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Background: The expected genetic variance is an important criterion for the selection

of crossing partners which will produce superior combinations of genotypes in their

progeny. The advent of molecular markers has opened up new vistas for obtaining

precise predictors for the genetic variance of a cross, but fast prediction methods

that allow plant breeders to select crossing partners based on already available data

from their breeding programs without complicated calculations or simulation of breeding

populations are still lacking. The main objective of the present study was to demonstrate

the practical applicability of an analytical approach for the selection of superior cross

combinations with experimental data from a barley breeding program. We used genome-

wide marker effects to predict the yield means and genetic variances of 14 DH families

resulting from crosses of four donor lines with five registered elite varieties with the

genotypic information of the parental lines. For the validation of the predicted parameters,

the analytical approach was extended by the masking variance as a major component

of phenotypic variance. The predicted parameters were used to fit normal distribution

curves of the phenotypic values and to conduct an Anderson-Darling goodness-of-fit

test for the observed phenotypic data of the 14 DH families from the field trial.

Results: There was no evidence that the observed phenotypic values deviated from

the predicted phenotypic normal distributions in 13 out of 14 crosses. The correlations

between the observed and the predicted means and the observed and predicted

variances were r = 0.95 and r = 0.34, respectively. After removing two crosses with

downward outliers in the phenotypic data, the correlation between the observed and

predicted variances increased to r = 0.76. A ranking of the 14 crosses based on the

sum of predicted mean and genetic variance identified the 50% best crosses from the

field trial correctly.

Conclusions: We conclude that the prediction accuracy of the presented approach

is sufficiently high to identify superior crosses even with limited phenotypic data. We

therefore expect that the analytical approach based on genome-wide marker effects is

applicable in a wide range of breeding programs.
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INTRODUCTION

Selection gain in breeding programs relies on the selection of
suitable crossing partners which will result in derived lines
with superior performance. The best cross is not necessarily
the cross with the greatest mean performance, but the cross
of which the best lines show the highest performance (Zhong
and Jannink, 2007). Looking at the criteria which have been
suggested to evaluate the potential of a certain cross to generate
high-performing progeny, such as the usefulness criterion U =

µ + iσgh (Schnell and Utz, 1975) or the superior progeny value
s = µ + iσg (Zhong and Jannink, 2007), it becomes clear
that the expected genetic variance within a cross is the key
factor for identifying the best crosses. Nevertheless, strategies
for identifying superior crosses in applied breeding programs
have so far mostly relied on pedigree information, mid-parent
performance and phenotypic evaluation (Lado et al., 2017). The
main reason why the selection of crosses on the basis of their
progeny variance has not yet been widely implemented in plant
breeding programs was that before the advent of molecular
markers there were only limited possibilities of obtaining
sufficiently precise predictors for these genetic variances.

In the era of high-throughput genotyping and genomic
selection, recent research has focused on obtaining predictors
for the genetic variance from genome-wide marker estimates
by either simulations (Bernardo, 2014; Lian et al., 2015;
Mohammadi et al., 2015) or analytical approaches (Zhong
and Jannink, 2007; Bonk et al., 2016; Lehermeier et al.,
2017). Versatile analytical methods that allow plant breeders
to make a fast selection of superior crossing partners based
on already available genotypic and phenotypic data from their
breeding programs without the need of reparametrization of
estimated marker effects, complicated calculations, or simulation
of breeding populations promise to improve the efficiency of
breeding programs. In a previous study, we have presented
an analytical approach for the prediction of the means and
genetic variances of crosses based on maker effects estimated
by methods of genomic selection that works for arbitrary
mapping functions and mating systems (Osthushenrich et al.,
2017). First promising results of cross prediction with analytical
approaches were published for simulated populations or multi-
parental mapping populations (Bonk et al., 2016; Lado et al.,
2017; Lehermeier et al., 2017; Osthushenrich et al., 2017).
However, as the design of mapping populations deviates from the
design of typical breeding populations, the practical applicability
of the analytical approaches in plant breeding populations
remains to be demonstrated. To our knowledge, no studies
are available which investigate the application of analytical
approaches for cross prediction for agronomically important
complex quantitative traits with data from actual breeding
populations.

The aims of the present study were to apply the analytical
formulas for prediction of the means and variances of crosses
by Osthushenrich et al. (2017) to a data set from a resistance
breeding project in barley, and to investigate the model fit for

Abbreviations: DH, doubled haploid.

yield in 14 families of doubled haploid (DH) lines derived from
crosses of four pre-breeding lines and five registered commercial
elite varieties. Our objective was to investigate the practical
relevance and applicability of our analytical approach for the
identification of superior cross combinations in plant breeding
programs.

MATERIALS AND METHODS

Genetic Material
For a resistance breeding project the registered six-row barley
varieties Jenny (JEN, Saatzucht Breun), KWS Meridian (MER,
KWS Saat SE), Otto (OTT, W. von Borries-Eckendorf), Etincel
(ETI, Secobra), and Quadriga (QUA, Secobra) were crossed with
the resistance donor lines BAZ 2L101 (101), BAZ 2L146 (146),
DH 33 (D33), DH 37 (D37) developed by the Julius Kühn
Institute and the registered variety Antonella (ANT, Nordsaat).
The resistance donor lines carried resistances to either barley
yellow dwarf virus (BYDV; 101, 146), net blotch (Pyrenophora
teres f. teres; D33, D37), or were a registered variety (ANT)
carrying resistance to net blotch, powdery mildew (Blumeria
graminis) and scald (Rhynchosporium commune). By crossing
each registered elite variety with each donor line, respectively,
a 5 × 5 factorial cross was attempted. However, not all crosses
were successful and yielded viable offspring (Table 1). Different
numbers of F1-DH lines were produced from each successful
cross, resulting in 250 F1-DH lines in total (Table 1). The genetic
relationship between parental lines and the emerging DH lines
are displayed in a principal coordinate analysis in Figure 1.

Field Data
An augmented design with five blocks was used to evaluate
all genotypes for yield in one year at five locations in
Germany with one replication per location. The field experiment
was carried out in Adenstedt (State Niedersachsen, Region
Südhannover), Harzhof (State Schleswig-Holstein, Region Ost-
Holstein), Irlbach (State Bayern, Region Niederbayern), Lenglern
(State Niedersachsen, Region Südniedersachsen), Morgenrot
(State Sachsen Anhalt, Region Östliches Harzvorland). The
parental lines were used as checks and were replicated five
times.

TABLE 1 | Size n of the families of DH lines derived from the crosses of Parent 1 x

Parent 2.

–––––––––––––––––––––––––––––––––– Parent 1 ––––––––––––––––––––––––––––

Parent 2 101 146 ANT D33 D37

–––––––––––––––––––––––––––––––– n –––––––––––––––––––––––––––––

ETI 14 13 18 20 0

JEN 12 7 0 0 0

MER 19 10 16 22 0

OTT 4 10 4 0 13

QUA 1 10 12 8 37
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FIGURE 1 | Principal coordinates analysis plot with nine parental lines and 239

emerging DH lines. Parental lines: filled symbols. Circles: resistance donors,

Squares: elite lines. DH lines: bordered circles with 19 different colors

representing the crosses with viable offspring.

The field data were analyzed with the mixed linear model

Yield ∼ µ + Genotypes + Location + Location :Blocks + Error

where the common mean µ and genotypes were treated as
fixed factors, whereas blocks, locations, and heteroscedastic
model errors were assumed as random. The resulting adjusted
entry means for yield for each DH line were used in further
calculations.

Genotypic Data
All 250 resulting DH lines and the ten parental lines
were genotyped with the 50 k iSelect Chip (Trait Genetics,
Gatersleben). All SNP markers with more than two recorded
alleles, more than 10% missing values and a gene diversity of
<10% were excluded from the analysis, as well as all individuals
with more than 15% missing marker information. As a result,
9,597 SNP markers and 259 genotypes (249 DH lines and 10
parental lines) remained for the analysis.

Genomic Prediction of Marker Effects
For the prediction of marker effects, we used ridge-regression
best linear unbiased prediction (Meuwissen et al., 2001). As
training set for the prediction of marker effects we used the
complete genotypic and the phenotypic data of the 249 DH lines
from the 5× 5 factorial which remained after data cleaning.

Prediction of Cross Parameters µ̂g and σ̂
2
g

For the prediction of the expectation µ̂g and the genetic
variance σ̂ 2

g of the crosses we used the analytical approach of

Osthushenrich et al. (2017) and the marker effects estimated with
RR-BLUP. The required recombination frequencies were derived
from a published linkage map (Bayer et al., 2017). We used the
genotypes of the ten parental lines to predict µ̂g and σ̂ 2

g of the
resulting DH lines of the validation set.

Validation Set
For validating the prediction of µ̂g and σ̂ 2

g , we compared the
predictions from the formulas with the observed phenotypic
values x and s2p from the field trial. As validation set, we used the
200 DH lines resulting from the following 14 crosses: 146ETI,
146JEN, 146MER, 146OTT, 146QUA, ANTETI, ANTMER,
ANTOTT, ANTQUA, D33ETI, D33MER, D33QUA, D37OTT,
D37QUA. The remaining crosses did not result in viable
offspring. For line 101, the resulting DH lines from all five crosses
had to be excluded from the validation set, as the genotype of
the parental line 101 did not match the genotype of the resulting
DH lines, meaning that a problem with seed identification of the
parental line had at some point occurred during the project. The
final validation set thus comprised an unbalanced 5 × 4 factorial
of 14 families of 200 DH lines in total (Table 1).

Comparison of Predicted µ̂g and σ̂
2
g and Observed

Parameters x and s2p
For comparing the predicted and the observed values from the
field trial, we used the yield data of the validation set (Table 1). As
the variance of the phenotypic data is defined as σ 2

p = σ 2
g + σ 2

m,
the approach of Osthushenrich et al. (2017) was extended by an
estimate of the distribution of the phenotypic data by adding an
estimate s2m of the masking variance σ 2

m to the predicted variance
σ̂ 2
g . For this purpose, the masking variance s2m was estimated as

the square of the average standard error of the adjusted treatment
mean of the mixed models analysis of the field trial (Piepho and
Möhring, 2007).

Due to the balanced design of the field trial, the estimated
masking variance s2m resulted in the same value of 33.41 dt²/ha²
for all 14 crosses. An Anderson Darling goodness-of-fit test
(Anderson and Darling, 1954) was carried out to test the null
hypothesis that the observed yield values of the 14 DH families

are a sample from a normal distributionN

(

µ̂g , σ̂ 2
g + s2m

)

.

Ranking of Crosses
To validate the identification of superior cross combinations with
the analytical approach of Osthushenrich et al. (2017), we created
a ranking of crosses based on the criterion µ̂g+σ̂g . This predicted
ranking of the crosses was compared to the ranking of crosses
based on the best-performing DH line from each cross.

Software
The statistical analysis of the field data was conducted in R
version 3.4.2 (R Core Team, 2017). The estimation of marker
effects as well as the prediction of themeans and genetic variances
of the crosses was conducted in R version 3.4.2 with the software
package SelectionTools, which is freely available for download
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FIGURE 2 | Marker-based predictions of the genetic means µ̂g and variances σ̂2
g of the DH lines derived from all crosses of the complete factorial. The density of a

normal distribution with the predicted genetic parameters N

(

µ̂g, σ̂
2
g

)

is depicted in blue. The density of a normal distribution with the predicted phenotypic

(Continued)
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FIGURE 2 | parameters N

(

µ̂g, σ̂
2
g + s2m

)

is depicted in green, where s2m is the estimated masking variance obtained as the square of the standard error of the

adjusted phenotypic means of the field trial. For the crosses for which field data are available, the adjusted treatment means are marked with green dots and the

respective family means x with red triangles. p is the p-value of the Anderson-Darling goodness-of-fit test for the null hypothesis that the observed adjusted treatment

means are a sample of a normal distribution N

(

µ̂g, σ̂
2
g + s2m

)

.

from our homepage1. A code and output example is available in
Figure 5.

RESULTS

The observed mean yield performance µ̂g of the crosses ranged
from 82.85 dt/ha (146ETI) to 97.31 dt/ha (ANTQUA) (Figure 2).
The genetic variances σ̂ 2

g ranged from 0.96 dt²/ha² (ANTOTT) to

15.20 dt²/ha² (D37QUA). The differences between the predicted
yield means µ̂g and the genetic variances σ̂ 2

g were larger between
crosses of the same elite variety with different donor lines
(columns of Figure 2) than between crosses of the same donor
line with different elite varieties (rows of Figure 2). For example,
the crosses of the elite variety QUA with four donor lines showed
a comparatively large variation of µ̂g and ranged between 85.93
dt/ha and 97.31 dt/ha (last row of Figure 2). The genetic variance
σ̂ 2
g also showed a comparatively large variation and ranged

between 1.05 dt²/ha² and 15.20 dt²/ha². In contrast, for the five
crosses with donor line 146, µ̂g for yield ranged only between
82.85 dt/ha and 85.93 dt/ha, and σ̂ 2

g ranged only between 8.73

dt²/ha² and 12.12 dt²/ha² (first column of Figure 2). Crosses with
donor line ANT, which is a highly resistant elite variety, displayed
the overall highest values of µ̂g and the lowest values of σ̂ 2

g

(second column of Figure 2).
The crosses D33ETI and D33QUA showed downward outliers

which resulted in high observed phenotypic variances s2p of 36.57

dt²/ha² and 80.64 dt²/ha² (data not shown, but outliers visible in
Figure 2). The phenotypic variances of the other twelve crosses
with viable offspring ranged between 9.38 and 36.46 dt²/ha² (data
not shown). The estimate of the masking variance based on the
average standard error from the field data was s2m = 33.41 dt²/ha²
and thus was higher than the observed phenotypic variances for
ten out of 14 crosses (data not shown).

The Anderson-Darling goodness-of-fit test indicated that
there is no evidence to reject the null hypothesis that the
observed yield values (Figure 2, green dots) are sampled from

a normal distribution N

(

µ̂g , σ̂ 2
g + s2m

)

(green curves) in 13 out

of 14 crosses. The exception was cross D33ETI which featured
downward outliers and a left-skewed sample distribution (p =

0.01).
The correlation between the observed yieldmeans x (Figure 2,

red triangles) and the predicted yield means µ̂g was r =

0.95 (data not shown). The correlation between the observed
phenotypic variance s2p and the predicted genetic variance σ̂ 2

g was

1www.uni-giessen.de/population-genetics Homepage of the Department of
Biometry and Population Genetics, Institute for Agronomy and Plant Breeding
II, Justus Liebig University Giessen. www.uni-giessen.de/population-genetics
Accessed 21 February 2018.1514.

r = 0.34 for all 14 crosses (data not shown). However, when
the two crosses D33ETI and D33QUA with downward outliers
were removed, this correlation increased to r = 0.76 (data not
shown).

A comparison of the ranking of crosses based on the observed
yield data of the best resulting DH line from each cross with
the ranking of the crosses based on the criterion µ̂g + σ̂g which
relied on the predicted parameters showed that the prediction
accuracy was sufficient to correctly identify the 50% best crosses
(Figure 3).

A negative covariance existed between µ̂g and σ̂ 2
g for all

crosses (Figure 4). However, when the five potential crossing
partners were regarded separately for each donor line, the co-
variances between µ̂g and σ̂ 2

g were positive.

DISCUSSION

Despite the recent large interest in methods of cross prediction
and the selection of promising crossing partners based onmarker
data in the plant breeding community (Bernardo, 2014; Lian
et al., 2015; Mohammadi et al., 2015; Bonk et al., 2016; Han et al.,
2017; Lado et al., 2017; Lehermeier et al., 2017), the application
of the published analytical approaches was either demonstrated
with simulated data sets or in mapping populations which are not
comparable in their structure to typical breeding populations. No
studies are available to our knowledge in which the applicability
of analytical approaches for marker data was tested for relevant
traits such as yield in plant breeding data sets. In the present
study, we tested if the formulas for variance prediction presented
in Osthushenrich et al. (2017) show sufficient precision for the
identification of the most promising crossing partners in an
ongoing resistance breeding project in barley.

The data set in use in this investigation was not specifically
designed for a rigorous validation of the formulas of
Osthushenrich et al. (2017). For such a validation study,
several parameters would need a different experimental design.
We outline these parameters here to show the limits of the
present evaluation.

The present study uses a set of intercrossed lines as a training
set, and we evaluate the genetic variance in the same data set.
Consequently, the results presented here cannot be regarded as
an independent validation. Instead, we are rather investigating
the fit of the model to the data. If the model does not fit the
data in such an analysis, the conclusion can be drawn that the
model is not suitable to explain the data. If the model is able
to explain the data, however, a considerable overfitting of the
model might still be present, because genomic prediction is an
p > n problem where the number of independent variates (p,
markers) is greater than the number of observations (n, lines).
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FIGURE 3 | Comparison of the observed and the predicted ranking of crosses.

The observed ranking is based on the yields of the best DH lines resulting from

each cross in the field trial (left). The predicted ranking of crosses is based on

the criterion µ̂g + σ̂g from the predicted cross parameters (right). The 50%

top-ranked crosses are depicted in green. The 50% bottom-ranked crosses

are depicted in red. The green and red lines indicate how the position of the

crosses has changed between the observed and the predicted ranking.

This potential overfitting was not quantified by the analyses we
present here.

We are using only small numbers of lines per cross. The
estimates of the phenotypic variances within each cross are
therefore not estimated with a high precision, but instead they
have large standard errors and large confidence intervals. In
an experiment designed to validate the formulas for variance
prediction, larger family sizes would be desirable.

Due to their large standard errors, we decided not to further
decompose the per-cross variances into genetic variance and

FIGURE 4 | Predicted genetic variances σ̂2
g plotted against the predicted

cross means µ̂g for yield for the 20 crosses of four donor and five registered

elite varieties. Crosses with the different donor lines are distinguished by

different colors (right corner legend). Crosses with different elite varieties are

distinguished by different symbols (bottom legend). Specific crosses can be

identified by the combination of color and symbol.

within-cross residual variance. Such an analysis would have
the advantage of being able to compare genetic within-cross
variances, and in addition would be able to model cross-specific
residuals. Nevertheless, the estimation errors of genetic variances
are large, even for experiments that were designed specifically
for that purpose, and in the present data set we consider the
precision of per-cross estimates of genetic variances as too low
for drawing valid conclusions. For this reason, we decided to
present only the phenotypic per-cross variances, and to compare
those with the masking variance estimated across all crosses.
This enables an explorative comparison of the magnitudes of the
variance components. In a purposely designed experiment, the
estimation of per-cross genetic variances and their comparison
with the predicted genetic variance would provide not only an
explorative comparison but rather would allow more stringent
hypothesis testing.

The field trial in our experiment consisted of five replications
for each genotype, this resulted in a limited precision of
the phenotypic data. As a consequence, the masking variance
in our experiment still amounts to considerable size. In a
validation experiment carrying out replicated trials in more
than five locations and more than one year would result in a
smaller masking variance. Ideally, the design of the validation
experiment should result in a masking variance that is smaller
than the within-family variance. This would allow an effective
within-family selection. Further, it would be desirable if the
validation experiment was of a size that allowed heteroscedastic
error variances for locations or even for the location:cross
combinations.
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FIGURE 5 | Demonstration of R Code used for cross prediction with package SelectionTools.

A further issue that is not addressed with our experimental
setup is the question of whether random genetic drift or
selection during the DH process might have an effect on the
estimated variances, this might also be addressed in a validation
experiment.

Our motivation to use the present data set in spite of its
limitations and in spite of the fact that it was not specifically
designed for validation of formulas for variance prediction was,
that it actually originates from a practical breeding program.
Our argumentation is that the results presented here have a
high transferability to applied breeding programs, whereas the
results of a pure validation study would have only a limited
transferability due to differences in the experimental setup.

The prediction of the yield means µ̂g and genetic variances
σ̂ 2
g of the 14 crosses of five registered elite varieties and four

resistance donors for which phenotypic data was available yielded
overall plausible results (Figure 2). For example, for the crosses
of the elite variety QUA with four donor lines (last row of
Figure 2), µ̂g for yield ranged between 85.93 dt/ha and 97.31
dt/ha and σ̂ 2

g ranged between 1.05 dt²/ha² and 15.20 dt²/ha². For
the five crosses with donor line 146 (first column of Figure 2), µ̂g

for yield ranged only between 82.85 dt/ha and 85.93 dt/ha and
σ̂ 2
g ranged between 8.73 dt²/ha² and 12.12 dt²/ha². Differences

between the crosses in µ̂g and σ̂ 2
g were thus more influenced by

donor lines (columns of Figure 2) than by the elite varieties (rows
of Figure 2), indicating that the elite varieties contributed little

to the genetic variance σ̂ 2
g of the crosses and had similar mean

performance µ̂g . This is also illustrated by the fact that all crosses
of elite varieties with donor line ANT, which is also a highly
resistant elite variety, had a comparatively high µ̂g and a low σ̂ 2

g

compared to the other crosses. These findings are reflected in the
varying spread of the blue normal distribution curves in Figure 2

with N

(

µ̂g , σ̂ 2
g

)

for the different crosses. It is also confirmed

by the corresponding values for the observed yield means x (red
triangles) and the observed variances s2p from the field trial (data
not shown).

While a direct comparison of µ̂g and x from the field trial is
straightforward and yielded a correlation of r = 0.95 (data not
shown), a direct comparison of σ̂ 2

g predicted from genetic marker

effects with the estimated phenotypic variance s2p from the field
trials is problematic and less straightforward.

The data set used in the present study comprises field data
from only one year, a very limited number of locations and only
one replication. In such a small data set, large standard errors
are expected for the estimation of the phenotypic variance s2p,
which result in large confidence intervals. A confidence interval
for an observed variance s2 of a normal distribution is defined as
Bronshtein et al. (2003):

(n− 1) s2

χ2
α
2 ; n−1

≤ σ 2 ≤
(n− 1) s2

χ2
1− α

2 ; n−1
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For example, s2p of the 13 yield values in the field trial for cross

146ETI was 32.63 dt²/ha², resulting in a large 0.95 confidence
interval of [16.78; 88.91]. From this we can deduce that the point
estimator of the phenotypic variance has only limited accuracy.
Moreover, marker-based predictions of σ̂ 2

g are predictions of the
genetic variance within a cross, whereas the variance of the true
observed values in a field trial is σ 2

p = σ 2
g + σ 2

m, where σ 2
g

is the genetic variance and σ 2
m is the masking variance due to

environmental effects and inaccuracies of the field trial (Piepho
and Möhring, 2007). In the present study, the s2m estimated
from the field trial was 33.41 dt²/ha², while the predicted genetic
variances σ̂ 2

g ranged between 0.96 dt²/ha² for the cross ANTOTT

to 15.20 dt²/ha² for the cross D37QUA. Thus, s2m was in all crosses
about 2–30 times higher than σ̂ 2

g , and was consequently themajor

component of the phenotypic variance σ̂ 2
p .

To account for σ 2
m in our comparison of predicted

and observed variances σ̂ 2
g and s2p, we fitted the green

normal distribution curve N

(

µ̂g , σ̂ 2
g + s2m

)

. We conducted an

Anderson-Darling goodness-of-fit test to test the hypothesis that
the phenotypic yield values of the DH lines from the field trial
are samples from these normal distributions (Anderson and
Darling, 1954). There was no evidence that this null hypothesis
could be rejected for 13 out of 14 crosses (Figure 2). However,
when looking at the absolute values of the observed phenotypic
variances s2p (data not shown) and the predicted phenotypic

variances σ̂ 2
p , our prediction of σ̂ 2

p = σ̂ 2
g + s2m tended to

overestimate the observed variance s2p of the phenotypic values.
This overestimation could be expected, as precise field trials

to assess the yield are only carried out for a limited number
of pre-selected individuals, while the analytical approach yields
estimates for infinite unselected population sizes. Moreover, the
crosses D33ETI and D33QUA featured downward outliers that
might have inflated the average standard error for the adjusted
treatment means and consequently the derived masking variance
s2m. Under the assumption that the masking variance σ 2

m is
constant for all crosses, the correlation r between the predicted
genetic variance σ̂ 2

g and the observed phenotypic variance s
2
p gives

an idea how valid the predictions for the evaluation of suitable
crossing partners are. This correlation was r = 0.34 for all 14
crosses (data not shown). However, this was also mainly due to
the crosses D33ETI and D33QUA, which each displayed outliers
in the form of two very low yield values (Figure 2), resulting in
high observed variances s2p of the phenotypic values. Excluding
these two crosses, the correlation increased to r = 0.76 (data
not shown). From these findings, we draw two conclusions. First,
low correlations between the predicted genetic variances σ̂ 2

g and

the observed phenotypic variances s2p can be caused by outliers in
the field trial which result in overestimated phenotypic variances.
They do not necessarily mean that the prediction approach in
itself is faulty or inaccurate. Rather, accurate field trials are of
major importance not only for estimating marker effects and
cross prediction, but also for the plausible validation of cross
prediction. The evaluation of the accuracy of cross prediction
should therefore comprise a careful monitoring of the field
data. Estimates of the phenotypic variance s2p from samples with

outliers should be treated with caution. Second, the results shown
in Figure 2 indicate that our predictions of σ̂ 2

g overall yielded
reasonable results in light of the limitations of the available
phenotypic data.

Despite the fact that the predicted genetic variances σ̂ 2
g

are difficult to validate with phenotypic data from breeding
programs, they can still improve the efficiency of breeding
programs with respect to long-term response to selection and
efficient use of the limited plot number for field trials. Even for
lower correlations between σ̂ 2

g and s2p it is reasonable to focus on
crosses with high predicted genetic variance in order to maintain
genetic diversity and long-term response to selection, given that
reliable phenotypic and genotypic data is available for predicting
marker effects.

More importantly, we argue that the main application of
cross prediction in practical breeding programs is not so much
to provide 100 percent accurate predictions of µ̂g and σ̂ 2

g but
to allow the breeder to identify a certain fraction of promising
crosses from the complete list of potential crosses in order to
use the limited number of field plots efficiently. We compared
the ranking of the crosses based on the criterion µ̂g + σ̂g to the
ranking of the crosses based on the yield data of the best resulting
DH line from each cross (Figure 3). In this comparison, all seven
top-ranked crosses were identified correctly with the predicted
parameters, allowing the breeder to efficiently narrow down the
number of lines which have to be evaluated in costly field trials by
50% without reduction in selection gain.

It has been postulated that a negative covariance exists
between µ̂g and σ̂ 2

g (Zhong and Jannink, 2007). This suggestion
is very reasonable, as elite varieties which are fixed at many loci
for superior alleles will result in crosses with high µ̂g and low
σ̂ 2
g . This negative covariance is also observed in our data set

if µ̂g is plotted against σ̂ 2
g (Figure 4). For example, the ANT

crosses can be considered as crosses between two elite varieties
and consequently have a comparatively high µ̂g and low σ̂ 2

g

compared to the other crosses. In our data set, in line with
the suggestions of Zhong and Jannink (2007), genetic variances
σ̂ 2
g were more influenced by donor lines (columns of Figure 2)

than by the elite varieties (rows of Figure 2), indicating that the
elite varieties contributed little to the genetic variances σ̂ 2

g of the
crosses. Crosses of elite varieties with donor lines 146, D33 and
D37 which are pre-breeding lines with overall lower agronomic
performance have lower µ̂g and higher σ̂ 2

g in comparison to the
ANT crosses.

Thus, we observed that the negative covariance between µ̂g

and σ̂ 2
g of the crosses is mainly due to the different level of

breeding intensity and selection that the donor lines have been
subjected to (Figure 4). If the crosses of donor lines are regarded
separately, as indicated by the different colors in Figure 4, a
positive covariance existed between µ̂g and σ̂ 2

g . We therefore
conclude that for many scenarios, for example if a specific donor
line carrying desired resistance genes has to be used for trait
introgression into the breeding pool, prediction of the genetic
variance σ̂ 2

g allows the breeder to identify the best crossing
partner for this donor line from a set of different elite varieties.
In addition, these predictions can also be used for improved
resource allocation by investing more resources in terms of
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number of progeny into crosses with higher predicted genetic
variance σ̂ 2

g . We plan further investigations in this area.
In order to provide breeders with a fast and easy-to-

use tool to implement the presented approach in their
breeding pipelines, routines for data pre-processing, estimation
of marker effects and cross prediction with the formulas of
Osthushenrich et al. (2017) have been included in the software
package SelectionTools. SelectionTools allows breeders to make
use of the advantages of cross prediction in a convenient
way without the need of comprehensive mathematical and
programming skills. With standard data formats, the presented
approach can be reproduced with only a few lines of R code
(Figure 5).

CONCLUSION

The analytical approach of Osthushenrich et al. (2017) yields
plausible cross predictions which allow breeders to establish a
ranking of potential crosses and identify a superior fraction of
crosses for field evaluation. The approach is versatile and can
be used for arbitrary mating systems. A major advantage of the
presented approach is that it can be directly and easily used
with marker effects from genome-wide prediction without time-
consuming additional calculations or simulations. The prediction
accuracy of means and variances is sufficiently high for practical
application to derive meaningful predictions even with limited

phenotypic data. We therefore expect that the formulas are
applicable in a wide range of breeding programs.
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