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The Arabian Peninsula is known to have a comprehensive and rich endowment of
unique and genetically diverse plant genetic resources. Analysis and conservation of
biological diversity is a crucial issue to the whole Arabian Peninsula. The rapid and
accurate delimitation and identification of a species is crucial to genetic diversity analysis
and the first critical step in the assessment of distribution, population abundance and
threats related to a particular target species. During the last two decades, classical
strategies of evaluating genetic variability, such as morphology and physiology, have
been greatly complemented by phylogenetic, taxonomic, genetic diversity and breeding
research molecular studies. At present, initiatives are taking place around the world to
generate DNA barcode libraries for vascular plant flora and to make these data available
in order to better understand, conserve and utilize biodiversity. The number of herbarium
collection-based plant evolutionary genetics and genomics studies being conducted has
been increasing worldwide. The herbaria provide a rich resource of already preserved
and identified material, and these as well as freshly collected samples from the wild can
be used for creating a reference DNA barcode library for the vascular plant flora of a
region. This review discusses the main molecular and genomic techniques used in plant
identification and biodiversity analysis. Hence, we highlight studies emphasizing various
molecular techniques undertaken during the last 10 years to study the plant biodiversity
of the Arabian Peninsula. Special emphasis on the role of DNA barcoding as a powerful
tool for plant biodiversity analysis is provided, along with the crucial role of herbaria in
creating a DNA barcode library.

Keywords: Arabian Peninsula, molecular markers, genomic techniques, plant biodiversity, DNA barcoding,
herbarium collections
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INTRODUCTION

The Arabian Peninsula is a topographically diverse region
ranging from rainless vast sandy and rock deserts such as the
Rub’ al-Khali and the Great Nafud, to mist-covered mountains
reaching over 3,000 m in height along the escarpment of the
southwest (Ghazanfar and Fisher, 1998; Al Farhan et al., 2008).
It has arid to hyper-arid climates (Loughland and Cunningham,
2002) (Figure 1). Such topographic heterogeneity has given rise
to a diversity of habitats and a correspondingly diverse array
of both plant and animal species. The vegetated landscape of
the Peninsula includes woodland, bushland, thicket, shrubland,
scrub, mangrove, and desert with seasonal annuals. The species
composition shows a mix of Holarctic and Palaeotropical
elements (Miller and Cope, 1996; Knees et al., 2010). The Arabian
Peninsula is known to have a rich endowment of unique and
genetically diverse plant genetic resources. According to Miller
and Morris (2004), the Peninsula is home to approximately
3,418 plant species, out of which roughly 357 (11.5%) are
endemic. Hence, the flora of the Arabian Peninsula has
great ecological and socio-economic importance (El-Keblawy,
2018). The United Arab Emirates (UAE) has about 830 plant
species. However, detailed studies of the UAE flora and plant
communities are scarce, with data often lacking (Gairola et al.,
2017).

The natural ecosystems of the Peninsula, like many other
arid regions, are susceptible to habitat fragmentation. The
major threats to plant diversity include habitat loss and
degradation, overgrazing by livestock, overexploitation, off-road
driving, pollution and anthropogenic climate change (Ferguson
et al., 1998; Ghazanfar and Fisher, 1998; Abu-Zinada et al.,
2008; Al Farhan et al., 2008; Brown et al., 2008; El-Keblawy
et al., 2009, 2015; Ghazanfar, 2010; El-Keblawy, 2017, 2018).
High mountains harbor a unique and large portion of the
Arabian Peninsula’s biodiversity. Mountain flora are often
endemic as many species remain isolated at high elevations
(Thomas, 2010). For example, the Hajar Mountains in eastern
Arabia (Northern Oman and the eastern UAE) are among
the highest mountains in the Arabian Peninsula and have
been classified as a local center of endangered and endemic
plants in the eastern Arabia (Miller and Nyberg, 1990; Patzelt,
2008). A total of 75 species are locally endemic to the high
mountains of Ru’us al-Jibal (Feulner, 2011; El-Keblawy, 2014).
These biodiversity hotspots would be seriously affected by
expected global warming, and consequently their endemic and
endangered species would be under threat (El-Keblawy, 2014).
This emphasizes the threat and distinctiveness of the flora in
the high mountains and, consequently, the importance of their
conservation.

Among the main causes of native plant extinction is
the introduction of invasive species (Barbier et al., 2013).
Biological invasions are recognized as one of the most
important causes of ecosystem degradation as well as
community structure, local species and biodiversity losses
worldwide (Pyšek et al., 2012). In the Arabian Peninsula,
Prosopis juliflora has been introduced for the rehabilitation of
degraded afforestation lands (El-Keblawy and Abdelfatah, 2014).

FIGURE 1 | Map Arabian Peninsula representing nine countries.

It has invaded many habitats and significantly reduced the
native floral diversity (El-Keblawy and Abdelfatah, 2014;
El-Keblawy et al., 2015). As it forms impenetrable shrubby
thickets, P. juliflora has a very negative impact on the native
flora as it depletes the water-table, thus indirectly starving
native plants of other species due to lack of moisture and
nutrients (El-Keblawy and Ksiksi, 2005; El-Keblawy et al.,
2015). In addition, this species produces allelochemicals that
kill understory native plants (El-Keblawy and Abdelfatah,
2014).

Conservation of individual species and genetically biodiverse
hot spots require the use of recent molecular techniques for
proper species identification. Additionally, assessing the genetic
relationship between native plants and their close relatives
(among domesticated crops) would help in defining and inserting
these genes.

The valuable biological resources of the Peninsula are an
integral part of the natural heritage and provide important
ecosystem-related goods and services. Therefore, there is a need
to conserve and manage these species. Recently, interest in
biodiversity studies has increased through the use of promising
approaches like molecular and morphological data for identifying
taxa, studies of species complexes, and in aiding species
delimitation and identification.

The rapid and accurate delimitation and identification of a
species is the basis for biodiversity conservation and is one of
the keys to improving species management and conservation
(Trias-Blasi and Vorontsova, 2015). Molecular and genomics
techniques are now being utilized in a variety of plant biodiversity
studies, including identification of plant species (e.g., Savolainen
and Karhu, 2000), creating DNA barcodes for large taxonomic
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groups (e.g., Ojeda et al., 2014), addressing discrete taxonomic
problems (e.g., Feau et al., 2011), discovery of new taxa (e.g., Bell
et al., 2012), species conservation tools (e.g., Yesson et al., 2011),
and building phylogenetic trees, enabling studies on community
ecology (e.g., Joly et al., 2013; Kress et al., 2015). DNA barcoding
has become increasingly common since it was proposed in 2003.
The Consortium for the Barcode of Life (CBOL Plant Working
Group et al., 2009) plant working group recommended the 2-loci
combination of rbcL and matK as the standard chloroplast DNA
barcode for land plants. However, there have been persistent
calls from some researchers (Parmentier et al., 2013; Li et al.,
2015; Daru et al., 2016) to include ITS into the core barcodes
as well. In addition, Chen et al. (2010) proposed that the ITS2
region could potentially be used as a standard DNA barcode,
especially for identifying medicinal plants and their closely
related species.

From the botanical perspective, herbarium specimens are
an important source of DNA for plant research. Recently,
Heberling and Isaac (2017) suggested that herbarium
specimens can be viewed as “exaptations,” as the current use of
collections reaches far beyond their originally anticipated
uses. Researchers have documented that DNA is often
preserved in herbarium samples, allowing amplification
and successful sequencing. However, the extraction of
plant material from herbarium specimens suitable for DNA
analysis has been investigated with varying degrees of
success depending on the technique used, age of material,
preservation methods, and the conditions in which specimens
have been stored (e.g., Rogers and Bendich, 1985; Liston
et al., 1990; Lister et al., 2008; Andreasen et al., 2009;
Särkinen et al., 2012; Kuzmina et al., 2017). The recent
progress achieved in barcoding preserved specimens in
herbaria, museums and other repositories increases the
value of these collections as a source of genetic diversity
information that is relevant to ecology, population genetics,
and evolutionary and conservation biology (Wandeler et al.,
2007).

Recently, some attention has been devoted to genetic diversity
analysis, species delimitation and barcoding desert plants in
the UAE (Gairola et al., 2018). Enan et al. (2017) highlighted
that DNA barcoding has demonstrated promising outcomes
from both fresh and herbarium samples of desert plants in the
UAE. The authors concluded that the rbcL regions demonstrated
a realistic potential to distinguish the UAE species under
investigation into the appropriate family and genus. However,
the molecular identification and phylogenetic analysis of the
UAE’s flora is yet to be investigated. The combination of rbcL
and matK has been successful in barcoding some of the desert
plants in the UAE (Enan et al., 2017). Recently, a project to
barcode the entirety of UAE flora has been initiated at the
Sharjah Research Academy (SRA). Conservation of biological
diversity is a crucial issue for the whole Arabian Peninsula
and it is vital that DNA barcoding of the regional flora is
attempted.

In this article, we discuss the progress that has been made in
using molecular and genomic techniques for biodiversity studies
in the Arabian Peninsula, accompanied by studies highlighting

the particular forms of molecular techniques undertaken in
the Arabian Peninsula during the last 10 years. Particular
emphasis is given to the potential of DNA barcoding as a
powerful tool for molecular identification as well as in various
taxonomic, molecular ecology, phylogenetics and biodiversity
research. Additionally, we have devoted more attention to
the crucial role of herbaria in creating a reference DNA
barcode library for rapid and accurate identification of floral
diversity.

STANDARD MOLECULAR AND
GENOMIC TECHNIQUES IN PLANT
BIODIVERSITY ANALYSIS

Molecular markers, specifically DNA-based markers, can provide
a good estimation of genetic diversity. A molecular marker is
a DNA sequence with a known location on the chromosome
and whose inheritance can be monitored. The development
of molecular markers depends on polymorphisms found in
DNA, and the information obtained can be used to measure
the relationships between organisms and other genetic diversity
studies (Hoshino et al., 2012).

There are many molecular markers available today for
researchers in the plant sciences field. Although some can be
identical, similar or synonymous, many differ in their principles,
methodologies, applications, resolving power to detect genetic
differences, and in the type of data they generate. Each molecular
technique has its own advantages and disadvantages, but the
majority of these techniques can be used for several applications
like genetic mapping, marker assisted selection and phylogenic
analysis (Semagn et al., 2006; Arif et al., 2010a; Mishra et al.,
2014). In order for a molecular marker to be considered
as ideal for usage in a specific technique, it should possess
certain features, including genomic abundance and high level of
polymorphism, easy and fast assay, co-dominance of alleles and
high reproducibility (Mondini et al., 2009). Obtaining a single
molecular marker that presents all the mentioned features among
the various types is difficult. However, depending on the type of
study and the technique to be used, a suitable marker system
that satisfies the requirements can be chosen (Spooner et al.,
2005).

To evaluate relevant studies undertaken in the Arabian
Peninsula during the last 10 years on plant genetic diversity
using various molecular and genomic techniques, NCBI PubMed
was used on the 15th of June 2017. We obtained relevant
search results through multiple queries using the advance search
builder [Query: ((plants) AND <marker>) AND <country>].
Further results were filtered to restrict the search criteria to
one decade (2007–2017). Some articles that were not retrieved
through the advance search query were added from their
citations in the retrieved articles by reviewing them critically.
Obtained results were segregated according to the country
and molecular marker, and a flow chart with bar graph
was generated (Figures 2A,B). Discussed below are the long-
established molecular markers used to study plant biodiversity in
the Arabian Peninsula.
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FIGURE 2 | (A) Flow diagram of the studies (peer reviewed) undertaken in a decade using various molecular markers and genomics techniques from the Arabian
Peninsula. (B) Plot of studies utilizing various molecular techniques.

Restriction Fragment Length
Polymorphism (RFLP)
Restriction fragment length polymorphism (RFLP) analysis is a
technique used to differentiate among species by analyzing the
characteristic pattern formed by the digested DNA fragments.
The RFLP markers tend to be inherited as simple Mendelian
co-dominant alleles (Agarwal et al., 2008), as both alleles in
a heterozygous sample will be detected. However, their DNA
rearrangements are due to evolutionary process, point mutations
within the restriction enzyme recognition site or unequal crossing
over (Kumar et al., 2009; Mishra et al., 2014). The resultant
patterns from different samples, formed by separation of bands
using agarose or polyacrylamide gel electrophoresis, are analyzed
to differentiate among the plant species from which the samples
are to be taken (Agarwal et al., 2008). These different patterns
formed by digesting DNA obtained from samples of different
plant species are due to polymorphisms or changes in the
recognition sites.

There are few studies reporting the utilization of RFLP
markers for plant biodiversity analysis in the Arabian Peninsula
(Figure 2). A traditional approach for detecting polymorphism
from Saudi Arabian fenugreek using RFLP markers was adopted
by Haliem and Al-Huqail (2013). They used four RFLP restriction
enzymes that resulted in higher polymorphism (about 88.7%) in
comparison to when the enzymes were absent during SDS-PAGE
(only 80%). Additionally, Al-Mahmoud et al. (2012) used RFLP
markers for sex differentiation in the date palm (Phoenix
dactylifera) at the earliest stages. The primers designed for this

study were gender-specific, which revealed higher accuracy (90%)
in distinguishing date palm gender across multiple varieties.

Amplified Fragment Length
Polymorphism (AFLP)
Amplified fragment length polymorphism (AFLP) is a highly
sensitive method which combines both RFLP and PCR
technologies. DNA of any origin, complexity, or even partially
degraded DNA can be analyzed using this method. The concept
of AFLP includes the amplification of digested fragments of
the genomic DNA by PCR (Vos et al., 1995; Mueller and
Wolfenbarger, 1999). This technique is capable of ‘genome
representation,’ which means that all representative DNA regions
that are distributed randomly around the genome will be
screened at the same time (Meudt and Clarke, 2007; Idrees and
Irshad, 2014). The polymorphisms are detected as differences
in the length of the amplified fragments and are considered as
dominant markers (Sunnucks, 2000; Belaj et al., 2003; Campbell
et al., 2003; Schlötterer, 2004; Kumar et al., 2009). However, they
can also act as co-dominant markers at certain loci (Mishra et al.,
2014).

Several studies reported the observance of genetic diversity
and phylogenetic relationships in the Arabian Peninsula
(Figure 2). For example, from the southern region of Oman,
the genetic variation in local banana cultivars (Musa cvs.) was
studied using AFLP. They successfully identified about 92.5% of
polymorphism and recommended AFLP as an efficient marker
in determining the relationship between cultivars (Opara et al.,
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2010). Another study in Jordan reported higher variability in
the genetic structure of Stipa populations (n = 120) in semi-
desert species than in ruderal habitats (Hamasha et al., 2013).
The authors attributed the genetic variation to a steep climatic
gradient that may have shaped the genetic structure of plant
populations. El Rabey et al. (2014) indicated that this technique
is also able to successfully recognize different genotypes in
plant species by analyzing their phylogenetic relationship. These
authors analyzed 10 species from the genus Hordeum collected
across Jordan and Iraq using AFLP markers. Their study
clustered the taxa according to their genotypes into two main
groups representing the Old and New World taxa. Additionally,
Alghamdi et al. (2014) assessed the genetic diversity among 35
introduced lentil genotypes (Lens culinaris) from Saudi Arabia
and reported a 100% detection rate of polymorphism. Similarly,
development of DNA fingerprints that may enable species
discrimination using AFLP molecular markers was reported in 10
date palm (Phoenix dactylifera) cultivars from Saudi Arabia; the
polymorphism levels ranged from 63% to 84%, with an average of
76%. Furthermore, Ammar et al. (2015) explored the molecular
diversity among 40 faba beans (Vicia faba) using AFLP markers
and reported considerable genetic diversity in the studied
genotypes. Another study reported the heterogeneity among the
Salvia spinosa and Salvia syriaca populations from different
phytogeographical regions of Jordan, indicating an increase in
genetic diversity in relation with increased temperatures. In this
study, populations’ heterogeneity increased from moist to arid
environments, which could be the driving factor behind the
observed variation and genetic diversity (Al-Gharaibeh et al.,
2016, 2017). From these studies, it is clear that AFLP marker
systems possess a high level of resolution and discrimination
power, and hence can be used in varietal discrimination of
species.

Random Amplified Polymorphic DNA
(RAPD)
Random amplified polymorphic DNA (RAPD) is a PCR-based
technique for identifying genetic variation. The RAPD technique
is efficient in screening and detecting polymorphisms at several
discrete DNA loci (Kumari and Thakur, 2014). RAPD is
considered as a genetic marker since it is dominant and randomly
distributed. RAPD could be performed at different levels; ranging
from the individual to the species level. Additionally, RAPD
is used to estimate the genetic diversity of plant populations
in variability analysis (Ndoye-Ndir et al., 2008) and during
genotyping to determine diversity and relatedness (Akbulut et al.,
2009).

Random amplified polymorphic DNA markers were used to
successfully characterize and identify 11 Saudi Arabian plant
species of desert origin, some with known medicinal value
(Arif et al., 2010b). Since these plant species hold significant
value, the study was conducted to help protect such species and
allow for their appropriate use. The RAPD markers produced
distinct banding patterns, hence allowing successful species
discrimination (Arif et al., 2010b). Similarly, Sheeja et al.
(2013) used RAPD markers for the discrimination of Knema

andamanica from neighboring taxa in Qatar. The authors used
clustering analysis to separate K. andamanica from other closely
related taxa. RAPD has also been used to explore genetic diversity
among populations. In a study from Saudi Arabia, Hammad
and Qari (2010) revealed genetic variation within and between
12 populations of Zygophyllum species (Z. coccineum, Z. album
and Z. aegyptium). However, Z. coccineum demonstrated higher
levels of genetic variation than the other species (Hammad and
Qari, 2010). Similarly, Haliem and Al-Huqail (2014) studied
the genetic variation in fenugreek (Trigonella foenum-graecum)
(n = 7) from Saudi Arabia and Yemen using RAPD, concluding
that this species exhibited a high level of polymorphism (94.2%).

Sequence Characterized Amplified
Region (SCAR)
Sequence characterized amplified region (SCAR) is a
polymorphic DNA fragment of a known sequence. SCAR
markers are reliable and reproducible and thus well suited for
many applications (Yuskianti and Shiraishi, 2010). The SCAR
assay is a PCR-based assay which involves the identification of
a DNA fragment by PCR amplification using a pair of specific
oligonucleotide (15–30 bp) primers that are designed from
nucleotide sequences of cloned RAPD (or other markers)
fragments related to the trait of interest (Bhagyawant, 2016).

Based on our literature analysis, we were able to find only one
collaborative study between India and Qatar reporting molecular
identification of Knema andamanica by using SCAR markers
(Figure 2) that were developed by cloning RAPD markers. This
technique successfully identified K. andamanica from the most
genetically related species. The authors referred to the SCAR
technique as a robust methodology and suggested its use as a
DNA barcode marker in species authentication (Sheeja et al.,
2013).

Microsatellites and Minisatellites
Polymorphic loci of DNA consisting of short repeat motifs
(1–6 base pairs) are called microsatellites. Simple Sequence
Repeats (SSRs), Simple Sequence Length Polymorphism (SSLP),
Sequence Tagged Microsatellite Sites (STMSs) and Short Tandem
Repeats (STRs) are other names of the smallest class of repetitive
sequences in DNA, which are the microsatellites. Microsatellites
can be found in both the transcribed and non-transcribed regions
of the genome. Their abundance and polymorphism make them
particularly valuable for describing variation among individuals
and populations (Westman and Kresovich, 1997; Varshney et al.,
2005).

Minisatellites are also known as variable of tandem repeats
loci, or VNTR loci, because they are part of the DNA and
consist of short base pairs (10–60) that are repeated and widely
distributed in the plants’ genome. These loci can be used as
molecular markers because their repeats vary in number among
individuals and populations. In plants, minisatellites are common
and have been used as markers to assess variation between
and within species (Westman and Kresovich, 1997). Multilocus
profiles produced by using minisatellites as molecular markers
are unique when compared between individuals. This is due
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to the fact that minisatellites have a high mutation rate, hence
the level of polymorphism among individuals is also very high
(Agrawal and Shrivastava, 2014).

Several studies have used SSR markers on various plant species
to report genetic diversity, sex differentiation, determination of
population structure and polymorphism throughout the Arabian
Peninsula (Figure 2). Among those, the date palm (Phoenix
dactylifera) was one of the most extensively studied taxa. In
Oman, Bahrain and Iraq, the date palm was considered for its
genetic diversity among clonal genotypes by Al-Ruqaishi et al.
(2008) using microsatellite markers (n = 10). Their analysis
revealed identical genetic fingerprints. In Saudi Arabia, Elmeer
and Mattat (2012) studied sex differentiation in date palms
(Phoenix dactylifera) and detected 254 microsatellite loci; of
these, 22 loci could be used to identify nine out of 12 male
date palm samples (75%). In addition, Elmeer and Mattat (2015)
investigated the genetic diversity in the date palm germplasm
(female date palms cultivars). Their results indicated that all
of the cultivars displayed different levels of dissimilarity, but
they were still grouped together. These studies successfully
demonstrated the use of SSR alleles to distinguish between
large numbers of date palm cultivars. Alatar et al. (2012)
detected polymorphism in different medicinal plant species in
Saudi Arabia and provided a protocol for DNA isolation and the
SSR-PCR method. A microsatellite-based investigation of gene
flow between wild barley Hordeum spontaneum and cultivated
barley Hordeum vulgare was also performed by Hubner et al.
(2012) in Jordan. The study indicated that the SSR marker related
the genetic population structure to major ecogeographic regions
of Jordan. However, no single study utilizing minisatellites in
the Arabian Peninsula has been reported yet; this may be
due to their lack of potential in discriminating species due to
hypervariability.

Expressed Sequence Tag (EST)
Expressed sequence tags (ESTs) are portions of expressed genes
(50–400 bp) from a cDNA clone that corresponds to an mRNA.
For EST to be used as a molecular marker, cDNA libraries must
first be constructed (Semagn et al., 2006; Idrees and Irshad, 2014).

Expressed sequence tags are developed and publicly available
for most crop plants. The EST databases are a valuable resource
for the development of molecular markers that could be
used in evolutionary studies or to identify gene transcripts
that are important in gene discovery. There is an increased
generation of ESTs with advancement in high throughput
functional genomics via approaches as Serial Analysis of Gene
Expression (SAGE). Such information could provide an insight
on sequence determination, gene expression and regulation, and
for developing highly valuable molecular markers such as EST-
based RFLPs, SSRs, single nucleotide polymorphism (SNPS)
and Cleaved Amplified Polymorphic Sequences (CAPS) (Semagn
et al., 2006; Sedláček et al., 2010; Idrees and Irshad, 2014). Since
EST-derived markers come from mRNA (a transcribed region
of genome), they are likely to be conserved across a broader
taxonomic range than other types of markers (Pashley, 2006).
EST databases are sources of SSRs or microsatellites that can
be developed as ortholog-specific EST-SSR markers and used

in applications related to the genotypes of many plant species
(Ellis and Burke, 2007). Pattern-finding programs can be used
to identify SSRs in ESTs. Such markers have been reported
in various plant species, including Arabidopsis thaliana, cacao,
and sugarcane (Seong et al., 2015). EST-SSRs have a higher
probability of being functionally associated with differences in
gene expression than genomic SSRs. An advantage of EST-SSR
is being more transferable across closely related genera compared
with unknown SSRs in introns or UTRS (Varshney et al., 2005).
Hence, EST-SSRs are well-suited for studying polymorphisms
and genetic diversity as they are easier to comprehend (Seong
et al., 2015). With the advent of technology, EST is being
used for developing transcriptome research. It has been widely
applied in the analysis of gene expression and gene function
in various love spectrums (Adams et al., 1991; Boguski et al.,
1994).

Plant biodiversity studies on ESTs have not received much
attention in the Arabian Peninsula; Miryeganeh et al. (2014)
studied the level of inter-population migration of long-distance
seed dispersal in Ipomoea pes-caprae using an EST marker
sampled from Oman, Jordan, Kuwait, Saudi Arabia, and Yemen.
They concluded that the migration of seeds by sea drift was
enough to connect these distant populations.

Inter Simple Sequence Repeat (ISSR)
A DNA segment (below 100–300 bp) positioned in between
two identical microsatellite repeat regions (usually 16–25 bp
long) oriented in the opposite direction is termed Inter Simple
Sequence Repeat (ISSR) (Zietkiewicz et al., 1994; Culley and
Wolfe, 2001; Reddy et al., 2002). ISSR fingerprinting has the
advantage of not requiring sequence knowledge for primer
construction as well as demonstrating specificity of SSR markers.
ISSR markers are randomly distributed throughout the genome
and exhibit high polymorphism with different degrees.

The application of the ISSR markers has been demonstrated
extensively throughout the Arabian Peninsula (Figure 2).
For example, Obeed et al. (2008) used ISSR to investigate
fruit properties and the genetic diversity of five ber (Ziziphus
mauritiana) cultivars (Komethry, Pakstany, Um-sulaem,
Toffahy, and Peyuan) grown in Saudi Arabia. Moreover, ISSR
was used for the molecular characterization and fingerprint
identification of the ber cultivars. The authors were able to
uniquely characterize and differentiate between the five ber
genotypes successfully. In another study from Jordan, the genetic
stability of micropropagated Moringa peregrina plants was
assessed with ISSR markers. No polymorphism was observed,
indicating the genetic integrity of in vitro propagated plants (Al
Khateeb et al., 2012).

More recently, a study from Saudi Arabia revealed the
development of DNA fingerprints, early sex identification and
the aiding of conservation when using the ISSR marker (Sabir
et al., 2014a). These authors developed DNA fingerprints using
ISSR molecular markers to characterize 10 date palm (Phoenix
dactylifera) cultivars as well as to estimate the genetic diversity
amongst them. Their ISSR results indicated that the levels of
polymorphism ranged from 20 to 100% among cultivars, with an
average of 85% (Sabir et al., 2014a). Gaafar et al. (2014) evaluated
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the genetic variations across populations and geographical
regions of the endangered Breonadia salicina (Rubiaceae). The
authors used ISSR markers and revealed that the genetic diversity
levels were low within some populations, but relatively high
amongst others. Another study suggested the use of ISSR markers
to detect phenotypic variation amongst 15 genotypes of Sorghum
landrace grown in Saudi Arabia and Yemen. In this case, eight
genotypes of Sorghum bicolor were successfully differentiated into
two clusters, one with dark grains and the other with white
grains (Basahi, 2015). Recently, Al-Ameri et al. (2016) used
ISSR markers for the early sex determination of date palms in
Saudi Arabia. They were able to identify sex at the seedling stage,
where it is economically important to avoid males more than the
need of a farm. The ISSR primers used in the above studies are
useful to provide reproducible results for genetic discrimination,
sex identification, plant propagation and commercial cultivation.
El Rabey et al. (2015) analyzed 14 cereal germplasms belonging
to five cereal species (rice, wheat, barley, sorghum, and maize)
using polymerase chain reaction (PCR). Here, 10 ISSR primers
and 15 random RAPD primers were utilized as genetic markers
in order to analyze the phylogenetic relationships between
their genomes. As a result, 109 ISSR markers between 400–
3,000 bp and 130 RAPD markers were scored within the same
cultivars. The numerical taxonomy system of the multivariate
statistical (NTSYS-pc) program arranged the samples into two
clusters. The first cluster included closely related maize and
sorghum cultivars. On the other hand, the second cluster
included rice, wheat and barley in which the two latter cultivars
specifically appeared to be closer to each other than to rice. The
outcome concludes that both ISSR and RAPD markers can be
implemented successfully to study the genetic diversity of the
studied genomes.

Single Nucleotide Polymorphisms (SNPs)
Exploration of a large number of polymorphisms within the
genomes requires fast yet reliable, simple, and cost-effective
techniques. Recently, SNP markers gained much interest and
are a popular marker system of choice. SNP markers represent
variation at a single DNA nucleotide site. Occurring throughout
the genome in both protein-encoding and non-coding loci, SNPs
are useful for a variety of population genetic and genomic
applications. They can be detected and analyzed between
individuals belonging to the same species (Mammadov et al.,
2012). Typically, SNP frequencies are in a range of one SNP for
every 100–300 bp in plants (Lateef, 2015). The strength of SNP
relies on the large number of loci that can be assessed. In a low
diversity species in which rare SNPs could be discovered, the
power of discriminating the genetic population can be equivalent
to the number of loci in a genetically diverse species (Foster et al.,
2010).

Single nucleotide polymorphism-based studies in the Arabian
Peninsula were emphasized on genetic diversity of barley
cultivars, while few others investigated genetic variation from
wheat, rice and palm (Figure 2). Moragues et al. (2010) evaluated
single nucleotide polymorphic sites and selection strategies to
estimate the germplasm diversity and population structure of
different barley germplasms (landrace and cultivar), including

the landraces of Jordan. All marker subsets gave qualitatively
similar estimates of the population structure in both germplasm
sets. Another study exhibited an innovative approach, where for
the first time the oligonucleotide pool assay based on the SNP
platform was used for assessing the evolution of barley varieties
(landrace and wild) in a fertile crescent from Jordan. The study
showed significant chromosome level variations between barley
types, further suggesting hybridization and continued adaptation
of landrace barley under cultivation (Russell et al., 2011). In
addition, Hubner et al. (2012) investigated the extent of gene flow
between wild barley Hordeum spontaneum and cultivated barley
Hordeum vulgare in Jordan. The authors evaluated the effect
population structure. The SNP markers revealed correspondence
of the population structure to the major eco-geographic regions.
Along with Jordan, plant samples from other countries like
Oman, Iraq, Saudi Arabia, and Yemen were also involved in
the SNP studies on barley. Xia et al. (2013) investigated SNP
from the heat shock protein (HSP 17.8) gene across the barley
population (n = 210), with samples collected from 30 countries.
The population from Middle East Asian countries (including
Iraq and Jordan) showed higher nucleotide diversity than the
other regions. In addition, the wild-type population exhibited
greater diversity than the cultivated population. Further studies
might provide new insight in studying the potential genetic
contribution to drought tolerance in barley (Xia et al., 2013).

Apart from barley, Zhang et al. (2012) studied mitochondrial
and chloroplast genomes from two strains of Saudi Arabian
Hassawi rice (Oryza sativa). They discovered new indels and
SNPs in addition to a new type of sequence variation, termed
as reverse complementary variation (RCV) as found in rice
chloroplast genomes. Another study of Saudi Arabian palm
cultivars on mitochondrial and plastid genomes also revealed
plastid heteroplasmy, though low levels of variations were
observed in both genomes (Sabir et al., 2014b). In Yemen, the
association of North American spring wheat breeding mapped
germplasm resistance against stem rust race using SNP markers
(n = 27) (Bajgain et al., 2016). The authors found resistance for
the highly virulent races, which could assist in the development
of varieties with elevated levels of resistance. Another study
on wheat (spring bread var.) exhibited thousands of new SNP
variations in the landraces, which were well adapted to drought
and heat stress environments (Sehgal et al., 2015).

As seen in the studies above, conventional molecular
and genomic techniques are powerful during plant research,
particularly in desert plants. The research findings can be utilized
in biodiversity conservation programs. Additionally, reviewing a
large body of case studies on desert plants would help evaluate
the extent these markers and techniques can be useful for further
studies.

ADVANCED TECHNIQUES ASSOCIATED
WITH PLANT DIVERSITY STUDIES

In the last two decades, molecular markers revolutionized the
study of plant science in the areas of genomics, transcriptomics,
proteomics, metabolomics, etc., altogether emphasizing this
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approach as the science of “omics” (Mosa et al., 2017b). These
techniques were mostly fueled by the emerging new technologies
of next and third generation nucleic acid sequencing, as well as
second-generation peptide sequencing platforms.

Transcriptomics
Transcriptomics involves the study of transcripts which are
formed from the complete set of RNA that are produced
by the genome under specific circumstances or in a specific
tissue. These transcripts can be detected using high-throughput
methods, such as DNA microarray and RNA-Sequencing.
The comparison of transcriptomes can facilitate identification
of genes that are differentially expressed in distinct cell
populations, or in response to different treatments (Mosa
et al., 2017a). Thus, functional genetic diversity in plants
can be effectively analyzed over the stress event, as in
Rhazya stricta, an evergreen shrub from Saudi Arabia upon
which the salt stress response was analyzed. Their results
suggested high expression levels of the responsible genes
[pentatricopeptide repeat (PPR) proteins] regulating large
number of transcripts under salt stress (Hajrah et al., 2017).
Transcriptomics also has the potential to reveal the rate of
genome alteration. For instance, nucleotide substitution was
reported among the intra-varietal SNPs in date palm (Phoenix
dactylifera) cultivars (Khalas, Fahal, and Sukry) exhibiting
slightly higher transversion rates than that of transitions.
Apart from substitution, insertion of plastid DNA into the
mitochondrial genome could result in size expansion, as seen
in the date palm (Phoenix dactylifera) (Fang et al., 2012). The
occurrence of duplication could also result in considerable
variation, as seen in the transcriptome analysis of the previously
discussed medicinal plant R. stricta in Saudi Arabia (Park et al.,
2014). The competency of transcriptomics to reveal nucleic acid
variation exhibits its ability to identify differentially expressed
genes, events of genetic divergence and discrimination of various
plant races.

Proteomics
Proteomics is the analysis of all protein complement of an
organism under a specific, defined set of conditions or in a
biological system. In order to identify individual proteins, there
has been considerable technological development through the
past decades, with the separation technique being the most
commonly used method in proteomics today (Yu et al., 2010).
These developments include advances in mass spectrometry (MS)
technology, protein fractionation techniques, and bioinformatics
tools to analyze and assemble the MS data.

When proteins were compared among the species of specific
plant races, they differed in exhibiting genetic variation,
as observed in characterized protein patterns among all
cultivars of Heliotropium dignyum (Alwhibi, 2017). The seed
storage protein was characterized from different samples of
the shrub H. dignyum, collected from different locations
in Saudi Arabia. The results showed that the amounts
of protein were different, despite being from the same
geographical region. Leaf proteome analysis of the date palm
(Phoenix dactylifera) was carried out to identify proteins

involved in salt and drought stress tolerance. The analysis
revealed differentially expressed genes demonstrating high
or low protein abundance (El Rabey et al., 2016). Thus,
proteomics could assist in differentiating gene contents due
to functional variation occurring under environmental stress
conditions.

Metabolomics
Metabolomics is the study of all metabolites. Small molecules are
the metabolic products generated by the process of metabolism in
every cell and tissue, referred to as the metabolome of a biological
system. Spectroscopy-based metabolic profiling technologies that
can be applied to investigate the metabolic changes between
different plant species and cultivars are mass spectrometry
(MS) and nuclear magnetic resonance (NMR) (Mosa et al.,
2017a). Plants display remarkable genetic plasticity and have
developed an extraordinary range of genetically distinct and
metabolically diverse cultivars for given plant species. Schauer
et al. (2005) evaluated metabolic diversity in trait attributes of
the non-domesticated Solanum lycopersicum species. The goal
was to identify biochemical markers associated with a desired
trait and then apply them for direct progeny selection when
crossed with the domesticated ones. Using GC-MS methodology,
the authors were able to generate profiles for a number
of secondary metabolites, concluding that boosting levels of
nutritionally important metabolites have a higher chance of
success. In wild species, higher levels of secondary metabolites
were observed, suggesting a valuable resource for flavor and
color. Studies associated with stress tolerance in maize seedlings
and roots have been reported to accumulate proline. On the
other hand, drought conditions resulted in an increase in the
levels of glycine betaine in maize leaf during growing seasons
(Saneoka et al., 1995; Yang et al., 1995). Thus, susceptible plant
species could withstand certain stress conditions. Metabolomics
favors the assessment of genetic and phenotypic diversity of
wild relatives of important crops, which may prove to be a
valuable resource in eliciting new traits to the consumer and
environment.

PLANT DNA BARCODING: AN
EMERGING APPROACH

DNA barcoding of plants has become an invaluable tool in
taxonomic classification and the identification of species by
sequencing a very short standardized DNA sequence in a well-
defined gene (Figure 3). The success of this molecular and
genomic technique in distinguishing species offers great hope for
identifying unidentified specimens which might not be identified
on morphological grounds alone. It is well understood that unlike
animals, mitochondrial plant genes perform unsatisfactorily as a
candidate sequence for DNA barcoding. Thus, DNA barcoding
in plants has been considered a more challenging task than
in animals. Ideally, a DNA barcode should allow unambiguous
species identification by having sufficient sequence variation
between closely related species. As there is no single universal
barcode candidate for identifying all plant groups, a comparative
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FIGURE 3 | Workflow of DNA barcoding technique from specimen collection till barcode analysis.

analysis of plant barcode loci is essential for choosing the
best candidates for authenticating particular plant genus/families
(Awad et al., 2017). Researchers have advocated the use of two
or more chloroplast barcodes for the best discrimination in
estimating biodiversity, delimiting species and understanding
species boundaries. The Plant Working Group (PWG) of the
Consortium for the Barcode of Life (CBOL Plant Working Group
et al., 2009) analyzed several chloroplast genomic regions across
the plant kingdom and came up with standard plant DNA
barcode combinations that increase the level of identification
accuracy through incorporating both maturase K (matK),
which offers high resolution and less universality, and ribulose
1,5-bisphosphate carboxylase/oxygenase large subunit (rbcL),
which also offers high universality but less species resolution
(Sathishkumar et al., 2015). By using chloroplast DNA barcodes,
impressive progress has been made in identifying plant species
(Kress and Erickson, 2007). Additionally, several chloroplast
gene regions are typically used as plant barcodes along with
matK and rbcL, which are considered as core barcodes (CBOL
Plant Working Group et al., 2009). However, the power of
this combination decreases when discriminating between closely
related species. The addition of a nuclear internal transcribed
spacer (ITS) to the chloroplast matK and rbcL combination as a
supplementary marker can enhance the discrimination process
(de Vere et al., 2012). Hence, there are some standard regions
of DNA recommended for barcoding studies, including nuclear
DNA (e.g., ITS) and chloroplast DNA (e.g., rbcL, trnL-F, matK,
psbA, trnH, psbK) (Janzen et al., 2009; Vijayan and Tsou, 2010;
Hollingsworth et al., 2011).

DNA barcoding is a useful tool for identifying species and
plant parts nowadays as it neither requires specialized taxonomic
knowledge nor information about the full length of the genome.
In addition, it is not affected by morphological characteristics
or by physiological conditions. This is possible due to the
vast amount of taxonomically identified DNA barcodes being
submitted at NCBI GenBank and Barcode of Life Datasystems.
The taxonomic identification tool at Barcode of Life Datasystems
facilitates identification of unknown species from their DNA
sequences. Furthermore, this DNA-based examination technique
can be implemented to appoint a taxonomic group for the query
specimen to clarify the species boundary, build phylogenetic
trees, and in biodiversity utilization and conservation of plant
species by understanding evolution and ecology (Kress et al.,
2015).

Traditional taxonomy based on morphological feature
observation and chemical/biochemical methods misleads
plant identification if applied on powdered or processed
plant materials (Mosa et al., 2018). Moreover, experience in
taxonomical examinations is necessary in order to reduce
incorrectly drawn conclusions. An important point must be
considered and highlighted while dealing with plants; their
materials can undergo several physiological changes in storage
conditions, which adversely affects the proper identification
process (Mishra et al., 2016). However, the barcoding platform
for analyzing plants at the genomic level could overcome the
problems associated with correct identification while providing
reliable results. As a means to revitalize traditional taxonomy,
DNA barcoding has recently received increased recognition
for the identification and delimitation of various plant species
worldwide. Nowadays, authentication by DNA barcoding in
plants can be easily obtained through raw herbs and definite
amounts of finished dietary supplements in case of insufficient
quantities of obtained DNA (Ramalingam et al., 2015).

Braukmann et al. (2017) utilized the most commonly used
plant DNA barcodes (rbcL, matK, and ITS2) for a comprehensive
analysis of 96% of the Canadian flora and reported that these
markers were highly successful in identifying plants at the genus
level (91–98%). The results indicated that the discriminatory
power of these barcodes for the Canadian vascular plant species
varies depending on the method of analysis and biogeographic
region. The highest resolution was provided by matK, followed
by ITS2 and rbcL. However, the markers varied in their success
of coverage across the species pool. Xu et al. (2018) demonstrated
that DNA barcoding is an efficient tool for identifying invasive
species, and ITS/ITS2 + matK are the most suitable barcodes
for invasive plants in China. As stated by Kress (2017), plant
DNA barcoding will advance to serve the botanical community
for building a more comprehensive plant DNA barcode library
globally for universal use and developing new markers and
adopting new sequencing for various forms of research. Among
others, these studies have provided evidence that a plant DNA
barcode with a high degree of utility can be implemented; they
also illustrated problems that need to be overcome in order to
achieve the ideal barcode.

The intervention of high throughput next generation
sequencing (NGS) technologies now encompasses the
Sanger sequencing platform in DNA barcoding (especially
metabarcoding). In order to circumvent the current reliance of
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generating full length reference barcodes at a relatively slow rate
using Sanger’s sequencing, NGS technologies would be highly
efficient if used for DNA sequence acquisition. Furthermore,
adoption of NGS technologies for DNA barcoding will lead to
database expansion of the available sequence data and would be a
powerful molecular tool for species discovery, evolution and the
conservation of biodiversity (Sucher et al., 2012).

Plant DNA Barcoding in the Arabian
Peninsula
The results of our search analysis exhibit extensive use of the
DNA barcoding technique over any other molecular and genomic
methods for plant biodiversity assessment in the Arabian
Peninsula (Figure 2B). To assess DNA Barcodes generated
from the Arabian Peninsula in the last 10 years (2007–2017),
we conducted a survey on NCBI GenBank to find the most
sequenced marker reported from the Arabian Peninsula for
the plant taxa. We mined core DNA barcode markers (rbcL,
matK and ITS2) and found that the rbcL marker was the
most sequenced barcode region, followed by matK and ITS2
(Figure 4). Moreover, studies utilizing various DNA barcode
markers to analyze genetic variation among plant species are
listed in Table 1.

Our present work emphasizes studies undertaken from the
Arabian Peninsula that have demonstrated the efficiency of DNA
barcode markers in species identification and the assessment
of genetic variation in different geographical regions (Table 1).
Several studies for the authentication of medicinal herbs from
the herbal drug markets in Saudi Arabia have been reported.
The herb Ruta graveolens is morphologically similar to Euphorbia
dracunculoides, which can be used as an adulterant. Their
taxonomic authentication was done using rpoB, rpoC1, and
nrDNA-ITS (Al-Qurainy et al., 2011b,c). In another study, a
molecular signature of the economically important date palm
(Phoenix dactylifera) by Al-Qurainy et al. (2011a) was able
to differentiate among different cultivars by using the rpoB
and psbA-trnH genes. The authors showed that psbA-trnH had
more polymorphic sites than the ropB, and locus. Taxonomic
evaluation is not the only application of DNA barcoding, as
geographical variation was also studied by Bafeel et al. (2011)
in plants from the arid environment of Saudi Arabia using
matK and rbcL universal primers. They concluded a failure in
certain cases of amplification due to primer mismatch at the
annealing site. However, rbcL and matK can still be used for
plant barcoding while the search for other primers with a broader
coverage of plant species is still ongoing (Bafeel et al., 2011).
However, researchers have argued that it is very difficult to find
a universal barcode for the identification of all plant species
due to morphological and geographical variations as well as
reticulate evolution. In the Arabian Gulf region, plant species
are able to withstand extreme and harsh conditions like salinity,
drought, solar radiation and high temperatures in comparison to
plant species in other parts of the world. Bafeel et al. (2012b)
once again evaluated the potential of the rbcL marker for use
in the identification of wild plants in these arid regions. They
concluded that rbcL sequences identified 92% of the samples at

the genus level but only 17% at the species level. In another
study, Bafeel et al. (2012a) performed molecular characterization
of Chenopodium murale, an invasive herbaceous weed species
in Saudi Arabia with negative allelopathic effects to enhance
the morphological identification system. Amplification of the
barcoding genes rbcL and matK in C. murale’s plastid region
indicated that matK possesses high discrimination efficiency and
the lowest average pairwise sequence similarity in comparison
to rbcL, as well as the fact that the combination of rbcL
and matK could yield high resolutions. Another team from
Saudi Arabia tried to identify and discriminate between some
species of the genus Ochradenus viz., O. arabicus and O. baccatus,
which are closely related and confusing species. They used
universal primers (nrITS, rbcL, rpoC1, rpoB, and rps16) for the
amplification of the nuclear ribosomal (nrDNA) and chloroplast
(cpDNA) spacer sequences. Their results revealed that certain
markers (nrITS, rpoB and rpoC1) were more informative by
having larger sequence variations than the rest of the markers
(Khan et al., 2012). Furthermore, Khan et al. (2013) used this tool
to identify an endemic plant species, Senecio asirensis, that has
some poisonous or non-poisonous components with medicinal
value. They used ITS, rpoB, rpoC1, psbA-trn and rps-16 for
the identification and successfully located ITS, psbA-trn and
rps-16.

Another endemic species, Reseda pentagyna (Resedaceae),
was analyzed by Ali et al. (2013) using ITS of nrDNA and
trnL-F of chloroplast sequences. They were able to distinguish
R. pentagyna from the closely related species R. stenostachya,
which differs only in the number of toothed capsules. Results
revealed the proximity and maximal identity of Resedae with
100% bootstrap support and nested within the clade. Al-
Qurainy et al. (2013, 2014a,b) analyzed five species of rare
and endangered plants from Saudi Arabia. Al-Qurainy et al.
(2014a,b) evaluated medicinal plants Nepeta deflersiana and
Plectranthus asirensi using DNA barcoding. In their study,
they used various markers (Table 1), among which ITS was
suggested for rare and endangered plant species, including
P. asirensi (with the exception of N. deflersiana). These species
were successfully distinguished by using rps16 and psbA-trnH
barcode markers. For Plectranthus asirensi, the authors suggested
rbcL and rpoC1 as successful candidate barcode markers for
its identification. Al-Hemaid et al. (2014, 2015) studied the
efficiency of ITS to resolve Echinops mandavillei and Euphorbia
scordifolia respectively using nrITS (ITS1 and ITS2). They used
BLAST and phylogenetic analysis to distinguish these species.
The results concluded that ITS has sufficient potential to
resolve these taxa. Another deciduous medicinal plant, Diospyros
mespiliformis, which is also endangered in Saudi Arabia, was
studied for its plastid rbcL gene. The phylogenetic analysis
succeeded in discriminating it from the other species with
nucleotide variations in three different sites. Therefore, the rbcL
short sequence region (664 bp) was preferred as a DNA marker
for authenticating and identifying samples of D. mespiliformis
(Alaklabi et al., 2014).

Recently, a few studies have been reported from the UAE
and Iraq. The UAE was involved in authenticating date palm
cultivars and a few medicinal plants (Enan and Ahamed, 2014;
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FIGURE 4 | Number of DNA barcodes sequences submitted and published by NCBI GenBank in a decade from the Arabian Peninsula.

FIGURE 5 | Pie chart representing the studies reporting the efficiency of the
plant DNA barcode markers.

Enan and Ahamed, 2016; Enan et al., 2017). The authors analyzed
matK and rpoC1 barcodes in 11 different date cultivars, with
matK deemed to be more useful (Enan and Ahamed, 2014). In
addition, psbK-psbL was found as an eligible barcode marker
in resolving the date palm taxon (Enan and Ahamed, 2016). In
medicinal plants, the rate of PCR amplification for the desert
plants collected freshly and from herbarium using matK, rbcL
and rpoC1 was also tested (Enan et al., 2017). The fresh samples
showed amplification of 90%, 90%, and 80% at matK, rbcL, and
rpoC1 locus, respectively, which was better than the herbarium
samples. The authors also concluded that the rbcL region can be
considered as a potential marker to be utilized for distinguishing
medicinal plants (Enan et al., 2017). In Iraq, a study reported
the use of DNA barcoding to facilitate ethnobotanical trade
in herbal samples (Mati and de Boer, 2011). About 82 species

were collected, of which 4 cryptic taxa of medicinal plants were
subjected to DNA barcoding using ITS markers. They were able
to identify these plants by conducting NCBI BLAST. Overall,
the DNA Barcode markers (including core and supplementary
markers) that were utilized in the above studies were inferred
from Table 1 and a pie chart was constructed to show the
efficiency of the DNA barcode markers studied over a decade in
the Arabian Peninsula (Figure 5).

ROLE OF HERBARIUM COLLECTIONS IN
PLANT DIVERSITY ANALYSIS

Herbaria are widely used as a resource for identifying plants,
establishing their geographic range, describing new species and to
provide an overview of the floral diversity of a region. According
to recent estimates, herbaria contain about 480 million specimens
worldwide, accumulated through the efforts of thousands of
botanists/taxonomists (Thiers, 2017). Plant specimens held in
herbaria and herbarium-type materials are crucial for accurate
plant identification and taxonomy, comparative purposes in
taxonomic or phylogenetic studies (Besnard et al., 2014), as
foundations for the flora of a region, and to provide DNA samples
for research on various aspects of plant biology. Researchers have
considered them as potentially an enormous resource of materials
in molecular phylogeny studies, including the construction
of a DNA barcode library for the flora of a region (Délye
et al., 2013; Xu et al., 2015). Several herbaria in the Arabia
Peninsula exchange herbarium samples of different species.
Having samples of certain species from different countries could
help in defining the most genetically diverse population for
conservation.

Dried plant herbarium specimens have been considered as a
potentially valuable source of DNA (Staats et al., 2011). However,
its extraction at a suitable quality for detailed molecular studies
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is often challenging because of frequent damage to DNA during
storage (Gansauge and Meyer, 2013). It is also highlighted that
the process of extracting DNA from herbarium specimens is
often fraught with difficulty related to such variables as plant
chemistry, specimen drying methods, and the chemical treatment
of specimens (Drábková, 2014). Thus far, many methods have

been developed for the extraction of DNA from herbarium
specimens, with the most frequently used being either the
traditional CTAB protocol (Doyle and Dickson, 1987), sometimes
with modifications (Allen et al., 2006; Cota-Sánchez et al.,
2006; Tarieiev et al., 2011) or DNA extraction kits such as the
DNeasy Plant Mini Kit (Qiagen) (Drábková, 2014). Särkinen et al.

TABLE 1 | Plant DNA barcode markers studied from the Arabian Peninsula.

Nation Locus/Loci Identification Species barcoded (n) Reference

Iraq ITS4+ITS5 Cryptic medicinal plants 4 Mati and de Boer, 2011

Saudi Arabia rpoB Phoenix dactylifera 1(8 cultivars) Al-Qurainy et al., 2011b

psbA-trnH

Saudi Arabia ITS1+ITS2 Ruta graveolens 1 Al-Qurainy et al., 2011c

Saudi Arabia rbcL Arid plants 26 Bafeel et al., 2011

matK

Saudi Arabia rbcL Arid plants 12 Bafeel et al., 2012b

Saudi Arabia rbcL Herbaceous weed
(Chenopodium murale)

1 Bafeel et al., 2012a

matK

Saudi Arabia ITS2 Medicinal plant
(Ochradenus arabicus)

1 Khan et al., 2012

rbcL

rpoB

rpoC1

Saudi Arabia ITS1+ITS2 Rare and endangered
plants

5 Al-Qurainy et al., 2013

Saudi Arabia ITS Reseda pentagyna 1 Ali et al., 2013

trnL-F

Saudi Arabia ITS1 + ITS4 Senecio asirensis 1 Khan et al., 2013

rpoB

rpoC1

psbA-trnH

rps-16

Saudi Arabia rbcL Diospyros mespiliformis 1 Alaklabi et al., 2014

Saudi Arabia ITS1 + ITS2 Nepeta deflersiana 1 Al-Qurainy et al., 2014a

rbcL

rpoB

rpoC1

rps16

psbA-trnH

Saudi Arabia ITS1 + ITS2 Plectranthus asirensi 1 Al-Qurainy et al., 2014b

rbcL

rpoB

rpoC1

rps16

Saudi Arabia ITS1 + ITS2 Echinops mandavillei 1 Al-Hemaid et al., 2014

United Arab Emirates matk Phoenix dactylifera 1 Enan and Ahamed, 2014

rpoC1

Saudi Arabia ITS1+ITS2 Euphorbia scordifolia 1 Al-Hemaid et al., 2015

United Arab Emirates psbK-psbI Phoenix dactylifera 1 Enan and Ahamed, 2016

United Arab Emirates matk Selected medicinal plants 10 Enan et al., 2017

rbcL

rpoC1

United Arab Emirates rbcL Native plants 51 Maloukh et al., 2017

matK
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FIGURE 6 | Number of species in dominant families in the Sharjah Seed bank and Herbarium (SSBH).

(2012) outlined the major challenges of molecular studies using
herbarium DNA and emphasized that despite the large number of
specimens housed in herbaria worldwide, currently only a small
fraction is being used for DNA-based research, mainly due to
the poor success and difficulties in obtaining amplifiable DNA.
The authors proposed that more systematic studies are needed to
optimize methods and their efficiency in obtaining good quality
DNA from herbarium specimens for the success of a molecular
study. In a comprehensive study, de Vere et al. (2012) created
a DNA barcode database for native and archaeophyte flowering
plants and conifers in the nation of Wales. This represented
the largest DNA barcode dataset to utilize herbarium material.
However, there is no universal barcode approach for plants;
researchers are using a number of different molecular markers
for improving success in DNA barcoding.

In recent years, the number of phylogenetic studies using
herbarium specimens has been gaining momentum. Researchers
have been using herbarium specimens in molecular phylogeny
studies and consider them as an interesting potential source of
material for DNA barcoding and the construction of a barcode
library for flora (Cozzolino et al., 2007; Erkens et al., 2008;
Tarieiev et al., 2011; de Vere et al., 2012; Särkinen et al., 2012;
Hebert et al., 2013; Xu et al., 2015; Bakker, 2017). In such studies,
collections of herbaria are used when species are not easily
collected in the field, since it is generally difficult to obtain living
material of certain rare species (Délye et al., 2013). Additionally,
the quality of DNA obtained from herbarium specimens should
ideally be consistent with freshly collected samples for barcoding
studies. Some researchers have successfully amplified DNA
from herbarium specimens by modifying methods of DNA
extraction (Cota-Sánchez et al., 2006; Andreasen et al., 2009;
Staats et al., 2011; Tarieiev et al., 2011; Gutaker et al., 2017).

However, some researchers have highlighted that it is challenging
to find a suitable genomic region for DNA barcoding in
herbarium samples in a wide range of taxa (Lahaye et al., 2008a,b;
Poczai et al., 2009; Drábková, 2014). In such situations, NGS
can allow the simultaneous generation of a large quantity of
sequences for different genomes present in an organism (Glenn,
2011; Harrison and Kidner, 2011). Thus, advances in sequencing
technology are providing new cost-effective options for genome
comparisons on a much larger scale (Nock et al., 2011). The
floristic and genetic information housed in herbaria provide
an exciting prospect to use tissue samples from herbarium
specimens as a source of sequence data for DNA barcoding,
and their applicability for genetic, ecological, and environmental
studies (e.g., Pyke and Ehrlich, 2010; Staats et al., 2011; Culley,
2013).

In instances where obtaining a representative sample of plant
species from diverse areas such as the Arabian Peninsula can
be a logistical challenge, the use of already collected herbarium
samples can potentially overcome such barriers in many
phylogenetic analyses. Furthermore, in cases where no living
plant material exists or is not available for various experiments,
DNA can sometimes be obtained from historical and modern
herbarium specimens despite the potential for degradation due
to age and storage conditions (e.g., Lister et al., 2010; Zuntini
et al., 2013). It has also been highlighted that current DNA
extraction methods involve destructive sampling of the specimen
(e.g., removal of a leaf and subsequent grinding), which can limit
the future use of a specimen for botanical research (Shepherd,
2017). Thus, it is desirable to use DNA extraction methods which
would minimize damage to specimens. Ideally, the reference
collections in herbaria, botanical gardens, museums and other
repositories are critical resources for research, education, and

Frontiers in Plant Science | www.frontiersin.org 13 January 2019 | Volume 9 | Article 1929

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01929 January 17, 2019 Time: 18:39 # 14

Mosa et al. Molecular Techniques for Arabian Peninsula Flora

helping the conservation of biological diversity. Despite the large
number of already existing specimens in herbaria worldwide,
only a small fraction is currently being used for DNA-based
research. Hence, more systematic studies need to be conducted
to optimize methods and their efficiency (Särkinen et al.,
2012).

The Sharjah Seed Bank and Herbarium (SSBH) provide an
important source of reference for the UAE flora (Figure 6). The
herbarium provides opportunities for undertaking biodiversity
research on the UAE flora in the widest sense, including plant
anatomical and morphological analysis, taxonomy, classification
and phylogenetic studies. Concerning DNA barcoding using
herbarium specimens, plant specimens in the SSBH can be
an invaluable resource in constructing a DNA barcode library
of the UAE’s flora. The herbarium can provide taxonomic
identification and survey services to enable more precise
identification of plant samples which are difficult to discriminate
morphologically. Literature suggests that the UAE’s native plant
flora is under-explored in terms of detailed taxonomic and
molecular phylogenetic studies. At present, the herbarium
contains more than 4000 specimens of vascular plants, and
new specimens are continually added as a result of extensive
fieldwork in different parts of the country. These specimens
belong to 382 identified species from 254 genera and 65
families.

CONCLUSION AND FUTURE
PROSPECTS

Molecular and genomic techniques have always been
indispensable tools for taxonomic identification and genetic
diversity analysis. Traditional techniques include RAPD,
RFLP, AFLP, ISSR, SNP, Microsatellites, ESTs and SCAR,
which are undoubtedly valuable tools in understanding the
molecular diversity between closely related species as well
as the population genetics of species encompassing a wide
range of habitats. In addition, such techniques could help
in generating baseline data for undertaking plant breeding
programs. These markers have their own potential in addressing
the above issues but possess some restrictions in relation
to phylogeny reconstruction and taxonomy, possibly due to
lack of universality or ideal markers for species recognition,
which could pose problems or even mislead. Being a fast-
moving field with the advent of new techniques, DNA
barcoding has led toward its goal to resolve taxonomic
issues through phylogenetic reconstruction by recognizing
the mitochondrial COI gene as a universal barcode marker.
Unfortunately, the universality of this gene has been restricted
to animal taxa. For plants, chloroplast markers rbcL and
matK have been recognized as core barcode markers, in some
cases accompanied with supplementary nuclear markers.
Recent technologies have also been upgraded to enable the
acquisition of huge amounts of data through high throughput
sequencing, termed as NGS techniques. With the advent of
NGS technologies, extensive studies are being undertaken
based on cDNA array-based gene expression, identification

of various patterns (microsatellites) in genes of different
organisms, and their metabolic pathways. Moreover, this
technology efficiently generates high quality DNA barcodes
that could improve species diagnostic power, which appears
to be promising (Wilkinson et al., 2017). Additionally, the
integration of multi-omics technologies such as transcriptomics,
proteomics, and metabolomics would enable researchers to
deeply understand the genetic diversity of the Arabian Peninsula
flora.

Arabian Peninsula countries have arid/hyper-arid subtropical
climates. However, there is great heterogeneity in the
environmental conditions. Interestingly, many of the species
overlap in most of these countries. It is plausible to use different
genetic markers to assess the genetic diversity among the
economically important and endangered species within the
whole range of the Peninsula. Such a study would help in
defining the most genetically diverse population that could be
either used for economically important species or conserved
for critically endangered species. For example, seed dormancy
and germination habitat requirements in different halophytes
(i.e., grow well in both saline and non-saline habitats) have
been studied (El-Keblawy et al., 2018). The authors reported
significant differences in germination requirements and
dormancy among seeds of saline and non-saline habitats. They
attributed such differences to transgenerational induction, which
is cued by an environmental signal in the parental generation
and is expressed independently of changes in the offspring
genotype. Transgenerational mechanisms can occur through
maternal and/or epigenetic effects (El-Keblawy et al., 2018). It
is important to define the mechanisms behind the differences
between plants of the two habitats (Donohue, 2009; Soliman
et al., 2018).

In addition, global warming can affect plant distribution and
may cause extinction, especially in mountains which harbor
a unique and large portion of the world’s biodiversity (El-
Keblawy, 2014). Defining more biodiversity-rich populations and
the proper habitat types for conserving endangered and endemic
species (especially those at the top of mountains) should be
among the top research priorities in the area. Very few studies
have assessed the genetic diversity of endemic plants in the
Arabian Peninsula (e.g., Ali et al., 2013; Al-Qurainy et al., 2014a).
However, no study has yet assessed genetic diversity in different
ranges of species distribution.

In order to maintain taxonomic reliability of morphologically
identified specimens, it is important that they be accompanied by
DNA barcodes. As such, herbarium specimens along with DNA
barcodes would provide a trustworthy archive for identifying
native plants and their ecological expanse. The herbarium
at SSBH provides opportunities for undertaking biodiversity
research on the UAE flora in the widest sense. There is a scarcity
of studies emphasizing the application of DNA barcoding in
taxonomic identification and the generation of a barcode library
for plants in the Arabian Peninsula, specifically the UAE. We
conclude with our proposition in the area of DNA barcoding
through the establishment of a DNA barcode toolbox using
herbarium specimens in the SSBH, which possess accurately
identified voucher specimens assigned to barcode sequences.
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Thus, this invaluable resource would assist non-taxonomists and
policy makers to promote future resource monitoring programs
and decide conservation strategies for plants in the UAE.
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