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Starch is a plant storage polyglucan that accumulates in plastids. It is composed of two 
polymers, amylose and amylopectin, with different structures and plays several roles in 
helping to determine plant yield. In leaves, it acts as a buffer for night time carbon starvation.  
Genetically altered plants that cannot synthesize or degrade starch efficiently often grow 
poorly. There have been a number of successful approaches to manipulate leaf starch 
metabolism that has resulted in increased growth and yield. Its degradation is also a 
source of sugars that can help alleviate abiotic stress. In edible parts of plants, starch 
often makes up the majority of the dry weight constituting much of the calorific value of 
food and feed. Increasing starch in these organs can increase this as well as increasing 
yield. Enzymes involved in starch metabolism are well known, and there has been much 
research analyzing their functions in starch synthesis and degradation, as well as genetic 
and posttranslational regulatory mechanisms affecting them. In this mini review, we examine 
work on this topic and discuss future directions that could be used to manipulate this 
metabolite for improved yield.
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INTRODUCTION

The need for improved crop yields due to an increase in world population and a decrease in 
available agricultural land is well known (Edgerton, 2009). This problem will likely be exacerbated 
through alterations in environmental conditions caused by anthropomorphic CO2 release that 
may lead to increases in both biotic and abiotic stresses (Fodor et  al., 2017). There are many 
potential biotechnological methods that can lead to increased yield, and one of these involves 
altering starch metabolism. This mini review will examine work that has been performed to 
improve plant yield through manipulation of this metabolite and suggest new avenues that 
could be  explored.

Starch is a polyglucan that is stored as granules within plastids. It consists of two polymers 
with differing structures, amylose and amylopectin. Amylose contains relatively long (normally 
composed of several hundred glucose monomers) α1,4 linked chains, while amylopectin is 
composed of many short (approximately 5–50 glucose monomers) α1,4 linked chains, linked 
together by α1,6 branch points in an ordered, crystalline array (Zeeman et  al., 2010).

Manipulation of starch metabolism is important for improving plant yield for several reasons. 
As starch is the major form of calories within plants, increasing starch concentrations in 
plant tissues can mean that less food or fodder has to be  consumed to supply the same 
energetic value (Ruckle et al., 2017). It is also a major sink within storage organs, so increasing 
starch here can lead to increased plant yield simply as more accumulates. In leaves, it plays 
two roles. Firstly, it is synthesized during the day and degraded at night, buffering the plant 
from night time carbon starvation (Stitt and Zeeman, 2012; Arias et  al., 2014) which leads 
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to transcriptional upregulation of stress-related genes (Stitt 
et al., 2007) and an inhibition of gibberellin synthesis (Paparelli 
et  al., 2013). Secondly, it is a source of carbon skeletons for 
the production of compatible solutes that help plants to 
overcome abiotic stress (Thalmann and Santelia, 2017). Finally, 
starch has been shown to affect developmental processes 
(Matsoukas et al., 2013), and therefore, its manipulation could 
increase yield through altering plant or seed development.

Starch Metabolism
Due to its many roles, the pathway of starch metabolism has 
been studied intensively, and many enzymatic steps involved in 
its metabolism have been elucidated. This knowledge has been 
used to construct a detailed model of its metabolism, which 
has been described in several recent reviews (Bahaji et al., 2014; 
Pfister and Zeeman, 2016; MacNeill et  al., 2017). The rest of 
this section will briefly outline the major enzymes involved to 
allow for further discussion of the manipulation of the pathway.

Starch polymer formation (Figure 1B) involves the synthesis 
of adenosine diphosphate (ADP)-glucose by ADP-glucose 
pyrophosphorylase (AGPase). This is used by starch synthases 
(SS) to form linear α1,4 glucan chains. One starch synthase 
isoform is responsible for amylose synthesis, while several 
others are involved in granule initiation and amylopectin 
synthesis (Pfister and Zeeman, 2016; Nazarian-Firouzabadi and 
Visser, 2017). The branch points within amylopectin are 
introduced by starch branching enzyme (SBE) isoforms, while 
excess α1,6 links are removed by isoamylases (Pfister and 
Zeeman, 2016; MacNeill et  al., 2017).

Starch degradation (Figure 1A) is initiated by glucan water 
dikinase (GWD) enzymes that phosphorylate the granule, helping 
to solubilize it and allow access to α-, β-, and isoamylases (Streb 
et  al., 2012; Mahlow et  al., 2016). These release phosphorylated 
malto-oligosaccharides into the stroma, where the phosphate is 
removed by glucan phosphatases, allowing further degradation 
to maltose and glucose by the combined actions of amylases 
and disproportionating enzyme 1. Maltose and glucose are exported 
to the cytosol through specific transport proteins, where maltose 
becomes further mobilized by disproportionating enzyme 2 (DPE2; 
Lloyd and Kossmann, 2015).

The regulation of starch metabolism takes place at several 
levels, including both transcriptional and posttranslational 
mechanisms. A number of transcription factors affecting 
expression of genes encoding starch metabolizing enzymes have 
been identified, and their roles are currently being examined. 
At the posttranslational level, allosteric regulation (Zeeman 
et  al., 2010) protein phosphorylation (Kötting et  al., 2010) and 
reducing/oxidation (redox) conditions (Santelia et  al., 2015; 
Skryhan et  al., 2018) are known to influence both enzyme 
activities and the formation of enzyme complexes. The roles 
of these processes will probably differ between leaves and 
heterotrophic storage organs. For example, the redox status 
within chloroplasts varies over a day/night cycle, where reducing 
condition predominates during the day and oxidizing conditions 
at night. Within amyloplasts of heterotrophic tissues, this day/
night cycle will not occur, although it has been shown that 

the alteration in redox status of chloroplasts can be  sensed 
by amyloplasts (Balmer et  al., 2006). Finally, nutrient sensing 
mechanisms would be  expected to link the accumulation of 
soluble sugars, such as sucrose, with starch synthesis through 
a combination of mechanisms including 14-3-3 proteins, 
hexokinase (Rolland et  al., 2006), SnRKs (Crozet et  al., 2014; 
Wurzinger et al., 2018), and TOR kinases (Rolland et al., 2006; 
Dobrenel et  al., 2016; Shi et  al., 2018).

ADP-Glucose Pyrophosphorylase—A Key 
Enzyme for Yield in Both Storage 
Organs and Leaves
ADP-glucose pyrophosphorylase (Figure 1B) has been shown 
to be  a key enzyme influencing starch accumulation in both 
leaves and storage organs. One complicating factor is the level 
of posttranslational control of the enzyme by a combination 
of allosteric effectors and redox, which means that overexpression 
of the native enzyme may not increase flux into starch synthesis 
(Boehlein et  al., 2013a). This has been overcome through the 
use of mutated sequences encoding allosteric and redox insensitive 
isoforms (Tuncel and Okita, 2013). In cereal endosperm, another 
complication is that most AGPase activity is found within the 
cytosol, with a specific transporter localized in the outer plastid 
membrane importing ADP-glucose into the stroma, while in 
noncereal species it is found only in the plastid. Within cereal 
endosperm, the cytosolic pathway plays a greater role than the 
plastidial one (Tuncel and Okita, 2013; Tetlow and Emes, 2017).

It has been known for many years that increasing AGPase 
activity leads to increased starch synthesis, and as was mentioned 
above, increasing starch in food and fodder crops would improve 
their calorific value (Ruckle et  al., 2017, 2018). However, 
interestingly, increasing starch amounts in this way can have 
beneficial effects on plant productivity. In Arabidopsis and 
rice, where leaf AGPase activity has been upregulated, leaf 
starch amounts are increased at the end of the day and the 
plants grow larger (Gibson et  al., 2011; Schlosser et  al., 2014; 
Oiestad et  al., 2016), most likely caused by elevated nighttime 
sugar levels (Stitt and Zeeman, 2012; Arias et  al., 2014).

Increasing AGPase in storage organs can also increase starch 
amounts (Zeeman et al., 2010; Sonnewald and Kossmann, 2013; 
Tuncel and Okita, 2013). Initial work utilized a bacterial gene 
that was insensitive to allosteric regulation (Stark et  al., 1992); 
however, more recent work has used plant genes engineered 
to encode proteins with improved properties (Tuncel and Okita, 
2013). Due to the dual cytosolic and plastidial localization of 
AGPase in cereal endosperm (Figure 1B) compared to its 
plastidial targeting in other organs and species, the subcellular 
targeting of AGPase is critical for successful upregulation of 
starch synthesis. In noncereal species, transgenic plants with 
increased plastidial AGPase activity accumulate increased 
amounts of starch, while in cereal endosperm the enzyme has 
to be  localized to the cytosol to have an effect (Zeeman et  al., 
2010; Sonnewald and Kossmann, 2013; Tuncel and Okita, 2013).

It is clear that AGPase plays a critical role in determining 
starch yield. It is important to understand, therefore, how 
its properties could be  altered to increase yield, especially 
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FIGURE 1 | The pathway of starch degradation in (A) leaves and of starch synthesis in (B) storage organs. (A) Starch is degraded through a  
series of enzymatic steps to maltose and glucose. These are transported from the chloroplast by either the maltose export (MEX) or plastidial  
glucose transport (pGlcT) proteins. Within the cytosol, they are converted to sucrose for further transport. (B) There are two pathways of starch 
synthesis in vascular plants. One is shared in all plants (blue arrows), while the other is present only in cereal endosperm (red arrows). Sucrose is  
degraded to glucose 6-phosphate, which is transported into amyloplasts by the glucose 6-phosphate/phosphate transporter (GPT). The ADP-glucose 
pyrophosphorylase step within the amyloplast utilizes ATP, which is imported into the amyloplast by the plastidial ATP/ADP transporter (NTT). Within 
cereal endosperm, ADP-glucose is synthesized extraplastidially and is imported into amyloplasts by the Brittle-1 transporter.
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in a changing environment. Protein engineering using plant 
genes has led to much knowledge about reducing redox or 
allosteric inhibition of its activity as well as improving its 
activity under heat stress (Georgelis and Hannah, 2008; 
Haedrich et  al., 2012; Boehlein et  al., 2013a,b, 2015), and 
many of these engineered proteins have been transferred 
into plants through transgenic technology (Tuncel and Okita, 
2013). A recent TILLING population targeting this enzyme 
in Arabidopsis has been developed and may help in developing 
nontransgenic routes to increase starch synthesis in vivo using 
gene editing (Haedrich et  al., 2011). Although increasing 
AGPase activity will increase flux into the pathway, this is 
not the only way that it increases yield. In several cereals, 
for example, over-expression of AGPase can increase seed 
number, which in maize has been shown to occur through 
an effect on maternal tissues (Smidansky et  al., 2002, 2003; 
Hannah et  al., 2012, 2017).

Another strategy used to influence the AGPase step in 
storage organs has been to increase supply of its substrates, 
adenosine triphosphate (ATP) and/or glucose 6-phosphate. In 
dicots, ATP limitation of AGPase within plastids has been 
suggested (Geigenberger, 2001), meaning that increasing supply 
would be  a necessity to increase starch contents. This has 
been achieved in potato through overexpression of a plastidial 
adenylate translocator (NTT; which counter-exchanges ATP for 
ADP; Figure 1B). However, reports on the effect of increasing 
NTT expression on starch amounts are mixed. Two studies 
in potato found that this increased starch amounts (Tjaden 
et  al., 1998; Geigenberger, 2001) while another described no 
alteration (Zhang et  al., 2008). That later study did, however, 
find that combined overexpression of the NTT and a plastidial 
glucose 6-phosphate translocator leads to increased starch and 
tuber yield (Zhang et  al., 2008).

A second strategy to influence ATP supply occurred through 
manipulation of a plastidial isoform of adenylate kinase, an 
enzyme that interconverts ATP with ADP and adenosine 
monophosphate (AMP) (Figure 1B). Repression of this enzyme 
led to increased ADP-glucose, tuber starch content, and yield 
(Regierer et  al., 2002), presumably due to an increase in the 
plastidial ATP pool. Indeed, manipulation of nucleotide metabolism 
generally may be  a profitable way to increase starch contents. 
In addition to the adenylate kinase study described above, repression 
of UMP synthase has been demonstrated to lead in uridine 
nucleotides accompanied by an increase in both cell wall and 
starch (Geigenberger et  al., 2005). This is most likely caused by 
increases of flux into both components through increased sucrose 
degradation.

The work performed in altering substrate supply for AGPase 
has generally been performed in dicotyledonous plants. A recent 
study (Cakir et  al., 2016) has examined rice plants where 
an  increase in extra-plastidial AGPase activity was combined 
with overexpression of the plastidial ADP-glucose transporter 
(Figure 1B). They found that, although they could identify 
increased plastidial ADP-glucose amounts, this did not lead 
to an increase in starch, indicating additional stromal barriers 
affecting this pathway. If these could be  identified, then they 
could be  manipulated to allow increased starch accumulation.

Can Alterations in Other Starch 
Biosynthetic Enzymes Increase Yield?
Although most work has examined influencing AGPase as a 
method of increasing starch amounts, it may not be  the only 
protein that can do this. The polymerizing enzymes SS and SBE 
(Figure 1B) are present as multiple isoforms, which often play 
differing roles in determining the structure of the amylopectin 
molecule. It has been reported that increased expression of SS 
encoding genes is associated with increased starch accumulation 
and grain weight caused by expression of a mutated ubiquitin 
receptor in maize (Xie et  al., 2018), while overexpression of one 
SS isoform increased potato tuber starch content (Gámez-Arjona 
et  al., 2011). The data of Gámez-Arjona et  al. (2011) have, 
however, been questioned (Sonnewald and Kossmann, 2013) due 
to the lack of dry matter increase that accompanied the reported 
starch elevation. Nevertheless, these data indicate that manipulation 
of SS isoforms may be  a profitable way in increasing starch 
content.

There are fewer reports of SBE overexpression; however, one 
study in potatoes demonstrated that this led to synthesis of 
starch with altered structure but did not report on an effect 
on yield (Brummell et  al., 2015). Interestingly, manipulation of 
SBE activity in Arabidopsis leaves has revealed a potential method 
for improving growth. Replacement of endogenous Arabidopsis 
activities with two from maize led to plants with increased 
starch in their leaves and improved seed yield, most likely also 
due to increased night-time sugar levels (Liu et  al., 2016).

Are Starch Degradative Enzymes Useful 
for Yield Increases?
Plant biotechnologists have generally attempted to increase 
starch yield through altering activities of enzymes involved in 
its synthesis. Degradative enzymes have often been ignored as 
targets for improving yield as mutations in them are often 
associated with reduced plant growth (Stitt and Zeeman, 2012; 
Paparelli et al., 2013). Recent work, however, has demonstrated 
that repression of the starch phosphorylating GWD enzyme 
(Figure 1A) in wheat endosperm improved both growth and 
seed production. Unfortunately, although this was demonstrated 
convincingly in glasshouse trials (Ral et  al., 2012; Bowerman 
et  al., 2016), when the same lines were examined in the field 
a reduction in yield was observed (Whan et al., 2017). Although 
it may not be a valuable way to increase starch yield in storage 
organs, repressing genes involved in this process could improve 
forage and silage crops by improving their calorific value for 
animal feed (Weise et  al., 2012; Ruckle et  al., 2018).

Manipulating starch degradation (Figure 1A) may have a greater 
role in helping plants overcome abiotic stress (Thalmann and 
Santelia, 2017). One of the main metabolites produced during 
starch catabolism is maltose, and it has been demonstrated that 
this can help stabilize photosynthetic membranes (Kaplan and 
Guy, 2004). dpe2 mutant plants, which accumulate maltose, 
demonstrate reduced freezing damage (Li et  al., 2011); however, 
they also grow smaller than wild-type plants (Chia et  al., 2004). 
One strategy to overcome this may be  the use of stress inducible 
promoters to drive repression constructs that reduce Dpe2 expression 
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only at times when increased maltose would be advantageous. 
Simultaneously, β-amylases that produce maltose during starch 
degradation (Kaplan and Guy, 2004; Kaplan et  al., 2006) could 
be  upregulated to increase levels of this metabolite further.

Control Mechanisms Affecting Starch 
Metabolism
Although alterations of individual enzymatic steps within the 
starch pathway can have a beneficial effect on yield, alterations 
in transcriptional control mechanisms allow the possibility to 
influence these in a beneficial manner through altering multiple 
steps simultaneously. A few transcriptional regulators affecting 
starch metabolism have been identified (Zhang et  al., 2005; 
Fu and Xue, 2010; Guan et al., 2011; Wang et al., 2013; Gontarek 
et  al., 2016; Xiao et  al., 2017), and manipulation of one of 
these led to increased seed size and yield in rice (Fu and 
Xue, 2010). More recently, transcriptional analysis has led to 
the identification of genes putatively involved in regulating 
starch metabolic genes (see for example Van Harsselaar et  al., 
2017), but their roles have often not been studied in detail. 
Such functional analyses would help in identification of factors 
that could be  used to improve yield.

Post-transcriptional regulation will also be  influential in 
controlling starch metabolism. Many sugar sensing mechanisms 
involving 14-3-3- and SnRK proteins, trehalose metabolism, TOR 
kinases, and hexokinase are known to affect starch metabolism. 
Alterations in expression of some 14-3-3 and SnRK proteins can 
lead to improved starch accumulation or to the upregulation of 
enzymes involved in starch synthesis, in several species (Sehnke 
et  al., 2001; McKibbin et  al., 2006; Wang et  al., 2016, 2018). 
Trehalose 6-phosphate (T6P) has been proposed to activate AGPase 
through a post-translational redox mechanism (Kolbe et al., 2005), 
while genetic manipulation of T6P amounts can increase starch 
in leaves through repression of starch degradation (Martins et al., 
2013) as well as increase yield in maize (Nuccio et  al., 2015). 
More recently, it has been demonstrated that application of plant 
permeable analogues of T6P increases endosperm starch content 
and yield in wheat. The reasons for this are not entirely clear 
as many transcriptional and metabolic changes were identified; 
however, application of the same analog to Arabidopsis increased 
AGPase activity which would provide a direct explanation for 
the increased starch (Griffiths et  al., 2016).

Post-translational alteration of proteins involved in starch 
metabolism can involve protein phosphorylation (Kötting et al., 
2010) or reduction/oxidation mechanisms (Glaring et  al., 
2012;  Santelia et  al., 2015). Little is known about protein 
phosphorylation influencing starch metabolism, although a 
recent paper has identified plastidially localized protein kinases 
and phosphatases that may interact with starch metabolic 

enzymes (White-Gloria et  al., 2018), which is a first step in 
the study of this process. More is known about redox control 
as several genes involved in starch metabolism are known to 
be  redox regulated (Fu et  al., 1998; Ballicora et  al., 2000; 
Tiessen et  al., 2002; Sokolov et  al., 2006; Valerio et  al., 2011; 
Glaring et  al., 2012; Seung et  al., 2013; Shaik et  al., 2014), 
and expression of thioredoxin-f increased starch amounts in 
tobacco leaves (Sanz-Barrio et  al., 2013), although it is not 
clear which enzymes were affected. The best characterization 
of the role of redox on starch metabolizing enzymes in vivo 
has been the examination of AGPase and GWD, where redox 
insensitive proteins have been expressed in plants (Haedrich 
et al., 2012; Skeffington et al., 2014). Redox insensitive AGPase 
led to increased leaf starch, although this was dependent on 
day length (Haedrich et al., 2012). On the other hand, constitutive 
expression of a redox insensitive GWD had little effect on 
leaf starch degradation (Skeffington et  al., 2014), which agrees 
with the observation that reducing conditions (which would 
be  expected to be  present in chloroplasts during the day) 
activate the wild-type enzyme (Mikkelsen et  al., 2005).

Future Prospects
Although much has been achieved over the past decades in 
the manipulation of starch metabolism, there are still 
improvements that can be  made. Detailed analysis of both 
transcriptional and post-translational control mechanisms will 
help fine tune current attempts at manipulating the pathway. 
Perhaps most importantly is the rational integration of metabolic 
engineering simultaneously in leaves and storage organs. One 
attempt to accomplish this involved reducing starch synthesis 
in potato leaves in order to increase soluble sugar export, 
while simultaneously increasing substrate supply to starch 
synthesis in tubers through overexpression of two plastidial 
transport proteins (Jonik et  al., 2012). This approach led to 
an increase over and above the amounts found when either 
leaf or tuber metabolism was altered alone, doubling starch 
yield. We  believe that such integrated approaches will lead to 
the greatest benefit for crop improvement.
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