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In scenarios of future climate change, there is a projectedincrease in the occurrence
and severity of natural disturbances inboreal forests. Spruce budworm (Choristoneura
fumiferana)(SBW) is the main defoliator of conifer trees in the North American boreal
forests affecting large areas and causing marked losses of timber supplies. However,
the impact and the spatiotemporal patterns of SBW dynamics at the landscape scale
over the last century remain poorly known. This is particularly true for northern regions
dominated by spruce species. The main goal of this study is to reconstruct SBW
outbreaks during the 20th century at the landscape scale and to evaluate changes in the
associated spatiotemporal patterns in terms of distribution area, frequency, and severity.
We rely on a dendroecological approach from sites within the eastern Canadian boreal
forest and draw from a large dataset of almost 4,000 trees across a study area of nearly
800,000 km?. Interpolation and analyses of hotspots determined reductions in tree
growth related to insect outbreak periods and identified the spatiotemporal patterns of
SBW activity over the last century. The use of an Ordinary Least Squares model including
regional temperature and precipitation anomalies allows us to assess the impact of
climate variables on growth reductions and to compensate for the lack of non-host trees
in northern regions. We identified three insect outbreaks having different spatiotemporal
patterns, duration, and severity. The first (1905-1930) affected up to 40% of the studied
trees, initially synchronizing from local infestations and then migrating to northern stands.
The second outbreak (1935-1965) was the longest and the least severe with only up to
30% of trees affected by SBW activity. The third event (1968-1988) was the shortest, yet
it was also the most severe and extensive, affecting nearly up to 50% of trees and 70%
of the study area. This most recent event was identified for the first time at the limit of the
commercial forest illustrating a northward shift of the SBW distribution area during the
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20th century. Overall, this research confirms that insect outbreaks are a complex and
dynamic ecological phenomena, which makes the understanding of natural disturbance
cycles at multiple scales a major priority especially in the context of future regional

climate change.

Keywords: black spruce, climate change, dendroecology, GIS, insect outbreaks, landscape ecology, natural
disturbances, sustainable forest management

INTRODUCTION

The boreal forest is the second-largest terrestrial biome in the
world, covering 14 million km?. It forms a circumpolar forest
belt (Burton et al., 2003) that represents about 25% of the
world’s forests (Dunn et al., 2007). At present, two thirds of this
surface is managed for wood production, and this proportion
accounts for 37% of the global wood supply (Gauthier et al.,
2015). However, an increasing number of studies predict marked
consequences of climate change on boreal ecosystems through
modifying the dynamics of natural disturbances at different scales
and increasing the frequency and severity of events such as
wildfires or insect outbreaks (Overpeck et al., 1990; Dale et al.,
2001; Millar et al., 2007; Seidl et al., 2014, 2017; Alifa et al., 2017).
Thus, improving our understanding of the variability of natural
disturbance cycles at multiple scales will be a major challenge
in the mitigation and adaptation of boreal forests and their
management to climate change.

Natural disturbance regimes determine the dynamics,
structure, and composition of forests by altering ecosystem
functioning (Anyomi et al, 2016; Montoro Girona et al,
2018b). Insect outbreaks are a key disturbance to consider in
forestry planning due to the important economic and ecological
implications of these events (Sturtevant et al., 2015). Insect
outbreaks affect timber supplies and have a marked impact
on overall forest productivity and dynamics. Among all the
major insect pests, spruce budworm [Choristoneura fumiferana
(Clemens)] (SBW) is the most important defoliator of conifer
trees in North American boreal forests (Hardy et al., 1983; Morin
and Laprise, 1990). In Canada, more than 90% of spruce and
fir forests are affected cyclically by SBW outbreaks, and more
than 50% of the annual loss of volume caused by insect damage
is attributed to SBW-related defoliation (Natural Resources
Canada, 1994). Whereas the consequences of defoliation remain
relatively moderate in the western Canada, in the eastern
portions of Canada, SBW is responsible for significant losses
for the forest industry through high tree mortality and a loss of
forest productivity (MacLean, 2016).

SBW outbreaks are complex phenomena influenced by
multiple factors that include the affected tree species, the specific
ecoregion, and regional climate conditions (MacLean, 2016).
Although insect outbreaks play an important role in forest
dynamics, most studies involving SBW focus on the relationship
with its primary host, balsam fir [Abies balsamea (L.) Mill].
Mortality occurs in fir stands after 4 years of severe defoliation
and outbreaks affect a very high proportion of trees (MacLean,
1980; Bergeron et al., 1995). For secondary hosts, such as black

spruce [Picea mariana (Mill.) BSP], the damage (and death)
of tree tops and branches is often accompanied by reductions
in growth of up to 75% (MacLean, 1984; Nealis and Régniere,
2004). In black spruce, the resistance to defoliation is the
result of a phenological asynchrony between the insect and its
host (Volney and Fleming, 2000; Pureswaran et al., 2015). As
the buds of black spruce burst 14 days later than those of
balsam fir, the former is protected from severe SBW-related
damage (Nealis and Régniere, 2004) since SBW emergence is
synchronized to balsam fir bud burst. Indeed, although SBW
can reach high latitudes corresponding to the distribution area
of balsam fir (Harvey, 1985; Payette, 1993; Levasseur, 2000),
its impact on the black spruce domain is lower, especially
in situations where a cold summer prevents eggs from hatching,
disrupting the annual cycle of the insect (Nealis and Régnieére,
2009). Thus, it is expected that epidemic cycles should be more
difficult to identify in the spruce-moss domain, the ecoregion
that supports most of the timber industry in eastern Canada
given its extent and the excellent wood properties of black spruce
(Saucier, 1998; Zhang and Koubaa, 2008).

The reconstruction of insect outbreak cycles at the
landscape scale is a major challenge as aerial surveys of
defoliation - conducted annually since the 1960s — cover only
one outbreak in the last century and are concentrated mostly in
the balsam fir area. Dendroecological approaches are a reliable
alternative for studying natural and anthropic disturbances in
forest ecosystems at a fine resolution (Boulanger et al., 2012;
Montoro Girona et al., 2016, 2017). Tree rings provide indirect
measurements of insect activity, through the identification of
years of growth reduction related to insect outbreaks, thereby
allowing the reconstruction of SBW cycles at multiple scales
(Morin and Laprise, 1990; Morin et al., 1993; Krause, 1997;
Jardon, 2001; Boulanger and Arseneault, 2004; Boulanger et al.,
2012). In regard to the spatial extent of SBW outbreaks, some
studies have attempted to produce a portrait of past events
via both modeling from aerial survey datasets (Fleming and
Candau, 1998; Gray and Mackinnon, 2006) or tree-ring analysis
(Jardon, 2001). However, the spatiotemporal changes of outbreak
dynamics at the landscape scale over the last century in North
American boreal forests remains poorly known.

The main goal of this study is to reconstruct the SBW
outbreaks during the 20th century at the landscape scale and
to evaluate changes in the spatiotemporal patterns in terms of
distribution area and severity. For this, we use dendroecological
data collected from the eastern Canadian boreal forest. We
hypothesize that the spatial pattern will be similar from one
outbreak to another with some variation in terms of intensity
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and expansion. We expect the last outbreak of the 20th century to
have a greater expansion in the spruce domain. This would give
credence to the hypothesis of a northward shift in the distribution
of SBW in Quebec over the last cycles. However, we expect to
observe a time lag in the emergence of the epidemic in the
north, as well as a lag in growth reductions; both lags occur due
to the lower susceptibility of black spruce stands. To improve
the understanding of spatial temporal patterns of SBW activity,
historical climatic data were used to examine the influence of
precipitation and temperature on outbreaks periods.

MATERIALS AND METHODS
Study Area

The study area is located in the boreal zone of Quebec (Canada)
and lies within an area 45.5-53°N and 58-79°W, thereby
covering nearly 800,000 km? (Figure 1). This research involves
a gradient of stand structures and ecoregions from closed, dense

forests in the fir and spruce-moss domain to the south, to the
more open and fragmented forests in the spruce-lichen domain
to the north. The study area crosses the northern limit of the
commercial forest, separating managed forests to the south from
unmanaged ones to the north. The coniferous forest landscape is
dominated by pure black spruce stands in the north and mixed
forests of white spruce, fir, and broad-leaved trees in the south.
Regional climate is subpolar humid with a growing season of
>170 days in the fir domain to a cold subpolar subhumid climate
having a much shorter growing season (<100 days) in the spruce
domain (Rossi et al., 2011). The eastern portion of the study area
has a greater annual precipitation (950-1350 mm), and the fire
return interval is longer in this portion at 270 to > 500 years (Cyr
etal.,, 2007).

Data Compilation and Experimental

Design

We undertook a data collection strategy to obtain the maximum
amount of dendroecological data available for the years
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FIGURE 1 | Location of study sites in Quebec (Canada). The different colors correspond to the various original datasets.
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1900-1990 from the study area. This database incorporated
sites from eight projects undertaken at the University of
Quebec in Chicoutimi over the last 20 years, two datasets
from the Canadian Forest Service, and one project from the
University of Quebec in Abitibi-Témiscamingue (Table 1). The
dataset was complemented by an important field survey by
Natural Resources Canada, undertaken between 2005 and 2010
in the northern portion of the study area (northern limit
project). In this survey, more than 800 sampling plots (400 m?
each) were sampled. In each plot, wood disks were collected
from seven dominant living trees and three dominant living
saplings.

Due to the size of our study area and the diversity of datasets
sources, the original dataset was filtered to delete sites having
a low number of samples (<8) and to keep only black spruce
having an age of >100 years. The age criteria was established to
guaranty that tree samples were able to register multiple insect
outbreaks during the 20th century providing long chronologies
across the study area. Based on the scale of this metanalysis and
to maximize the number of trees per location, we aggregated
some sites from the same ecoregions if they were close enough
(<20 km). This dataset is original and is valuable due to the size
of the study area, the high number of trees used in this study, and
the inclusion of new chronologies at the limit of the commercial
forest in remote areas that are not accessible by road (Table 1 and
Figure 1).

Dendroecological Data

We selected trees based on dominant species criteria to ensure
that the samples were representative of the study stands. All
sites were composed exclusively of black spruce, with the
exception of Jardon et al. (2003) where the samples were
composed of white spruce (Table 1). For this study, a total
of 3837 samples were used. The samples were prepared,
measured, and analyzed based on standard dendroecological
protocols (Krause and Morin, 1995). Breast height collected
wood disks were air-dried and sanded before tree rings were
measured with a WinDendro™ system (Guay et al,, 1992) or
a manual Henson micrometer having an accuracy of 0.01 mm.

Measurements of tree rings covered the entire life of the sampled
tree, and the ring patterns were cross-dated using COFECHA
(Holmes, 1983). We applied a double detrending method having
a 50-year window spline and a negative exponential using
ARSTAN (Holmes et al., 1986). Detrending reduced the effects
of tree age, genetic growth potential, microsite and stand
history, as well as minimizing the effect of climate allowing
trees of different growth rates to be compared (Fritts, 1971).
Autocorrelation in standardized time series was not removed
for the sake of uniformity with similar studies (e.g., Krause,
1997; Boulanger and Arseneault, 2004; Tremblay et al., 2011;
Boulanger et al, 2012). The detrended chronologies were
averaged to produce a mean standardized chronology for each
stand.

For the purpose of extracting the climatic signals in host
series, most studies use a host-non-host correcting method
using the OUTBREAK program (Holmes and Swetnam, 1996).
In our case the lack of non-host species in northern latitudes
(black spruce domain) make their use at large scales challenging.
In order to overcome this issue, we used modeled climatic
data (see below). An epidemic period was defined as a growth
reduction (>1.28 SD on the mean standardized chronologies)
of at least five consecutive years allowing 1 year of growth
release (Jardon et al., 2003). The severity of insect outbreaks was
defined by the proportion of trees at each site that presented
such a pattern of growth reduction. This dendroecological
approach was used on previous research on black spruce stands
(Tremblay et al, 2011; Boulanger et al., 2012, Rossi et al,
2018).

Data Analysis

To establish the patterns of SBW activity, spatial data related to
insect outbreaks were interpolated based on the percentage of
trees affected using an inverse distance weighted interpolation
(Childs, 2004) with GIS analysis techniques from the function
“Spatial Statistic” extension of ArcGIS 10.3 (ESRI Inc., 2017).
Only the epidemic years are shown. The complete chronology
can be found in the Supplementary Material (Supplementary
Figure S1).

TABLE 1 | Datasets compiled for this study.

Dataset name Sampling date Publication Species Tree samples Max age Sites Nbr
281 MRNF 1999 - P mariana 15 251 1
Project North shore 2006 - P mariana 69 234 1
MRNQ Abitibi 1998 - P mariana 9 205 1
Mixed projects - - P mariana 962 309 6
Project Northern limit 2018 Present publication P mariana 738 346 56
Project 51-52 2011 Tremblay et al., 2011 P mariana 992 292 13
Project Fantin 2000 - P mariana 40 179 3
Primitive forests 2009 - P, mariana 50 275 1
Project Jardon 2003 Jardon et al., 2003 P, glauca 608 250 32
Project Levasseur 2000 Levasseur, 2000 P, mariana 203 253

Project Navarro 2013 Navarro, 2013 P mariana 120 291 4
Project UQAT 1999 - P mariana 31 176 1
Total 3837 123
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Cluster and Hotspot Analysis

To evaluate the spatial synchrony of insect outbreaks, hotspot and
coldspot analyses estimated spatial clustering among the study
sites affected or not affected by SBW outbreaks in eastern Canada
based on the Getis-Ord local statistic using a fixed distance band
estimated as:

L X wijx— XCTL wig)

G = (1)
S n >y w2 = wij)
n—1
_on>t x
X=-==7 )
n
noox2 )
S— /Z—IJ - (%) 3)
n

where x; corresponds to the percentage of trees affected for site j,
w;,j is the spatial weight between feature i and j, and # is equal to
the total number of sites.

Hotspot/coldspot fields were recognized based on statistically
significant levels (i.e., 0.1, 0.05, or 0.01); these fell into hotspots,
where high values were intermingled with high values and
coldspots where low values were intermingled with low values.
Areas where high values were surrounded by lower values
and where low values were surrounded by higher values
were considered as non-significant clusters. To summarize the
overloading of maps, these outputs were also presented using
Hovmoller diagrams (Persson, 2017). This tool is effective for
displaying large amounts of data. It is a technique that is used
frequently in atmospheric sciences (Du and Rotunno, 2018). This
diagram represents the longitude (or latitude) versus time with
the value of the dataset represented through color or shading.
RasterVis and LevelPlot R packages were used to plot Gi*Z-scores
and p-values.

Climate Model

To improve the interpretation of patterns the
dendrochronological data, we used a climatic model provided

in

by the Climatic Research Unit at the University of East
Anglia (CRU TS 3.10). This model is based on an updated
gridded climate dataset across the global land areas (excluding
Antarctica). The data available for our study area was provided
by the Canadian Historical Temperature Database (Vincent
and Gullett, 1999). The dataset is composed of monthly
precipitation and mean temperature observations on a 0.5-
degree latitude/longitude grid over the entire 20th century.
Anomalies (positive and negative mean deviations) were
estimated using the mean values for each cell for the period
with best coverage (1961-1990) (Jones et al, 2012). These
anomalies were averaged for each season and used as explanatory
variables to compute Ordinary Least Squares linear regression
in order to model the relationship between climate variables
and the percentage of affected trees (dependant variable). In
the absence of non-host chronologies at the landscape scale,
this procedure allows us to better assess the proportion of the
variability relative to climatic factors versus the unexplained
variation (residuals) which can be attributed to SBW outbreaks.
Spatial autocorrelation (Moran’s Index) was conducted on
standard deviations of the residuals to analyze its clustering
level.

RESULTS

The percentage of affected trees over the entire study area
revealed three main SBW outbreak periods in eastern
Canadian forests over the last century (Figure 2). Each
insect outbreak differed in terms of duration and severity.
The first outbreak occurred between 1905 and 1930, and
nearly 40% of the studied trees were affected by SBW activity
at the epidemic’s peak (1914). The second outbreak was the
longest infestation, lasting from 1935 to 1965, although it
had the lowest severity level with only 30% of trees being
affected during the peak (around 1950). The third outbreak
from 1968 to 1988, was the shortest, yet it was the most
severe affecting nearly 50% of the studied trees in 1977
(Figure 2).
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FIGURE 3 | Hovmoller diagrams for the spatiotemporal patterns of spruce budworm outbreak impacts during the last century in eastern Canadian boreal forests
where (A,B) represent the Z-scores of Getis-Ord Hotspot analysis by latitude (left) and by longitude (right), respectively. Red represents hotspots having a high
percentage of affected trees. Blue represents cold spots having a low percentage of affected trees. (C,D) present, the significance by latitude and longitude,

respectively. Red, p-value < 0.05; White, p-value > 0.05.

Hotspot and cluster analyses revealed changes in the
spatiotemporal patterns of SBW dynamics, as well as the impacts
across the eastern Canadian boreal forest during these three
periods of budworm outbreak over the last century (Figures 3, 4).
From 1905 to 1910, no hotspots were recorded. This pattern
indicates no synchronization at the landscape scale, although we
detected a pattern of locally affected sites from the southwest
to the east with a moderate percentage of affected trees
(Figure 4 and Supplementary Figure S1a). A significant hotspot,
composed of multiple sites was registered in the southwestern
portions of the study area in 1911. This infestation reached a

maximum affected area of ~280,000 km? in 1914, and then fell
to a lower impact phase in 1921 (Figure 4 and Supplementary
Figure S1b). This outbreak affected primarily white spruce
sampled within the fir domain (Jardon, 2001). SBW activity
demonstrated a temporal delay when the area north of the 50th
parallel was affected at a later date (1920-1930), with a lower
proportion of affected trees and a lower clustering level compared
to previous events to the south of our study area (Figures 3, 4).
A similar pattern was observed for the second insect outbreak;
various sites recorded moderate to severe outbreaks at the local
scale prior to the onset in 1944. Four spots had persistently
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FIGURE 4 | Spatiotemporal patterns of spruce budworm impacts (percentage of affected trees) and synchrony (Getis-Ord hotspot analysis) in eastern Canadian
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high percentages of affected trees from the early 1940s (the
Abitibi region, southwest of Lake Saint-Jean, the Upper North
Shore, and Lake Mistassini). There was a cluster of sites in the
southwestern region (1944) that formed a hotspot followed by
an eastward expansion of moderate to severe SBW impact until
1957. This outbreak reached an affected area of ~170,000 km?

in 1950 (Figure 4). The third outbreak had a widespread impact
on stands of the fir domain from west to east across our study
area, corresponding to 80% of the forest area (*550,000 km?).
This insect outbreak period was first recorded in the northern
portion of the spruce-moss domain (especially in sites close to the
limit of the commercial forest) in 1970. Analysis of the hotspots
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revealed a significant cluster of high values in the northern forest
for a short period (1970-1971). A persistent pattern having a high
percentage of affected trees was identified in the southwest in
1973, followed by an increasing eastward distribution until 1978,
finally ending in a retraction to its original position from 1978 to
1982 (Figures 3, 4).

Based on severity (number of affected trees) and duration
(number of years), we determined the differences in SBW
outbreak intensity between the northern and southern portions
of the eastern Canadian forests over the last century (Figure 5).
In the northern stands, tree-ring chronologies registered a higher
number of years of weaker outbreaks than in the southern sites.
However, severe SBW outbreaks were rare at the northern limit
of the commercial forest during the 20th century (Figure 5).
The southern portion of the study area was characterized by
shorter, more severe, and more synchronized periods of SBW
infestation.

Climate regressions had relatively high R? values for each
outbreak period, ranged from 0.56 to 0.70 (Table 2). However, the
Koenker and the Jarque-Bera statistics indicated non-stationarity
and heteroscedasticity. Thus, the relationship between climate
and outbreak periods was spatially inconsistent and changed
with explanatory variable magnitudes. Indeed, even if each
explanatory variable was significantly correlated to the frequency
of affected trees, and even if the Variance Inflation Factors
(VIF) indicated no redundancy among explanatory variables
(<7.5), the model was improperly specified. The Moran’s Index
between 0.36 and 0.47 indicated significant tive clustering of
the regression residuals. Thus, a key variable was missing and
the model was mis specified suggesting that a key variable is
missing and that the model is misspecified. Therefore, As a
matter of fact, the spatial patterns of the regression residuals
was is similar to the one of the measured percentage of trees
affected and the higher values are consistently underestimated,
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TABLE 2 | Ordinary Least Squares model for each outbreak period.

First outbreak: 1909-1921

R? F-value Koenker Jarque-Bera Moran’s |

0.63 261.81 89.63 29.67 0.40

Variable Coefficient SE t-Statistic P VIF

Intercept -3.07 2.54 —1.21 0.2270 -

Summer temperature 45.36 2.3 19.73 <0.0001 2.93

Autumn temperature —64.86 3.57 —-18.12 <0.0001 3.21

Winter temperature —12.39 2.32 —5.34 <0.0001 1.57

Spring precipitation —1.09 0.1 —-10.73 <0.0001 1.31
Second outbreak: 1945-1957

R2 F-value Koenker Jarque-Bera Moran’s |

0.56 132.65 93.60 26.95 0.47

Variable Coefficient SE t-Statistic P VIF

Intercept -3.73 217 —-1.72 0.0864 -

Winter temperature —35.62 2.16 —16.46 <0.0001 1.14

Autumn temperature 39.73 2.28 17.46 <0.0001 1.48

Spring temperature 22.67 3.86 5.87 <0.0001 1.18

Winter precipitation 0.71 0.1 7.34 <0.0001 1.44

Summer precipitation —1.44 0.08 —17.52 <0.0001 1.25

Spring precipitation 0.35 0.1 3.5 0.0005 1.1

Third outbreak: 1970-1982

R? F-value Koenker Jarque-Bera Moran’s |

0.70 247.79 34.84 33.40 0.36

Variable Coefficient SE t-Statistic P VIF

Intercept 37.59 1.32 28.4 <0.0001 -

Winter precipitation —1.18 0.16 —7.4 <0.0001 3.6

Autumn precipitation -0.89 0.17 -5.12 <0.0001 1.6

Spring precipitation 1.4 0.14 9.8 <0.0001 2.66

Winter temperature -50.27 2.94 —17.09 <0.0001 2.11

Autumn temperature 42 5.47 7.68 <0.0001 2.96

Spring temperature 39.67 8.13 4.88 <0.0001 2.18

The variables included were selected among spring, summer, autumn and winter precipitation and temperature in order to best fit the model (Variance Inflation Factor
—VIF < 7.5 and significant coefficient). Values in bold correspond to significant results (P < 0.05), SE correspond to standard error.

in the southwest and southeast portion of the study area for
the first and the second outbreak periods (Figures 6cl,c2)
and in the southwest and the northeast for the third one
(Figure 6¢3).

DISCUSSION

Under most climate change scenarios, disturbance regimes are
likely to be most pronounced within the boreal biome (Seidl
et al., 2017). As a consequence, much research has been aimed
on improving our understanding of fire (Cyr et al, 2016;
Drobyshev et al.,, 2017; Portier et al., 2018), insect outbreaks
(Boulanger et al., 2016; Boulanger et al., 2017b; Montoro Girona

et al., 2018b), and windthrow (Anyomi et al., 2017; Saad et al.,
2017) in the North American boreal forest. In the recent years,
the eastern Canadian boreal forest has been experiencing a SBW
outbreak, during which some of the most productive forest areas
have been severely damaged (e.g., along the North Shore region),
thereby with implications at the ecological (forest dynamics) and
economic level (financial losses) due to the large extent of affected
forest. As the frequency and severity of disturbances are expected
to increase under future climate change scenarios, understanding
the impact of SBW outbreaks in the past becomes essential for
adapting to the uncertainties of climate change. In this study,
we provide for the first time a landscape reconstruction of the
spatiotemporal pattern of SBW dynamics over the last century
across a vast study area of almost 1 million km? in the eastern
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FIGURE 6 | Ordinary Least Squares (OLS) model for each outbreak period. (A) Average measured percentage of affected trees over an outbreak period. (B) OLS
estimated percentage of affected trees over an outbreak period using seasonal precipitation and temperature as explanatory variables according to the Table 2.

(C) Residuals of the OLS model.

Canadian boreal forest. We also reveal the first evidence of the
presence of endemic populations of SBW north of the 50th
parallel.

This study demonstrated that SBW outbreaks have a major
impact on forest ecosystems in terms of growth reduction that
influences tree survival, regeneration, and succession (MacLean,
2016). Dendroecological series across the entire study area have
identified three main periods of elevated SBW activity (Morin
and Laprise, 1990; Jardon et al., 2003; Boulanger et al., 2012).
Contrarily to our preliminary expectation, the first hypotheses
was rejected, because each insect outbreak was manifested by a
different spatiotemporal pattern, severity, and duration, thereby
demonstrating the complexity of this ecological phenomenon.

Spatiotemporal Patterns at the

Landscape Scale

These different patterns manifest themselves by an expansion of
the spatial extent of the affected area over the 20th century. This
dynamic is confirmed at a wider temporal scale as outbreaks in
the 19th century were less synchronous and presented a lower
diffusion rate (Jardon et al., 2003). This could be the result of
a long-term forest transformation process. Baskerville (1975)

described SBW as a super silviculturist, killing overstory trees
and promoting the development of shade-tolerant species, such
as balsam fir (Morin, 1994; Morin and Laprise, 1997). Even if
the anthropogenic influences on SBW dynamics remain a matter
of debate (MacLean, 2016), we know that fire suppression, clear
cutting, and insecticide spraying tend to favor the development
of fir, SBW’s most vulnerable host (MacLean, 1980). This forest
transformation process, enhanced by the diminution of fire
frequency since the end of the Little Ice Age (Drobyshev et al.,
2017), could have a major role in explaining the onset of the first
SBW outbreak in the early 20th century (Bergeron and Leduc,
1998; Jardon et al., 2003). Furthermore, this outbreak occurred
during one of the driest decades of the last century “1910-1920”
(Girardin et al., 2009), reducing host trees’ vigor, and favoring
their susceptibility to subsequent stresses, such as fire or SBW
outbreaks (Flower et al., 2014; Berdanier and Clark, 2016).

The full spatial extent of this outbreak is described here for
the first time at the landscape level using dendrochronological
data and including sites from both fir and spruce domain. From
1909 to 1921, this outbreak affected mainly the fir domain south
of the 50th parallel. Several local infestations were recorded in
the years 1905-1909, prior to the synchronized outbreak in the
southwestern portion in 1911 (Supplementary Figure S1a). This
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synchronization at a regional and landscape scale could stem
from favorable weather conditions (Moran effect) (Myers, 1998;
Royama et al., 2005) combined with the exchange of eggs by moth
dispersion (Williams and Liebhold, 2000). The northern part of
the study area was later affected moderately and synchronously
during the 1920s. A second infestation (1935-1965) was smaller
in extent, had a milder impact in more northern latitudes.
However, this event does present the same pattern than the first
outbreak with local infestations occurring during a few years
prior to a synchronized outbreak at a wider scale. Our data
tend to confirm the theory of Blais (1983) and suggest that an
outbreak following a stand-replacing epidemic event will have a
lower impact due to the establishment of less vulnerable younger
stands. Finally, the 1968-1988 epidemic was the largest, most
synchronous, and best-documented SBW outbreak in eastern
Canada (Morin and Laprise, 1990; Morin et al., 2007). Its
dynamics in the spruce domain presented a very different pattern
from the earlier outbreaks, and it appears to have reached almost
all study sites. Furthermore, although spruce are less vulnerable
to SBW than fir (MacLean, 1980), many spruce stands were
significantly impacted by this outbreak.

Factors Involved in Spatiotemporal

Patterns at Multiples Scales

These differences in spatiotemporal patterns could be explained
by many factors, one of the most important being climate. In
fact, as climate influences SBW population dynamics, it also
causes stress to host stands causing them to be more vulnerable
to subsequent biotically induced disturbances (De Grandpré
et al., 2018a). Greenbank (1956) demonstrated that hot and
dry summers influenced the onset of the 1912 and 1949 SBW
outbreaks in New Brunswick. Hot summer temperatures are
required for the insect to complete its life cycle (Pureswaran et al.,
2015). Drought can also increase host vulnerability by enhancing
the carbohydrate content of leaves (Mattson and Haack, 1987).
The northern portion of our study area is characterized by cold
and short summers that, at present, prevent the establishment
of endemic populations. Early frosts in the northern stands
prevent eggs from hatching (Pureswaran et al., 2015). Thus, the
outbreak impacts observed on trees from the more northern
sites during the 1920s could be evidence for the arrival of
immigrant populations from southwestern Quebec. Recently, the
use of weather radar has allowed the identification of such mass
exodus events (Boulanger et al., 2017a). However, the 1968-1988
outbreak provides a different picture as severe and synchronous
local epidemics were recorded in the early phases (1970-1971) of
the outbreak within the North Shore region before any growth
reduction was recorded in the fir domain (1972) (Figure 4 and
Supplementary Figure Sle). This phenomenon matches with
the distribution of our regression analysis residuals, discarding
the hypothesis of a climatic event influence as a unique factor
of growth reduction (Figure 6). This could therefore be the
first evidence of the presence of endemic populations of SBW
north of the 50th parallel. In addition, as black spruce phenology
and overall shoot length increase in response to experimental
warming (Bronson et al., 2009), this could have reduced the

phenological asynchrony between the insect and host, thereby
making northern sites more suitable for infestation. These
arguments give weight to the hypothesis of a northward shift in
the extent of SBW outbreaks during the 20th century (Régniere
et al., 2012; Pureswaran et al., 2015). Gray (2013) identified the
North Shore region and Gaspé Peninsula as the areas having the
highest increases in outbreak severity and duration; this agrees
with our dataset from the North Shore and with the onset area
of the current infestation. Unfortunately, our dataset did not
contain sites from the Gaspé Peninsula.

SBW dynamics recorded at the regional scale differ between
the northern and southern portions of the study area. In the
spruce domain, we observed more cumulative years of growth
reduction than what was observed in the southern regions
(Figure 5). However, we have found only a few occurrences of
severe SBW impacts on black spruce in comparison to the fir
domain where white spruces were periodically (and severely)
affected. First, black spruce is less vulnerable to SBW than
white spruce or balsam fir. This is due to an asynchrony of
approximately 14 days in budburst phenology causing high rates
of mortality for the second instar larvae trying to feed on this host
(Nealis and Régniere, 2004). Despite the fact that white spruce
buds burst in a time frame more similar to balsam fir than black
spruce, white spruce also produces more buds that develop and
lignify faster (Nealis and Régniére, 2004). According to MacLean
(2016), balsam fir and white spruce, being less resistant species,
are more prone to secondary mortality agents, such as shoestring
root rot, Armillaria mellea (Vahl ex Fries), which occurs in most
defoliated trees. In addition, southern mixed forest benefit from
a greater diversity of SBW natural enemies, which could also
explain the lower frequency and shorter duration of outbreaks in
this zone (Cappuccino et al., 1998; Campbell et al., 2008).

Methodological and Forest Management

Implications

Similarities were observed between our spatiotemporal patterns
and the aerial surveys of defoliation in the area (Gray et al,
2000; Gray and Mackinnon, 2006). Although these surveys
were not conducted specifically to measure SBW impacts on
black spruce at these latitudes, they still show an important
spread of the epidemic in 1974, especially in the spruce-moss
domain. It is possible that dendrochronology detects epidemic
thresholds earlier as it is more sensitive, and the technique
is better suited to black spruce. Indeed, growth reductions
can be observed for defoliation levels that are not detectable
with aerial surveys, which are categorial (none, light, moderate,
severe).

The dendroecological approach has shown its effectiveness in
the study of past insect outbreak dynamics (Jardon et al., 2003;
Morin et al., 2007; Boulanger et al., 2012). Given the large amount
of dendrochronological data that has been published during the
last decades, large-scale meta-analyses are increasingly important
and can provide a complete portrait of historical SBW outbreaks,
placing recent events into a larger spatiotemporal context,
and completing the existing monitoring proxies. Therefore, to
provide a more relevant understanding of the SBW dynamics,
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future sampling efforts should be more homogeneous with
sampling sites evenly distributed and with uniform sampling
methods. Furthermore, the inclusion of northern latitude sites
demonstrated its potential for improving our understanding of
past outbreak patterns, but also the methodological difficulties
associated with the inclusion of a secondary host in the
analysis. The inclusion of such chronologies will be challenging,
nonetheless, given the difficulties in accessing sampling sites,
finding old trees able to provide long chronologies, and,
moreover, the difficulty of finding non-host trees to refine the
epidemic signal. We recommend continuing the collection of
more samples from northern latitude sites, considering new areas
(e.g., Ontario and Gaspe peninsula), as well as adding other
species affected by SBW (e.g., balsam fir). Getting more details
across the historical distribution area of SBW will improve the
resolution of the existing dendroecological database. Based on
our results concerning the potential links between climate and
SBW activity (Figure 6), we suggest that future research should
be developed to better discriminate the interactions connecting
climate anomalies, as a triggering or interrupting factor of growth
reduction, to SBW and its hosts dynamics.

Natural disturbance regimes are an integral part of boreal
forest ecosystems, and silvicultural methods are now attempting
to emulate their impacts by adapting more appropriate harvesting
treatments (Kuuluvainen and Grenfell, 2012; Montoro Girona
et al., 2018a). Many studies have focused on the role, impact,
and frequency of fire cycles on the management of boreal
ecosystems (Bergeron et al.,, 2002; Kuuluvainen and Grenfell,
2012); however, the understanding of the role and impacts
of insect outbreaks remains incomplete, in particular at a
larger scale (De Grandpré et al., 2018b; Robert et al., 2018).
Understanding SBW disturbance regimes at the landscape-scale
and implementing effective management strategies requires to
define outbreak dynamics in both time and space (Bouchard
and Pothier, 2010). Currently, sylvicultural practices aim to
imitate fire disturbances promoting large clearcuts (Hunter,
1993; National Forest Database [N.F.D], 2016. In order to
reduce boreal forest vulnerability to SBW outbreaks, some
authors proposed to adapt sylvicultural treatments and forest
management promoting the harvesting of the most susceptible
stands such as mature fir stands (MacLean, 1980, 1996;
Sainte-Marie et al., 2014) and favor uneven-aged spruce
and mixed stands through silvicultural practices such as
partial cuttings (Bergeron et al, 2017). Integrative multiple-
disturbance research is needed to better understand the climatic
and ecological context of insect outbreaks and to identify
the type of interactions that occur during these events; as
such, adequate management strategies can be developed in
accordance with the forest structure at regional and local
scales.

CONCLUSION

Natural disturbance regimes define forest ecosystems by
influencing their structure, species composition, and functional
processes. The evaluation of outbreak periods during the last

century demonstrated that SBW is a major disturbance event in
eastern Canada, affecting large surfaces and having an impact
on forest ecosystem dynamics. Landscape-scale reconstruction
of the spatiotemporal patterns of SBW outbreaks in eastern
Canadian forests highlighted three outbreaks during the 20th
century, each having different spatiotemporal patterns, duration,
and severity. This study revealed the diversity and complexity
of outbreak dynamics over time as well as the importance of
meta-analyses for better understanding the SBW patterns at the
landscape scale and evaluating the impacts on forest ecosystems.
Furthermore, this study represents a major contribution to forest
ecology providing valuable data from remote sites located at the
limit of commercial forests.

Under climate change, natural disturbances regimes and
species’ distributions are expected to be altered. Based on
dendroecological approaches, we demonstrated evidence of SBW
activity north of the 50th parallel, adding weight to the hypothesis
of a northward shift in the extent to the outbreaks during the 20th
century (Régniere et al., 2012; Pureswaran et al., 2015). Finally,
improving our understanding of natural disturbance cycles at
multiple scales should be a priority for assessing boreal forest
adaptation and modification to future climate change.
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