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In eukaryotic cells, the endomembrane system consists of multiple membrane-
bound organelles, which play essential roles in the precise transportation of various
cargo proteins. In plant cells, vacuoles are regarded as the terminus of catabolic
pathways whereas the selection and transport of vacuolar cargoes are mainly mediated
by two types of organelles, multivesicular bodies (MVBs) also termed prevacuolar
compartments (PVCs) and autophagosomes. MVBs are single-membrane bound
organelles with intraluminal vesicles and mediate the transport between the trans-
Golgi network (TGN) and vacuoles, while autophagosomes are double-membrane
bound organelles, which mediate cargo delivery to the vacuole for degradation and
recycling during autophagy. Great progress has been achieved recently in identification
and characterization of the conserved and plant-unique regulators involved in the
MVB and autophagosome pathways. In this review, we present an update on the
current knowledge of these key regulators and pay special attention to their conserved
protein domains. In addition, we discuss the possible interplay between the MVB and
autophagosome pathways in regulating vacuolar degradation in plants.

Keywords: MVBs, autophagosomes, vacuolar degradation, crosstalk, protein structure, conserved domains

INTRODUCTION

Vacuoles are the major sites for both storage and metabolism in plant cells and play essential
roles during plant growth and development (Shimada et al., 2018). Plant vacuoles are generally
classified into protein storage and lytic vacuoles based on their distinct functions (Eisenach et al.,
2015). Protein storage vacuoles serve as the main repository of protein in seeds, while lytic vacuoles
act as the primary catabolic compartment in vegetative cells, as they contain hydrolytic enzymes
that can break down various biomolecules for recycling. Before degradation inside lytic vacuoles,
cargo proteins are first sequestered into certain types of organelles such as multivesicular bodies
(MVBs) or prevacuolar compartments (PVCs), and autophagosomes (Zhuang et al., 2013; Cui et al.,
2016; Marshall and Vierstra, 2018). Under normal conditions, proteins, such as hydrolytic enzymes
and membrane receptors, are continuously transported to the vacuoles via single-membrane
bound MVBs. The selection of soluble and membrane cargoes is mediated by vacuolar sorting
receptors (VSRs) and the endosomal sorting complexes required for transport (ESCRT) machinery,
respectively (Luo et al., 2014; Gao et al, 2017). On the other hand, under starvation or other
stress conditions, macroautophagy (hereafter simply autophagy), as another major conserved
mechanism, mediates turnover and recycling of cytoplasmic materials such as aggregated proteins,
damaged or aging organelles (Mehrpour et al., 2010; Liu and Bassham, 2012; Gao et al,, 2014;
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Anding and Baehrecke, 2017). In the autophagic process,
cellular contents are engulfed by a double-membrane organelle
called the autophagosome (Mizushima et al., 2011; Soto-Burgos
et al., 2018), which eventually fuses with the vacuole (Zhuang
et al., 2018; Figure 1). Although the MVB and autophagosome
pathways have been well studied, the interface between them
has rarely been addressed. Interestingly, recent evidence supports
a possible crosstalk between these two pathways as some key
regulators have been found to localize on both organelles to
mediate their interplay (Isono et al., 2010; Katsiarimpa et al.,
2011; Katsiarimpa et al., 2013; Kwon et al., 2013; Gao et al., 2015;
Nagel et al., 2017).

In this mini review, we summarize the recent advances in
research into the MVB and autophagosome pathways in plant
cells. The key regulators and their conserved domain will be
highlighted. In the end, we also discuss the possible crosstalk
between the MVB and autophagosome pathways in plant cells.

THE MVB-MEDIATED VACUOLAR
TRAFFICKING PATHWAY

In the plant secretory pathway, soluble vacuolar cargoes are
recognized by VSR proteins (Foresti et al., 2010; Zouhar et al,,
2010; Shen et al., 2014; Robinson and Neuhaus, 2016), while in
the endocytic pathway, plasma membrane proteins destined for
degradation are recognized and internalized into intraluminal
vesicles (ILVs) of MVBs via the ESCRT machinery (Valencia et al.,
2016; Gao et al., 2017; Isono and Kalinowska, 2017; Figure 1).
In the following, we summarize recent findings on the structural
features and domain functions of VSR, ESCRT proteins, as well
as other plant-unique components in MVB-mediated vacuolar
trafficking pathways.

VSR-BINDING AND VACUOLAR
TRAFFICKING OF CARGO PROTEINS

The first VSR protein identified is BP-80 from pea (Pisum
sativum) (Kirsch et al.,, 1994). BP-80 recognizes the vacuolar
cargo aleurain by binding to an NPIR-containing sequence motif,
the most well-studied vacuolar sorting determinant (VSD) of
vacuolar-targeting proteins (Paris and Neuhaus, 2002; Watanabe
et al, 2004). VSRs are type I integral membrane family
proteins with a large N-terminal luminal domain (NT), a single
transmembrane domain (TMD), and a short C-terminal cytosolic
tail (CT). The luminal region, VSRNT, consists of a protease-
associated (PA) domain, a central domain, and an epidermal
growth factor (EGF) repeats (Cao et al., 2000; Robinson and
Neuhaus, 2016). The TMD and CT domains are responsible for
targeting VSRs to the vacuole in plant cells. The CT domain
contains a YMPL motif and IM motif (Dasilva et al., 2006;
Foresti et al., 2010). The YMPL motif is recognized by the AP-1
clathrin adaptor protein complex and is involved in the formation
of clathrin-coated vesicles (CCVs), which is required for MVB
targeting while the IM motif is involved in VSR recycling.

The structure of PA domain of VSR from Arabidopsis thaliana
has been resolved to show how VSRs recognize their cargoes
recently (Luo et al., 2014). The crystal structures presented for
PA of VSR isoform 1 (VSR1PA) are from A. thaliana alone
and complexed with a cognate peptide containing the barley
(Hordeum vulgare) aleurain VSD sequence of ] ADSNPIRPVTj.
In this model, the cargo-binding pocket of PA domain is
occupied by switch III residues (;30TPEE;33), forming a closed
conformation before interaction with the cargo. The Ala-Asp-
Ser residues preceding the NPIR motif in the cargo (aleurain) are
recognized by PA domain and the Arg-95 forms a hydrogen bond
to Ser residue, which is crucial to receptor-cargo interaction.
When Ala-Asp-Ser residues are bound to the PA domain, they
displace the switch IIT residues from the cargo binding pocket
and induce conformational changes that are propagated to the
C-terminus of the PA domain. This results in a 180° flip of the
C-terminal tail and the conformation is stabilized by hydrogen
bond between Glu-24 and His-181, allowing the central domain
to cooperate with the PA domain in recognizing the full-length
VSD.

THE ROLE OF THE ESCRT MACHINERY
IN ENDOSOMAL-VACUOLAR
TRAFFICKING

The ESCRT machinery is an assembly of protein subcomplexes
which plays canonical roles in the MVB biogenesis and
ubiquitinated membrane proteins sorting for degradation and
it is evolutionarily conserved in eukaryotes (Leung et al., 2008;
Henne et al, 2011). Compared to yeast and animal, plant
genome encodes most ESCRT isoforms, including ESCRT-I
(VPS23A/VPS23B,  VPS28-1/VPS28-2,  VPS37-1/VPS37-2),
ESCRT-II  (VPS22, VPS25, VPS36), ESCRT-III (VPS2-
1/VPS2-2/VPS2-3,  VPS20-1/VPS20-2,  VPS24-1/VPS24-2,
SNF7-1/SNF7-2), and VPS4/SKD1 (suppressor of K+ transport
growth defect 1) complex with the exception of the canonical
ESCRT-0 subunits and ESCRT-I component MVB12 (Otegui
and Spitzer, 2008; Richardson et al., 2011; Gao et al., 2017). Here,
in comparison with yeast and animals we discuss the canonical
functions of the ESCRT machinery in plant endosomal sorting
with respect to the structure and functional domains of the
subunits. Moreover, we provide some recent findings in plant
unique ESCRT components and related proteins (Table 1).

In yeast, MVB-mediated sorting of ubiquitinated cargoes
starts with cargo capture by ESCRT-0, which consists of two
subunits Vps27 and Hsel (Raiborg and Stenmark, 2009). These
subunits interact via coiled-coil GAT (GGAs and Tom) domains
and recognize cargoes via ubiquitin-interacting motif (UIM) and
a VHS (Vps-27, HRS, STAM) domain. ESCRT-0 subunits are
absent in plants, however, there exists in the Arabidopsis genome
nine TOMI-like (TOL) proteins with conserved VHS domains
followed by GAT domains and putative clathrin binding motifs.
Previous studies have shown that some Arabidopsis TOLs can
bind to ubiquitin and regulate cargo recognition, as well as
interact with clathrin for ubiquitinated cargo clustering (Raiborg
and Stenmark, 2002; Korbei et al., 2013).
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FIGURE 1 | The MVB and autophagosome pathways in plant cells. (i) In MVB/PVC-mediated vacuolar pathway, proteins with vacuolar sorting signal are sorted into
MVBs/PVCs and then deposited in the vacuole for degradation; (i) In autophagic pathway, autophagosomes derive from ER and deliver cargoes into the vacuole for
degradation and recycling. ATG9 vesicle is essential for ER-derived autophagosome formation; (jii) The possible crosstalk between the MVB and autophagosome
pathways (as indicated by question mark) is also depicted by the dashed lines. MVB, multivesicular body; PVC, prevacuolar compartment; ER, endoplasmic

reticulum; TGN, trans-Golgi network.

As displayed by crystal structure, the yeast ESCRT-I complex
is an elongated heterotetramer of 20 nm (Kostelansky et al.,
2007). The ubiquitin E2 variant (UEV) domain of ESCRT-1 Vps23
binds to the PTAP-like motifs of the ESCRT-0 subunit Vps27
(Kostelansky et al., 2006). The Arabidopsis homolog VPS23 also
has the ability to bind to ubiquitin and to form a putatively intact
plant ESCRT-I complex in association with VPS37 and VPS28
(Spitzer et al., 2006).

As demonstrated in yeast, ESCRT-II is a Y-shaped
heterotetramer (Langelier et al., 2006). The GLUE (GRAM-like
ubiquitin-binding in EAP45) domain of the ESCRT-II subunit
Vps36 interacts with the C-terminus of the ESCRT-I subunit
Vps28 (Teo et al, 2006). Together with the ESCRT-0 FYVE
domain, the GLUE domain provides endosomal localization
specificity by binding PtdIns3P. In Arabidopsis, recent studies
have shown that VPS36 might form an ESCRT-II complex with
VPS22 and VPS25 and also shows ubiquitin-binding activity,
regulating MVB biogenesis as well as the endosomal sorting of
membrane cargoes (Wang et al., 2017).

In yeast, ESCRT-III recruitment to the endosome and
complex formation is initiated when the ESCRT-II subunit
Vps25 binds to Vps20, which drives membrane invagination
and scission of ILVs (Henne et al, 2013). All the isoforms
of ESCRT-III subunits are present in Arabidopsis and play an

essential role in MVB biogenesis, vacuolar sorting as well as
embryonic/seedling development. In particular, the Arabidopsis
Charged multivesicular body protein 1 (CHMP1) proteins
have been reported to interact with the VPS4/SKD1 complex
to regulate MVB biogenesis and vacuolar sorting of auxin
transporters (Spitzer et al., 2009; Katsiarimpa et al., 2011; Cai
etal, 2014).

Dissociation of the ESCRT-III complex from the membrane
requires energy, and it is provided by the class I AAA
(ATPases associated with various cellular activities) ATPase
VPS4. The N-terminal microtubule-interacting and trafficking
(MIT) domain of VPS4 recognizes and binds to C-terminal MIMs
(MIT-interacting motifs) present in the ESCRT-III subunits. LIP5
(lyst-interacting protein 5), a VPS4/SKDI1 positive regulator,
was recently reported to regulate MVB biogenesis and MVB-
mediated sorting of membrane proteins through interaction with
increased salt tolerance 1-likel (ISTL1), a protein predicted to be
the Arabidopsis homolog of yeast IST1 (increased salt tolerance 1)
(Wang et al., 2014, 2015; Buono et al., 2016).

In addition, recent studies have identified some plant unique
ESCRT components, like FYVE domain protein required for
endosomal sorting 1 (FREE1) and positive regulator of SKD1
(PROS) (Gao et al, 2014; Reyes et al., 2014). ESCRT-related
proteins have also been characterized. One example would be
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TABLE 1 | Key components and regulators in plant MVB and autophagosome pathways discussed in this study.

Complex

Proteins

Activity

Reference(s)

Plant ESCRT components and regulators

Binds to ubiquitin, regulates cargo recognition, and
interacts with clathrin for ubiquitinated cargo
clustering. Contains conserved VHS domains, GAT
domains and putative clathrin binding motifs.
Binds to ubiquitin. Forms a putatively intact plant
ESCRT-I complex with VPS37 and VPS28.

Binds ubiquitin and forms an ESCRT-Il complex
with VPS22 and VPS25.

Interacts with the VPS4/SKD1-LIP5 complex.

Interacts with ISTL1.

Interacts with SNF7, and recruits AMSH3 to the late
endosomes to remove ubiquitin from cargoes.
Incorporates into the ESCRT-I complex via direct
interaction with VPS23A. Recognizes and sorts
ubiquitinated cargoes into the ILVs.

Binds and transfers ubiquitinated proteins to the
ESCRT machinery through interaction with VPS23

Regulates FREE1 recruitment to the MVB
membrane by competitively binding VPS23.

Binds to PtdIins3P and ubiquitin. Interacts with
VPS23 via the PTAP-like tetrapeptide motifs.

Regulates VPS4/SKD1 ATPase activity by
interacting with LIP5.

Phosphates ATG9, recruits ATG8-PE to PAS and
initiates autophagy pathway.

Interacts with ATG1 and regulates autophagic

Interacts with ATG13 and ATG8-PE and regulates
phosphorylation of ATG1.

Proteins show functional analogies to TOL1-TOL9

ESCRT-0

ESCRT-I VPS23A/ELC
VPS23B

ESCRT-II VPS36

ESCRT-IIl accessory proteins CHMP1A
CHMP1B

VPS4 accessory proteins LIPS

ESCRT-related regulators BRO1/ALIX
SH3P2

and AMSH3.

BRAF

Plant specific ESCRT proteins FREE1/FYVE1
PROS

Key components in plant autophagy

ATG1/ULK1 complex ATG1a ATG1b ATG1c
ATG1t
ATG13a ATG13b

bodies deposition.

ATG11

ATGO complex ATG9

Facilitates formation of ATGO vesicles and initiates
autophagosome progression from the ER
membrane.

Raiborg and Stenmark, 2002; Korbei
etal.,, 2013

Spitzer et al., 2006

Wang et al., 2017

Spitzer et al., 2009; Katsiarimpa et al.,
2011; Cai et al., 2014

Wang et al., 2014, 2015; Buono et al.,
2016

Cardona-Lopez et al., 2015;
Kalinowska et al., 2015; Shen et al.,
2016

Nagel et al., 2017

Shen et al., 2018

Gao et al., 2014; Kolb et al., 2015

Reyes et al., 2014

Suttangkakul et al., 2011

Suttangkakul et al., 2011

Li and Vierstra, 2014

Zhuang et al., 2017

Arabidopsis BRO1 (or ALIX), which is homologous to yeast
bypass of C kinase 1 (BCK1)-like resistance to osmotic shock
1p (Brolp) and mammalian apoptosis linked gene-2 interacting
protein X (ALIX). BRO1/ALIX interacts with the ESCRT-
IIT component SNF7, and recruits the deubiquitinase AMSH3
(associated molecule with the SH3 domain of STAM 3) to late
endosomes to remove ubiquitin from cargoes before luminal
sequestration of MVBs (Cardona-Lopez et al, 2015; Anding
and Baehrecke, 2017). A more recent study demonstrates that
BRO1/ALIX is also incorporated into the ESCRT-I complex
via direct interaction with VPS23A, recognizing and sorting
ubiquitinated cargoes into the ILVs of MVBs for vacuolar
degradation (Shen et al., 2016). Another example is the Src
homology-3 (SH3) domain-containing protein 2 (SH3P2). It
has been shown that SH3P2 is a ubiquitin-binding protein
that binds and transfers ubiquitinated proteins to the ESCRT

machinery through interaction with ESCRT-I subunit VPS23 and
the deubiquitinating enzyme AMSH3 (Nagel et al, 2017). In
addition, another latest report has demonstrated that a plant
Brol-domain protein as FREE1 suppressor (BRAF) functions
as a unique evolutionary ESCRT regulator (Shen et al., 2018).
BRAF regulates FREE1 recruitment to the MVB membrane by
competitively binding to the ESCRT-I component VPS23, thus
functioning in MVB biogenesis and membrane protein sorting.

AUTOPHAGOSOME-MEDIATED
PROTEIN DEGRADATION

Autophagy is known to be tightly controlled by the conserved
autophagy-related (ATG) proteins (named Atg in yeast and ATG
in mammals/plants) (Klionsky et al., 2012). Since the first ATG
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gene was identified in yeast (Tsukada and Ohsumi, 1993), around
40 ATG genes have been screened out (Ohsumi, 2014). These core
Atg proteins are evolutionarily conserved among eukaryotes and
can be classified into five subgroups: the Atgl complex, the class
III phosphoinositide 3-kinase (PI3K) complex, the Atg9 complex,
and two ubiquitin-like conjugation systems (Atg5-Atgl2 and
Atg8) (Mizushima et al., 2011).

To elucidate the mechanism of autophagosome formation,
functional and structure biological efforts have been made
for decades. However, little structure biological studies have
been published on plant ATG components. As recent structure
biological progresses on PI3K complex and conjugation systems
have been well summarized (Suzuki et al., 2017), in the following
we mainly focus on very recent progress about the ATG1 complex
and ATG9-ATG2-ATG18 complex (Table 1).

THE ATG1/ULK1 COMPLEX

The budding yeast autophagy Atgl complex consists of five
components (Atgl, 13, 17, 29, and 31) (Kraft et al, 2012;
Mao et al., 2013a). The formation of this pentameric complex
is induced under nutrient-starvation conditions. However,
the scaffolding subcomplex Atgl7-Atg31-Atg29 is missing
in mammalian (Hurley and Young, 2017) and plant cells
(Suttangkakul et al., 2011).

The serine/threonine kinase Atgl consists of an N-terminal
kinase domain (KD), and two C-terminal tandem MIT domains
(MIT1 and MIT2), which directly recognize Atgl3 (Fujioka
et al,, 2014). As the sole kinase in autophagy machinery, Atgl
can phosphorylate Atg9, thereby recruiting Atgl8 and Atg8-
phosphatidylethanolamine (PE) to the phagophore assembly site
(PAS) (Papinski et al., 2014). Atgl3 comprises a Hop1, Rev7, and
Mad2 (HORMA) domain at the N-terminus and an intrinsically
disordered region (IDR) (Yamamoto et al., 2016). The flexible
conformation of Atgl3 determines that it functions for complex
assembly and substrate recruitment. The structural basis is
that the IDR consists of two Atgl7-binding regions and MIM
(Yamamoto et al., 2016). These two Atgl7-binding regions can
bind to two individual Atgl7 dimers independently. The MIM
domain of Atgl3 binds to Atgl and HORMA domain recruits
Atg9 vesicles, respectively. On the other hand, Atgl7 can form a
S-shaped homodimer by four a-helices and subsequently exposes
the concave face toward the Atg29-Atg31 heterodimer (Ragusa
etal., 2012).

ATGI1 orthologs in Arabidopsis comprise four members
(ATGla-c and t), while ATG13 is encoded by a pair of genes
(ATG13a and ATG13b) (Suttangkakul et al., 2011). The remaining
3 components of the ATG1 complex (ATG17, ATG29, ATG31)
are not identified in Arabidopsis. Like the yeast ortholog,
the ATGla-c and ATGIt genes were predicted to encode a
N-terminal Ser/Thr protein kinase domain around the 260-
residue (Suttangkakul et al., 2011). However, the alignment of
the kinase domain in angiosperms phylogenetically distinguishes
ATG1t isoforms with ATG1la and ATG1b/c clades. Consequently,
ATG1t was proposed to represent a novel adaptation to the ATG1
kinase family in seed plants. The lack of ATG1 or ATG13 did not

impair ATGS lipidation but inhibited the forming of autophagic
bodies inside the vacuole, indicating an essential role of ATG1
complex in regulating autophagosome enclosure and/or vacuolar
delivery (Suttangkakul et al., 2011).

Autophagy was considered as a non-selective degradation
pathway for a long time. However, recent research has revealed
that autophagy is also critical for removal of certain cargoes,
like damaged or superfluous organelles and protein aggregates
(Mao et al., 2013b; Lu et al., 2014; Khaminets et al., 2015;
Nakamura et al., 2018). As a scaffold protein, Atgll is essential
in organizing selective autophagy-specific PAS via interacting
with various Atg proteins and cargo receptors (Liu and Klionsky,
2016). So far ATGII has been identified in yeast (Shintani
et al, 2002) and Arabidopsis (Li and Vierstra, 2014), while
its ortholog is defined as Focal Adhesion Kinase Family-
Interacting Protein of 200 kD (FIP200) in mammals (Hara
et al., 2008). Since it fails to identify ATG17 in Arabidopsis,
ATGI11 protein is likely shared by both bulk and selective
autophagy processes. Except for the conserved four coiled-coil
(CC) motifs and a C-terminal ATG11 domain, a short cryptic
ATG17-like domain (residues 348-494) was also identified
near the N-terminal of Arabidopsis ATG11. Recently Atgll
was purified and subjected to a series of biophysical analyses,
including analytical ultracentrifugation and CD spectroscopy
(Suzuki and Noda, 2018). It turns out that Atgll can form
elongated, dimeric coiled-coil architecture in solution. And
homodimerization in both N-terminal and C-terminal implied
that Atgll has a parallel dimeric architecture, in contrast to
the antiparallel dimeric architecture in Atgl7 (Suzuki and Noda,
2018). The architectural difference between Atgll and Atgl7
may imply a distinct organization of Atgl complex binding
scaffold proteins during phagophore initiation in selective and
non-selective autophagy (Yamamoto et al., 2016). Inspiration
may be gained from this study in plant ATGI11 structure
analysis.

ATG9 AND ATG2-ATG18 COMPLEX

Atg9 is a transmembrane protein, first identified in budding
yeast, which possesses six transmembrane domains (Rao et al.,
2016). When inserted into a vesicle with diameter around
30-60 nm, termed Atg9 vesicle (Figure 1), both N- and
C-termini are exposed to the cytosol (Yamamoto et al,
2012; Rao et al, 2016; Zhuang et al, 2017). In response
to autophagic induction, Atg9 vesicles are recruited to PAS
and deliver membrane/lipid for autophagosome formation
(Yamamoto et al, 2012). Although the intracellular route of
Atg9 trafficking remains unclear, the Golgi-endosomal system
has been demonstrated to be the key membrane source to
produce Atg9 vesicles in yeast (Yamamoto et al., 2012), mammals
(Shirahama-Noda et al., 2013), and plants (Zhuang et al., 2017).
The HORMA domain of Atgl3 has been demonstrated to be
able to recruit Atg9 vesicles to PAS and interconnects with
the autophagosomal membrane via fusion (Suzuki et al., 2015).
Interestingly, Arabidopsis ATGY vesicles display a transient
association with the phagophore membrane (Figure 1; Zhuang
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etal., 2017). ATG9 deficiency leads to an extensive accumulation
of autophagosome-related tubular structures decorated by YFP-
ATG8e puncta upon autophagic induction. The production of
such tubular structures depends on PI3K activity and the direct
connection between the tubular structure and ER membrane has
been confirmed by confocal analysis and electron tomography
(Zhuang et al., 2017). Combined with the distinct distribution
in yeast and mammals, it is tempting to speculate that ATG9
may acquire a plant-specific manner in autophagic degradation
pathway.

As demonstrated in yeast, Atg2 is the largest Atg machinery
protein. A homology search shows that Atg2 contains five
domain/motifs with unknown function. Yeast two-hybrid
analysis against Atg9 has showed the region PM3 (Asp!'2*-
Asp!?) is essential for interaction between Atg2 and Atg9
(Gémez-Sanchez et al,, 2018). Atg2 works as a bridge and
promotes the contact between autophagosomal membranes and
the ER. Interaction between Atg2 and Atg9 could be a likely
prerequisite for both a close association with the ER and eflicient
autophagosome biogenesis. Atgl8 belongs to the B-propellers
that bind polyphosphoinositides (PROPPIN) family, which is
essential for PtdIns3P and PtdIns(3, 5)P2 binding (Busse et al.,
2015). The ATG18 homolog in mammals is called WD-repeat
protein interacting with phosphoinositides (WIPI), which is a
protein family containing 4 candidates (WIPI 1-4), and serves
as PtdIns3P effector at PAS (Proikas-Cezanne et al, 2015).
A recent study elucidated one member of rat ATG2-WIPI
complex, ATG2B-WDR45, possessed a club-shaped architecture
by negative staining electron microscopy (Zheng et al., 2017).
The conserved H/YF aromatic motif in the C-terminal of
ATG2A/ATG2B is necessary for binding to WIPI4/WDR45,
but not with other three WIPI proteins. Additionally, a 3D
reconstruction on human ATG2A-WIPI4 resolved that ATG2A
possesses a rod-shape structure and WIPI4 is flexibly associated
with ATG2A (Chowdhury et al., 2018).

CROSSTALK BETWEEN THE MVB AND
AUTOPHAGOSOME PATHWAYS

In mammals, before fusing with lysosomes, autophagosomes
can undergo a maturation process by interacting with MVBs to
form a structure called amphisome, which was demonstrated by
electron microscopy study (Seglen et al., 1991; Berg et al., 1998).
Recent studies showed that dysfunction of the ESCRT machinery
led to autophagic defect in mammalian cells. For example,
one study showed that inactivation of the ESCRT-0 component
TOM1 led to accumulation of autophagosomes and failed to form
autolysosomes (Tumbarello et al., 2012). Another study showed
that loss of ESCRT-0 HRS resulted in insufficient autophagic
clearance and enhanced ER stress (Oshima et al., 2016).
Moreover, the ESCRT-III component CHMP2A was reported to
be a critical regulator of phagophore closure (Takahashi et al.,
2018). In yeast, autophagosomes are likely to fuse with the
vacuole directly and evidence for the amphisome intermediate
is missing (Knaevelsrud and Simonsen, 2012; Nascimbeni et al.,
2017). However, recent research pointed out the coordinated

action between the MVB pathway and autophagy was critical for
cell survival during periods of starvation (Muller et al., 2015).
This coordinated action included several steps: (1) During the
first 3 h of starvation in the yeast cells, many integral PM
proteins underwent endocytosis and degradation in vacuoles via
MVBs; (2) This degradation maintained critical amino acid levels
to allow cells to synthesize new proteins at the early stage of
starvation; (3) The de novo synthesis of vacuolar hydrolases
enhanced the vacuolar catabolic activity and promoted cellular
adaptation. Therefore, the efficient vacuolar degradation of
materials via autophagy could be achieved at the late stage;
whereas the coordinated action of the MVB pathway and
autophagy thus allowed cells to survive during starvation (Muller
et al, 2015). In plants, some ESCRT proteins (e.g., FREE1)
that are involved in the MVB pathway are also found to play
additional roles in the autophagy pathway. In the freel mutants,
the hybrid structures between autophagosomes and MVBs are
also observed by electron microscopy, however, the mechanism
underlying their fusion is still unknown (Gao et al., 2014, 2015;
Zhuang et al., 2015). Besides, recent studies reveal that the
RAB7 GTPases localize on both MVBs and autophagosomes that
may potentially participate in their crosstalk (Figure 1; Kwon
et al, 2013; Cui et al., 2014; Ebine et al, 2014; Singh et al,
2014). The following is a discussion about the roles of a plant-
unique ESCRT component, FREE1 and the RAB7 GTPase in
plants.

FREE] is known to bind to phosphatidylinositol-3-phosphate
and ubiquitin then interacts with the ESCRT-I subunit VPS23
via the PTAP-like tetrapeptide motifs or possibly incorporated
into ESCRT-III via association with SNF7 on MVBs (Gao et al.,
2014; Kolb et al., 2015; Belda-Palazon et al., 2016). Meanwhile,
FREEL1 has also been found on autophagosomes to interact with
SH3P2, which is a key regulator in the autophagic pathway
(Zhuang et al, 2013; Gao et al, 2015). The mutation of
FREE1 induces the formation of abnormal MVB-autophagosome
hybrid structures, further implying a possible crosstalk between
these two organelles (Figure 1; Gao et al, 2015). Another
player localized on both MVBs and autophagosomes is RAB7.
Under normal condition, RAB7 localized on both MVBs and
vacuoles and mediated the transport between them (Cui et al.,
2014; Ebine et al, 2014; Singh et al, 2014), while under
pathogen infection, RABG3b (an Arabidopsis RAB7 homolog)
colocalized with ATG8a in autophagic structures in immunogold
TEM study and positively regulated autophagy and immunity-
associated hypersensitive cell death in Arabidopsis (Kwon et al.,
2013). In addition, recent research in yeast found that, a
direct interaction of Atg8 with Ypt7 guanosine exchange factor
(GEF), Mon1-Cczl via an LIR (LC3-Interacting region) motif
in the Cczl C-terminus, but this motif is not essential for
normal endosomal transport (Gao et al., 2018). However, it
is still unknown how Monl-Cczl is temporally and spatially
recruited to autophagosomes. In addition to the MVB pathway,
the autophagy could potentially interplay with other pathways
including endocytosis and exocytosis. For example, a recent study
found that, in plant cells after autophagy induction, the vesicles
labeled by EXO70B1, one of 23 paralogs of Arabidopsis EXO70
exocyst subunits, were internalized into the central vacuole and
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co-localized with the autophagosomal marker ATGS8f (Kulich
etal., 2013).

CONCLUSION AND FUTURE
PROSPECTS

Substantial progress has been made in identifying regulators
important for the crosstalk between the MVB and
autophagosome pathways in mammals and yeast (Filimonenko
et al., 2007; Lee et al., 2007; Tumbarello et al., 2012; Muller et al.,
2015; Oshima et al., 2016; Takahashi et al., 2018). In plants, the
MVB and autophagosome pathways mediate protein transport
to the vacuole in normal and stress conditions, respectively. So
far only a few groups reported endosomal proteins participating
in autophagic pathway (Katsiarimpa et al., 2013; Gao et al., 2015;
Spitzer et al., 2015). Many outstanding questions still remain to
be answered in future research. For example, can MVBs fuse
directly with autophagosomes in plants, and if so, what are
the underlying mechanisms in regulating MVB-autophagosome
fusion? Does the autophagy coordinate with the MVB pathway
under stress or in response to nutrient limitations, and if so, what
is the biological significance of their crosstalk? Since some of
the conserved ATG components are missing in plants, do the
regulators in the MVB pathway substitute their function? Future
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