/EN/TXT/?uri=celex%3A32009R1107 (Latest consolidated version: 02/08/2018)
2Regulation (EC) No 2003/2003 of the European Parliament and of the Council of 13 October 2003 Relating to Fertilisers
(Text With EEA Relevance). Available online at: https://eur-lex.europa.eu/legal-content/EN/TXT/?qid=1537797652760&
uri=CELEX:32003R2003 (Latest consolidated version: 01/07/2017).
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To date, regulatory processes designed for plant biostimulants
have not been established. Official definitions and the basic
principles for new legislation are still being discussed both
in the EU and the U.S.A (du Jardin, 2015). To this end, it
is important to consider the inclusion in the registration
pipeline of Plant Growth Promoting Microbes (PGPM):
microbial individuals and consortia, their bioactive compounds,
and potential multi-component mixtures—as they are
important components of many successful plant biostimulant
products.

Numerous microorganisms, such as Trichoderma spp., are
registered as PPPs and classified as Microbial Biological Control
Agents (MBCA; Woo et al., 2014). Although single strains
are enlisted as biopesticides, many are also known to have
properties that result in plant growth promotion and other
beneficial effects (Lorito and Woo, 2015), typically not indicated
in the registered product disclaimer. Conversely, there are
plant biostimulants such as arbuscular mycorrhizal fungi (AMF;
Rouphael et al., 2015), that are also capable of inducing systemic
resistance conferring crop protection to disease and pest attack
(Cameron et al., 2013). This means that there is an urgent need
to create a new registration track for microbes or microbial
consortia with multiple plant beneficial functions (e.g., MBCA
and PGPM) in order to regulate the use of effective agricultural
products that are “all inclusive” (e.g., biostimulant, biofertilizer,
biopesticide).

PLANT GROWTH PROMOTING MICROBES

(PGPM) IN BENEFICIAL MICROBIAL

CONSORTIA

Important examples of positive plant-microbe interactions
associated to plant growth promotion include PGP rhizobacteria:
non-pathogenic Pseudomonas and Bacillus,Azotobacter, Serratia,
Azospirillum capable of improving nutrient availability in soil,
plant nutrient uptake and assimilation, as well as supporting
nitrogen cycling (Raaijmakers et al., 2009; Berg et al., 2014;
Lugtenberg, 2015).

PGPM of fungal origins are widely applied, but less
recognized in the literature. The best documented example is
that of the mycorrhizal fungi (AMF, VAM) including Gigaspora,
Funneliformis or Rhizophagus (Glomus), and Laccaria, that are
root obligate biotrophs able to establish mutualistic symbiosis
with >80% of vascular plant species (Pringle et al., 2009;
Rouphael et al., 2015). They are involved in carbon exchange,
and augment the capacity of the plant to absorb water plus
nutrients, thus counteracting negative effects of biotic and abiotic
stresses. Another case is the fungus Trichoderma. It is an active
ingredient in hundreds of agricultural products commercialized
worldwide (Woo et al., 2014), it has multiple beneficial effects
on plants (Harman et al., 2004), and used extensively in
biological and integrated pest management (Lorito and Woo,
2015).

Many recent studies demonstrate the potential as plant
biostimulants of microbial consortia, rhizobacteria, and
rhizofungi, that function as an agricultural probiotics (de Vries

andWallenstein, 2017; Wallenstein, 2017; Kong et al., 2018). The
present work describes an example of two prospective microbes
and their qualities as consortium components.

Trichoderma: the Evolving MBCA With

Multiple Plant Beneficial Effects
Numerous strains of Trichoderma are successful MBCA of
various plant pathogens. Initially, the biopesticidal activity was
considered as the only benefit, but eventually these MBCA
were demonstrated to be effective biofertilizers, biostimulants,
bio-enhancers of crop resistance to both biotic and abiotic
stresses (Harman et al., 2004; Fontenelle et al., 2011; Lorito
and Woo, 2015). In fact, scientific evidence demonstrated
that the PGP effect could be the result of a true symbiotic
interaction (Harman et al., 2004; Vinale et al., 2008; Shoresh
et al., 2010; Studholme et al., 2013; Lorito and Woo,
2015).

In certain conditions, Trichoderma may activate a state
of alert in the plant (i.e., priming), thus producing a ready
response to pathogen attack, which eventually anticipates the
establishment of a Systemic Acquired Resistance (SAR) and/or
Induced Systemic Resistance (ISR; Rubio et al., 2014; Hossain
et al., 2017; Martínez-Medina et al., 2017; Manganiello et al.,
2018). Furthermore, results from laboratory and field tests with
Trichoderma, performed on a variety of crops, have shown
a reduction in symptoms caused by abiotic diseases (e.g.,
water, salt, nutrients) following treatments (Mastouri et al.,
2012; Brotman et al., 2013; Sofo et al., 2014; Fiorentino et al.,
2018).

Improvement in plant development is typically noted with
increased seed germination, above- and below-ground plant
parts, chlorophyll content and yield, size and/or number of
flowers and/or fruits (Harman et al., 2004; Hermosa et al.,
2012; Studholme et al., 2013; Mendoza-Mendoza et al., 2018).
In particular, modifications to the roots increases the area
of absorption, improving nutrient uptake and translocation,
then the efficient use of NPK and micronutrients attributes
to enhanced plant biomass (Samolski et al., 2012). The
PGP effect is attributed to the role of Trichoderma in the
solubilization of phosphate and micronutrients (Altomare et al.,
1999), mediated by the release of siderophores and secondary
metabolites (Vinale et al., 2009, 2013, 2014; Spaepen, 2015),
or modifications in ethylene and auxin (Hermosa et al.,
2013; Contreras-Cornejo et al., 2015) that stimulate plant
development.

Trichoderma spp. produce over 250 metabolic products
including cell wall degrading enzymes, peptides, secondary
metabolites and other proteins (Sivasithamparam and
Ghisalberti, 1998; Harman et al., 2004; Morán-Diez et al.,
2009; Lorito et al., 2010; Keswani et al., 2014; Ruocco et al.,
2015). Many of these compounds are bioactive and can affect
the plant response to other microbes, by improving defense
mechanisms, while stimulating plant growth and development,
especially at the root level (Sivasthamparam and Ghisalberti,
1998; Vinale et al., 2009, 2013; Lombardi et al., 2018). Synergistic
effects on biocontrol have been found in many combinations of
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diverse strains, metabolites, mixtures of bioactive compounds,
originating from Trichoderma as well as other microbes or
plants, which suggests a wealth of possibilities for developing a
new generation of biostimulants.

Azotobacter: Rhizocompetent Stress

Tolerant N2 Free-Living Bacteria
Azotobacter includes free-living species that directly influence
nutrition in agroecosystems through nitrogen fixation, thus
increasing the soil level of this vital element for plants. The
bacterium has the ability to form heat and desiccation-resistant
cysts, providing inoculant with a long shelf-life (Inamdar et al.,
2000) and tolerance to drought and salinity stress (Vacheron
et al., 2013; Berg et al., 2014; Viscardi et al., 2016). In its
resistant form, Azotobacter can withstand biotic and abiotic
stresses while positively interacting with other microrganisms
and plants in agroecosystems (Babalola, 2010; Ahmad et al., 2011;
Berendsen et al., 2012; Bhattacharyya and Jha, 2012; Gaiero et al.,
2013; Philippot et al., 2013). Numerous commercial biofertilizer
products contain Azotobacter as active ingredients, often in
association with fungi, actinomycetes as well as other bacteria
(e.g., bacilli; EBIC, 2013).

The ability of beneficial Azotobacter strains to secrete
plant growth promoting and regulating substances such
as phytohormones, vitamins, and antifungal metabolites
have been studied. Phosphate solubilization (Hariprasad
and Niranjana, 2009; Rojas-Tapias et al., 2012; Wani et al.,
2013) and Fe mobilization (Rizvi and Khan, 2018) have
been demonstrated in vitro and in soil, also under abiotic
stress conditions (Viscardi et al., 2016; Van Oosten et al.,
2018).

Furthermore, the Azotobacter-mediated synthesis of
superoxide dismutase (SOD), catalase (CAT), proline, and
high levels of 1-aminocyclopropane-1-carboxylate (ACC)
activity (Glick, 2014) can influence plant health and bring
benefits to a wide variety of crops such as tomato (Viscardi
et al., 2016), maize (Rojas-Tapias et al., 2012), rice, wheat,
and sorghum (Inamdar et al., 2000; Di Stasio et al., 2017;
Van Oosten et al., 2018). Barra et al. (2016) confirmed the
importance of ACC deaminase (ACCd) activity and indole-3-
acetic acid (IAA) production for the alleviation of salt stress in
plants treated with rhizo-competent stress tolerant Azotobacter
strains. Similarly, a model proposed by Hermosa et al. (2012)
indicated that the ACCd and IAAs produced by Trichoderma
also regulated the equilibrium between plant growth and
defense.

AGRICULTURAL PROBIOTICS: MICROBIAL

CONSORTIA TO ENHANCE PGP EFFICACY

Recently, a new approach to “rhizosphere engineering” proposes
the addition of effective microbial inoculants to emulate the
structured biological networks in native soils, thus stimulating
the recovery of functional, beneficial microbial groups positively
linked to soil fertility (Ruzzi and Aroca, 2015; Shi et al.,
2016; Wallenstein, 2017; Stringlis et al., 2018), and replenishing

the natural microbiome reduced by crop domestication (Leff
et al., 2016; Perez-Jaramillo et al., 2016). These treatments may
activate nitrogen fixation, phosphate solubilization, siderophore,
phytohormone, and exopolysaccharide production known to
enhance growth while protecting the plant from abiotic stresses,
e.g., extreme temperature, pH, salinity, drought (Ashraf et al.,
2004; Compant et al., 2005; Gopalakrishnan et al., 2015; Viscardi
et al., 2016; Van Oosten et al., 2017), plus heavy metal,
and pesticide pollution (Ventorino et al., 2014). Even though
knowledge is limited on the survival of the microbial inoculants,
the ability of rhizosphere competent bacteria and fungi to
establish close associations with the native microbiota and soil
fauna has been sufficiently demonstrated (Hardoim et al., 2015;
Bonanomi et al., 2017, 2018; de Vries and Wallenstein, 2017).
The synthetic bacteria-fungi consortia have the potential to
establish novel microbial communities (Ahmad et al., 2011;
Berg et al., 2014; du Jardin, 2015; Lugtenberg, 2015), while
co-applications of different microbes may activate new PGP
effects not obtained by using single species (Wargo and Hogan,
2006).

Plant microbiome engineering requires the identification
and culturing of potential PGPMs, deep analysis/selection
of the various components, evaluation of the compatibility
between microorganisms, determination of the cause and
effects in the native agroecosystem, development of adequate
formulation recipes and distribution technology, plus provision
of technical support to end-users (Berendsen et al., 2012; Berg
et al., 2014; Lugtenberg, 2015; Yakhin et al., 2017; Kong et al.,
2018). To this end, the extensive studies on Trichoderma and
Azotobacter suggest that these fungi and bacteria could be
functionally complementary in a PGP consortium, although
the effects on the resident rhizosphere microbiota have not
been sufficiently elucidated. Furthermore, the Trichoderma-
Azotobacter consortia could be integrated with botanical and
inorganic compounds, seaweeds, polymers, animal-derived
products to develop truly effective, and reliable beneficial plant
products. ‘Omics studies can reveal basic mechanisms regulating
these complex interactions and provide new knowledge
concentrated on the mechanisms that could be relevant for
improving the next generation of plant biostimulants (Bell et al.,
2015; Soni et al., 2017; Fiorentino et al., 2018; Ventorino et al.,
2018).

The global biopesticide market is continuously growing
due to changing agricultural legislations and regulations,
increased demand for biological/organic products, conversions
from conventional to integrated pest management (IPM), and
organic farming systems (Woo et al., 2014; Lugtenberg,
2015). Similarly, a steady growth is observed in the
biofertilizer market (about 10% per year; EBIC, 2013).
The new frontier for plant biostimulants should profit
from the beneficial associations of microorganisms and
compounds, by building on a deeper understanding of
plant-microbe interactions developed by Nature. New
microbial consortium can be designed, e.g., Trichoderma plus
Azotobacter, as agricultural probiotics suitable for sustaining
the agroecosystem while improving the quantity and quality of
yield.
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