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Background: Halophytes possess efficient salt-tolerance mechanisms and can
complete their life cycles in naturally saline soils with NaCl contents exceeding 200 mM.
While a significant progress have been made in recent decades elucidating underlying
salt-tolerance mechanisms, these studies have been mostly confined to the vegetative
growth stage. At the same time, the capacity to generate high-quality seeds and to
survive early developmental stages under saline conditions, are both critically important
for plants. Halophytes perform well in both regards, whereas non-halophytes cannot
normally complete their life cycles under saline conditions.

Scope: Research into the effects of salinity on plant reproductive biology has gained
momentum in recent years. However, it remains unclear whether the reproductive
biology of halophytes differs from that of non-halophytes, and whether their reproductive
processes benefit, like their vegetative growth, from the presence of salt in the
rhizosphere. Here, we summarize current knowledge of the mechanisms underlying
the superior reproductive biology of halophytes, focusing on critical aspects including
control of flowering time, changes in plant hormonal status and their impact on anther
and pollen development and viability, plant carbohydrate status and seed formation,
mechanisms behind the early germination of halophyte seeds, and the role of seed
polymorphism.

Conclusion: Salt has beneficial effects on halophyte reproductive growth that include
late flowering, increased flower numbers and pollen vitality, and high seed yield. This
improved performance is due to optimal nutrition during vegetative growth, alterations
in plant hormonal status, and regulation of flowering genes. In addition, the seeds of
halophytes harvested under saline conditions show higher salt tolerance than those
obtained under non-saline condition, largely due to increased osmolyte accumulation,
more optimal hormonal composition (e.g., high gibberellic acid and low abcisic acid
content) and, in some species, seed dimorphism. In the near future, identifying key
genes involved in halophyte reproductive physiology and using them to transform crops
could be a promising approach to developing saline agriculture.
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INTRODUCTION

Coastal salt marshes and inland lakes contain significant amounts
of salt, and inappropriate agricultural irrigation has also created
large areas of saline environment (Galvan-Ampudia and Christa,
2011; Yuan et al., 2016a), contaminating both freshwater
reservoirs and soil, particularly in arid and semiarid climatic
zones (Rozema and Flowers, 2008). While soil salinization
threatens the life cycle of most plants, approximately 1% of
known terrestrial plant species flourish in saline conditions and
are referred to as halophytes (Rozema and Flowers, 2008). The
definition of a halophyte is somewhat subjective and varies in the
literature. The most salt-tolerant halophytes can complete their
life cycles in soils containing concentrations of NaCl, equal to,
or even exceeding, that of seawater, e.g., 500 mM (Shabala, 2013;
Song and Wang, 2015). However, the conventional definition
used in the literature is that plants possess halophytism if
they are able to survive and reproduce at NaCl concentrations
exceeding 200 mM NaCl (Flowers and Colmer, 2008; Flowers
et al., 2015; Santos et al., 2015; Yuan et al., 2016a). Based on
mechanisms employed to deal with salinity load, halophytes can
be divided into three categories: euhalophytes [which can actively
compartmentalize toxic ions into their vacuoles, such as Suaeda
salsa (Song et al., 2011; Li X. et al., 2012)], recretohalophytes
[which directly secret salt outside by salt-secretory structures,
e.g., Chenopodium quinoa (Shabala et al., 2014) and Limonium
bicolor (Yuan et al., 2016a, 2018)], and pseudo-halophytes [which
can exclude rather than absorb salt in their roots, such as
Avicennia officinalis (Krishnamurthy et al., 2014)].

Heredity determines the geographical distribution of
halophytes and non-halophytes and their responses to salinity
(Ding et al., 2010a,b; Zhao K.F. et al., 2010; Guo et al., 2012a,b).
The two groups show distinct differences in their maximum
salt tolerance, and tend to form natural halophytic and non-
halophytic populations in saline soil and non-saline alkali soil,
respectively (Chen et al., 2010; Sui et al., 2010; Zhao S.Z. et al.,
2010; Sun et al., 2013). Across the globe, halophytes are found
in two typical kinds of saline environments: intertidal zones
(Figures 1A,B) and inland saline soils (Figures 1C,D). They can
grow to maturity and complete their life cycles in seawater or in
highly saline soil (Chen et al., 2016); examples include mangrove
(Tan et al., 2013), S. salsa (Song et al., 2008), and L. bicolor (Feng
et al., 2014, 2015; Yuan et al., 2016b). In contrast, non-halophytes
(such as most crop plants) are found only in non-saline soils.
Though non-halophytes have also evolved various strategies
to respond to salt stress, their growth declines sharply with
increased NaCl concentration, whereas halophytes can benefit
from higher salt concentrations, within reason, and show an
optimal growth in the presence of significant amounts of NaCl:
e.g., 200 mM for S. salsa (Yang et al., 2010) and Suaeda fruticosa
(Khan et al., 2000), 150 mM for Chenopodium quinoa (Shabala
et al., 2012), and 100 mM for Cakile maritima (Debez et al.,
2004).

Numerous papers have been published dealing with various
aspects of halophyte physiology (Shabala, 2013; Shabala et al.,
2014; Song and Wang, 2015; Yuan et al., 2016b; Dassanayake and
Larkin, 2017; Leng et al., 2018; Liu Q. et al., 2018), biochemistry

FIGURE 1 | Typical saline habitats and halophytes across the globe.
(A) Suaeda salsa grows well and forms a community in the intertidal zone,
which is flooded regularly by seawater. The photograph was taken in the
Yellow River Delta (N 37◦25′; E 118◦54′). (B) Mangroves grow in a sea water.
The photograph was taken in the Dongzhai Harbor National Nature Reserve in
Haikou (N 19◦51′–20◦1′; E 110◦32′–110◦37′). (C) Halophyte communities
(Nitraria tangutorum and Alhagi sparsifolia) live in inland saline soil. The
photograph was taken near Ebinur Lake (N 44◦50′; E 82◦45′) in North
Xinjiang. (D) Photograph of Tamarix gallica in Luntai County (N 41◦47′; E
84◦14′) in South Xinjiang.

and molecular biology (Kirch et al., 2000; Oh et al., 2015;
Himabindu et al., 2016; Ozfidankonakci et al., 2016), ecology
(Flowers and Colmer, 2008; Rozema and Flowers, 2008), and
evolution (Flowers et al., 2010). Moreover, the practical use
of halophytes in saline agriculture has been actively advocated
(Ruan et al., 2010). All these papers have provided insightful
suggestions about the mechanisms underlying the superior
vegetative growth of halophytes under saline conditions.

While vegetative growth is important throughout the life
of a plant, the capacity to set seeds in a hostile environment,
such as saline soil, is equally critical for completing the
life cycle. During the reproductive phase of plant growth,
the meristem growth is almost always determinate, although
the extent of determinacy depends on the inflorescence
architecture (Kwiatkowska, 2008). Salinity stress strongly affects
reproductive growth. Non-halophytes cannot naturally form
seeds under saline conditions, and therefore fail to complete
their life cycles. The reproductive growth is an essential
stage of the plant life cycle, and early germination is equally
important to establishing a population in a saline soil. While
research into the effects of salinity on plant reproductive
biology has been gaining momentum in recent years, it
remains unclear whether the reproductive biology of halophytes
differ from that of non-halophytes, and whether aspects
of halophyte biology relevant to reproduction traits benefit
from the presence of salt, like those related to vegetative
growth. In the current review, we focus on the reproductive
biology of halophytes and non-halophytes grown in saline
environment.
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HALOPHYTE REPRODUCTIVE GROWTH
UNDER SALINE CONDITIONS

Being grown under high-salinity conditions, halophytes often
show increased flower number, decreased sterility, and high
seed quality (Guo et al., 2018). At the same time, salinity
markedly reduces the flower and seed numbers of non-halophytes
grown under same conditions (Sohrabi et al., 2008; Khan et al.,
2015). This difference may be attributed to the limited resource
allocation to flowers and developing seeds in non-halophytes,
which results in a lower fertilization efficiency and less seed
formation (Ledesma and Sugiyama, 2005; Guo et al., 2015).

Halophyte Flowering Time Benefits From
Salinity
Halophytes typically show delayed flowering time under
appropriate salinity. For example, treating plants of the
euhalophyte S. salsa with 400 mM NaCl significantly delays the
time of the first flowering as compared to that in S. salsa not
subjected to saline treatment (Guo et al., 2018). In contrast, in
non-halophytes, salt stress can often cause an early flowering
(Lee et al., 1994) and abortion of flower buds (Sulpice et al.,
2003). Halophytes can also undergo longer flowering periods
(florescence) under saline as compared to non-saline conditions
(Guo et al., 2018).

The underlying mechanisms controlling flowering time
may be explained by genes, domestication, and sustainable
productivity (Cockram et al., 2007), but whether these factors are
affected by salt has been largely not investigated in halophytes.
Some clues may be found in studies from Arabidopsis thaliana
(Arabidopsis). It was shown that in this species, a good flower
onset may benefit from the synthesis of the osmoregulator glycine
betaine (Sulpice et al., 2003). Recent studies have investigated
several genes related to the flowering time and their protein
products. BFT (BROTHER OF FT AND TFL1), a floral repressor,
participates in the inhibition of flowering under high salinity by
competing with FT (FLOWERING LOCUS T) for binding to the
FD transcription factor (Ryu et al., 2014). CDKG2 (CYCLIN-
DEPENDENT KINASE G2) also plays a role in the control of
flowering time under saline conditions (Ma et al., 2015). In
addition, DDF1 (DWARF AND DELAYED-FLOWERING 1) is
also involved in controlling late flowering, and its expression has
been found to always accompany gibberellic acid (GA) synthesis
(Magome et al., 2008).

Halophyte Anther and Pollen Maintain
High Vitality in Saline Conditions Due to
Altered Hormonal Status
Male reproductive development is extremely sensitive to salt
stress as a result of a variety of factors associated with cytoskeletal
alterations, tapetal irregularities, altered sugar utilization, and
meiotic defects or abortion (Nico and Danny, 2014). Pollen
development involves a series of stages, including specification
of stamen identity, archesporial cell initiation, anther cell
establishment, and meiosis (Zhao D. et al., 2003). In most species,
the more mature pollen is, the more susceptible to abiotic

stress it is. The anther and pollen vitality is an indispensable
factor inducing sterility of non-halophytes under salinity stress.
However, in S. salsa, the pollen number and pollen activity
under saline conditions are higher than, or equal to those, under
non-saline conditions, implying that high NaCl concentration
markedly improves the reproductive capacity (Guo et al., 2018).

The mechanisms behind the decreased pollen vitality in non-
halophytes under salinity stress remain to be identified. In rice
and Arabidopsis, the plant hormone gibberellin (GA) participates
in stamen development and tapetum function (Plackett et al.,
2011), and is tightly intertwined with the secretion of callose and
the synthesis and secretion of proteins and lipids for the pollen
coat into the anther locule (Parish and Li, 2010). In addition
to GA’s direct roles in the pollen mother cells, a loss of GA
signal in the tapetum could indirectly block further development
of the gametophytes. In a late stamen development, GA signal
transduction acts partially through a jasmonic acid (JA) signal
via regulation of JA biosynthesis (Plackett et al., 2011). However,
the question of whether GA maintains a stable level in halophytes
requires further investigation.

Salinity can also promote senescence and induce the
production of two other stress-related hormones, ethylene and
abcisic acid (ABA) (Nandwal et al., 2007), which can increase the
number of aborted flowers. Reproductive growth is coordinated
with vegetative growth based on the balance or homeostasis
between ethylene and its receptors. When non-halophytes suffer
from salinity stress, enhanced ethylene production leads to
small rosettes and relatively early flowering, limiting energy
and resource utilization for production of seeds (Cao et al.,
2008). In halophytes, NaCl participates in the conversion of
the precursor l-aminocyclopropane-l-carboxylic acid (ACC) to
ethylene (Chrominski et al., 1986, 1988), and this process
is enhanced under salinity stress in Allenrolfea occidentalis
(Chrominski et al., 1989).

Halophyte Seed Formation and Yield
Benefit From the Presence of Salt
A high positive correlation between leaf area and yield in the
presence of salt exists in many crop species (Richards, 1992).
NaCl treatment did not specifically decrease the development
of reproductive organs in these species, and the production
losses caused by high salinity may result from a reduction
in flower production and/or a decrease in the flower fertility
(Khatun and Flowers, 1995). Interestingly, our recent study found
that the halophyte S. salsa produces a greater weight of seeds
under high salinity than without saline treatment (Figure 2B;
Guo et al., 2018); the same phenomenon has been observed in
Suaeda corniculata (Yang et al., 2017). Similarly, in the halophyte
C. maritima, seed production is stimulated by 50 to 100 mM
NaCl as compared to a no-salt control treatment (Debez et al.,
2004). Another halophyte, Salicornia bigelovii, displayed high
seed yield and biomass production when irrigated with seawater
(Glenn et al., 1998). Its increased seed yield was mainly due to
increased flower number (Figure 2A) and reduced abortion ratio,
which may be related to an increase in pollen vitality or stigma
receptivity (Guo et al., 2015).

Frontiers in Plant Science | www.frontiersin.org 3 January 2019 | Volume 9 | Article 1954

https://www.frontiersin.org/journals/plant-science/
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-09-01954 January 9, 2019 Time: 12:24 # 4

Yuan et al. Reproductive Physiology of Halophytes

FIGURE 2 | Flower number (A) and seed weights (B) of Suaeda salsa grown
with NaCl were markedly enhanced compared with those of S. salsa grown
without NaCl. Data shown in panel A are from our laboratory, bar = 1 mm.
Seed photos in (B) originated (Guo et al., 2018), bar = 250 µm. Treatments
were applied to the sand in which the seeds were sown and then continued
until seed maturity. The seeds were watered twice a day with either a no-NaCl
solution (Hoagland nutrient solution, as control) or 200 mM of NaCl dissolved
in Hoagland nutrient solution.

Higher Carbohydrate Supply Improves
Halophyte Reproductive Growth
In rice, agronomic characteristics related to grain yield show
significant decreases at 50 mM NaCl, mainly due to limitation
in the soluble carbohydrate translocation in spikelets and a
significant inhibition of starch synthase activity (Abdullah et al.,
2010). The situation is rather different in halophytes. The higher
net photosynthetic rates and adequate carbon supply under saline
conditions promote the reproductive growth of S. salsa and
improve the flower fertility and seed size, compared to non-saline
conditions (Guo et al., 2018). Thus, the superior reproductive
growth of halophytes may be fundamentally attributable to their
better resource allocation to flower and developing seeds, as
compared with non-halophytes (Monteiro et al., 2003; Wang
et al., 2017). In non-halophytes, maternal plants grown under
saline conditions are unable to provide sufficient nutrients to the
floral organ, leading to poor reproductive growth or reproductive
failure.

Possible Genes Involved in Salt
Response During Reproductive Growth
Plant reproductive development is controlled by multiple key
regulators of floral identity. APETALA1 (AP1)/CAULIFLOWER
(CAL) and LEAFY (LFY) are redundantly activated by FT
[reviewed by Ruiz-García et al. (1997); Komeda (2004); Blázquez
et al. (2006)]. FLC (FLOWERING LOCUS C, a negative
regulatory gene) and FT (a positive regulatory gene) are
two important flowering-related and determined genes that
regulate the induction of flowering (Lee, 2011; Xu et al., 2012).
Signaling by EXCESS MICROSPOROCYTES1/TAPETUM
DETERMINANT1 (EMS1/TPD1) determines cell fate during
plant sexual reproduction (Jia et al., 2008). Kim and Park (2007)

have found that the transcription factor NTL8 (NTM1-Like’s
8) regulates flowering time under salt stress by downregulating
FT. EARLY FLOWERING3 (ELF3) may also be involved in
salt tolerance (Sakuraba et al., 2017). CYCLIN-DEPENDENT
KINASE G2 (CDKG2) negatively regulates flowering time in
response to salinity stress (Ma et al., 2015). However, it should
be kept in mind that all this knowledge comes from studies on
non-halophytes and thus, cannot be directly extrapolated to
halophytes without additional studies.

EARLY GERMINATION OF HALOPHYTES
UNDER SALINE CONDITIONS

Seed formation is the end of a plant life cycle for annual plants,
but also a new start for the next generation. From the perspective
of generational reproduction and population formation, whether
a new plant can survive, or a population can develop under saline
conditions, is also determined by the germination process. In the
next section, we therefore review current knowledge about the
early survival of halophytes under saline conditions. Halophytes
have evolved several strategies to cope with salinity during
germination, including seed dormancy and heteromorphism,
which are well described in previous reviews (Gul et al., 2013).
Here we focus on the in-depth mechanisms that may explain
the higher germination frequencies of halophytes as compared to
non-halophytes under saline conditions.

Halophytes Show Higher Seed
Germination Than Non-halophytes at
High Salinity
Halophytes can germinate at salinities that kill 99% of non-
halophytes (Manousaki and Kalogerakis, 2011), indicating that
they are more salt tolerant at the germination stage (Ungar, 1978).
Though the seeds of both halophytes and non-halophytes are
able to imbibe water from a saline substrate in a similar manner,
their behavior is otherwise strikingly different (Malcolm et al.,
2003). To date, the seeds of at least ten species of halophytes have
been shown to have higher germination percentages at slightly
elevated salinity (0.5%, around 50–90 mM) than in distilled
water (Qu et al., 2007; Zhang et al., 2012). In the halophyte
C. maritima, NaCl inhibits germination only at concentrations
higher than 200 mM, mainly through an osmotic effect (which
is fully reversible if the seeds are transferred to water) (Debez
et al., 2004). This is consistent with the reported beneficial effects
of salt on halophyte vegetative growth (Flowers and Colmer,
2008).

The above notion is further illustrated by Figure 3, which
shows the germination percentages of typical halophytes and
non-halophytes under an NaCl concentration gradient and over
time. Though beneficial effects of salt on germination have been
reported for some halophytes (Debez et al., 2004), the majority
of halophytes still show a decreased germination even under
low concentration of salinity. Interestingly, the same salinity
levels that can promoting vegetative growth [e.g., 200 mM in
S. salsa in their natural habitats (Song et al., 2008) and 100 mM
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FIGURE 3 | Effect of increasing salinity on the germination percentage (A) and the time course of germination percentage under 100–200 mM NaCl (B) in
halophytes and non-halophytes. Halophytes (solid lines): Suaeda japonica (Yokoishi and Tanimoto, 1994), Chloris virgata (Zhang et al., 2012), Kalidium capsicum
(Tobe et al., 2000), Suaeda physophora (Song et al., 2005), Haloxylon persicum, Haloxylon ammodendron, Suaeda physophora (Song et al., 2005), and Suaeda
salsa (Song et al., 2008). Non-halophytes (dotted lines): Cyperus conglomeratus (Keblawy et al., 2011), Oryza sativa (Jiang et al., 2013), Glycine max (Neves et al.,
2005), Nigella sativa (Papastylianou et al., 2017), Cucumis melo (Sohrabikertabad et al., 2013), Impatiens balsamina (Jiang et al., 2014), and Arabidopsis thaliana
(Wilson et al., 2014).

in Plantago crassifolia (Vicente et al., 2004)] suppress the seed
germination of the same species. Spergularia marina even fails to
germinate in the 2% NaCl treatment (Keiffer and Ungar, 1997).
Thus, seed germination trait appears to be more sensitive to salt
stress compared to vegetative growth. Nevertheless, halophytes
still perform much better than non-halophytes at the germination
stage. The germination percentages for non-halophytes decrease
sharply at even low concentrations of NaCl, and some species
fail to germinate above 100 mM NaCl. In contrast, halophytes
maintain relatively high germination percentages under saline
conditions, which decline slowly with increasing concentrations
of NaCl. There is also a large genetic variability in germination
ability/rate amongst halophytes grown under saline conditions.
S. salsa maintains more than 90% of its germination percentage
being exposed to 700 mM NaCl as compared to non-saline
conditions (Figure 3A). S. salsa and Kalidium capsicum can
rapidly reach more than 50% germination percentages in the
first day, while other halophytes (Suaeda physophora and
Haloxylon persicum) keep slowly increasing germination with
time (Figure 3B). Comparative analysis of the time course of

germination in 100–200 mM NaCl between halophytes and non-
halophytes reveals that maximum germination of halophytes is
achieved in the first 3 days.

Another advantage of halophytes compared with non-
halophytes is that the former can easily get recovery when
transferred to water or solutions of lower salinity. Similar to
germination, the recovery phenomenon also varies between
different halophytes. Some species show high recovery rate of
full germination (reach the control), such as Suaeda fruticosa
(Khan and Ungar, 1997), P. crassifolia (Vicente et al., 2004) and
Haloxylon recurvum (Khan and Ungar, 1996). Other halophytes
exhibit low or little recovery, e.g., Zygophyllum simplex (Khan and
Ungar, 1997).

Inhibition of halophyte germination under high salt
concentration can be alleviated by mild saline pretreatment.
For example, seeds of the halophyte Crithmum maritimum that
are pretreated with 50 mM NaCl show a higher germination
percentage and faster germination at 500 mM NaCl than
untreated seeds (Meot-Duros and Magné, 2008), and the
same phenomenon has been observed for Arthrocnemum
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macrostachyum and Sarcocornia fruticosa, in which osmotic
pretreatments (with salts such as NaCl and MgCl2) promote
germination, doubling the germination percentage under
saline conditions compared to that of plants pretreated with
distilled water (Pujol et al., 2000). The germination of halophyte
P. crassifolia can reach the control after salt priming (Vicente
et al., 2004). Further details and mechanisms behind this
osmopriming effect in halophytes have been reviewed by Gul
et al. (2013).

Halophytes Accumulate High Levels of
Osmolytes During Seed Formation
Seeds of S. salsa harvested under saline conditions for three
successive generations showed higher germination percentage
than those harvested under non-saline conditions (Li W. et al.,
2011; Guo et al., 2015), mainly as a result of the increased
accumulation of osmoregulating substances (such as Na+, soluble
sugars, and seed starch) in saline-grown seeds. These substances
can reduce the water potential of seeds, thus contributing to quick
imbibition under saline conditions.

The seed coat plays a significant role in maintaining seed
viability under hypersaline conditions (Song et al., 2017).
Lipid mobilization (as evidenced by a high transition ratio
of phosphatidylglycerol to sulfoquinovosyldiacylglycerol) (Li X.
et al., 2011), chlorophyll accumulation (Li X. et al., 2012; Zhou
J.C. et al., 2016), soluble sugar accumulation, and sufficient
storage of energy from photosynthesis in seeds (Rolletschek
et al., 2003; Weber et al., 2005) all facilitate rapid germination
under saline conditions (Song and Wang, 2015). Interestingly, in
some halophytes, such as Haloxylon ammodendron and Suaeda
physophora, chlorophyll is found in both dry and imbibed seeds
(Zhang et al., 2010), regardless of whether they were treated
with NaCl. In non-halophyte species, chlorophyll is found in
some immature (Tasaki, 2008) but not in mature seeds. Increased
chlorophyll concentration and oxygen production observed in
the embryos of maturing S. salsa seeds may enhance the salt
tolerance of the seeds and seedlings by changing the lipid
composition of membranes (Zhou J.C. et al., 2016). It has also
been suggested that nitrates provided to seeds by maternal plants
may act as signaling molecules to enhance germination, enabling
plant adaptation to saline environments (Song et al., 2016).
It remains to be determined whether this observation can be
extrapolated to all halophytes.

Phytohormones Participate in Halophyte
Early Germination
Plant hormones play a pivotal role in seed germination and
seed formation under saline conditions (Wang et al., 2015).
Studies of non-halophytes have indicated that the reduced seed
germination of Arabidopsis under saline conditions is caused
by alterations in plant hormonal status (Jung and Park, 2011).
Several genes are strongly induced by NaCl and appear to
be involved in the regulation of seed germination through
ABA–GA crosstalk during salt stress (Yuan et al., 2011). In
particular, the ABA level increases several fold under saline
conditions due to the dramatic increase in expression of the genes

ABA-INSENSITIVE 3 (ABI3) and ABA-INSENSITIVE 5 (ABI5),
which in turn activates the ABA signaling pathway, resulting
in inhibition of seed germination (Piskurewicz et al., 2008).
Meanwhile, REPRESSOR OF GA-LIKE2 (RLG2) transcription
is also activated by salt or by the ABI3/ABI5 pathway,
leading to inactivation of the GA signaling pathway, which
further inhibits germination by blocking or limiting GA
signaling (Yuan et al., 2011). In addition, NaCl has been
observed to induce a negative regulation of GA and a positive
biogenesis of ABA, which delays soybean seed germination
(Shu et al., 2017). Mechanisms underlying osmopriming are
also directly related to the ABA-GA network (Nakaune et al.,
2012).

In addition, ethylene has been reported to promote seed
germination of non-halophytes such as Arabidopsis and lettuce
under salinity stress by upregulating the gene ETHYLENE-
INSENSITIVE 3 (EIN3) (Verma et al., 1973; Lin et al., 2013).
It has been verified in 22 species of halophytes that the
application of exogenous ethylene significantly promotes seed
germination (Khan et al., 2009), especially during later stages of
seed germination (such as radicle breaching of the seed coat)
(Li and Tran, 2017). Thus, it appears that the genes related
to ABA, GA, and ethylene may coordinate and participate
in the response of halophytes to salt that allows them to
maintain high germination rates. In non-halophytes, salt induces
an increase in ABA and a decrease in GA in the embryo,
thus preventing germination. It may be envisaged that in
halophyte seeds, comparatively less ABA is released, more
GA accumulates, and more ethylene synthesis occurs during
germination, explaining their stronger performance under saline
conditions. However, as only few studies have been performed
in halophytes to explain the molecular mechanisms underlying
their good germination under saline conditions, this hypothesis
requires further confirmation.

Ca2+ Is Involved in the Alleviation of Salt
Toxicity
Salinity stress symptoms in plants can be ameliorated by
exogenous Ca2+ application (Rengel, 1992b). Ca2+ participated
in salt alleviation to some degree NaCl stress/toxicity for
certain types of soils (Rengel, 1992a; Zhu, 2016), involved in
enhancing seed germination of halophyte Kalidium caspicum
(Tobe et al., 2002, 2004), facilitating radicle survival (Tobe
et al., 2000) of K. caspicum and promoting polar vegetative
growth (Mori and Schroeder, 2004) in non-halophyte species.
The beneficial effects of Ca2+ treatment are mainly attributed
to both reducing the rate of Na+ uptake by roots resulting
from blockage of non-selective cation channels (NSCC) by
millimolar Ca2+ concentrations (Demidchik and Tester, 2002),
as well as to its ability to prevent NaCl-induced K+ leak
via outward-rectifying channels (Shabala et al., 2007). Calcium
also operates as a second messenger in both SOS (Mario
and Zhu, 2009) and ABA signal pathway (Macrobbie, 2000;
Sokolovski et al., 2008). Salt-tolerant genotypes appear to have a
larger population of Ca2+-sensitive NSCC channels, compared
with salt-sensitive counterparts such as barley (Chen et al.,
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2007). It remains to be answered if increased sensitivity to
Ca2+ and/or its cross-talk with other signaling hormones may
explain better performance of halophyte seeds under saline
conditions.

Physiology and Metabolic Profiles of
Halophyte Dimorphic Seeds
Another possible explanation for the better seed germination and
population establishment of halophytes under saline conditions
is the presence of seed dimorphism (Liu R. et al., 2018), a
feature of some annual halophyte species that can help plants
adapt to a changing environment (Song and Wang, 2015).
For example, soft brown seeds (with a higher germination
percentage) and hard black seeds (dormant) are found in
S. salsa (Li W. et al., 2008; Song et al., 2008) and Suaeda
acuminate (Wang et al., 2012). Green seeds (long-winged type)
and yellow seeds (short-winged type) are found in Salsola
komarovii (Takeno and Yamaguchi, 1991), and the former show
higher germination than latter. The same seed dimorphism
is observed in Salicornia europaea with large seeds (formed
from large flowers) and small seeds (small flowers) (Ungar,
1979; Gasparri et al., 2016). In general, the larger seeds are
the main type showing rapid germination in most halophytes
with dimorphic seeds, such as Atriplex prostrata (Wertis and
Ungar, 1986), Suaeda aralocaspica (Wang et al., 2008), S. salsa
(Song and Wang, 2015), and S. europaea (Orlovsky et al.,
2016).

In addition to differences in germination percentages
and appearance, dimorphic seeds also show differences in
physiology and metabolic profiles related to the underlying
mechanisms of their different behaviors. For example, the
seed coats of brown S. salsa seeds contain more phenolics
than black seeds (Xu et al., 2016), while the latter contain
abundant waxes that can form a protective layer to shield
the embryo from ion toxicity under saline conditions (Song
et al., 2016). The black seeds of S. corniculata have an annual
dormancy/non-dormancy cycle, while the brown seeds remain
non-dormant. Salinity stress induces dormancy in black seeds,
but decreases the viability of brown seeds (Cao et al., 2012).
Thus, black seeds can better maintain their viability under
long-time salinity than brown seeds (Song et al., 2017). In
ecological terms, the black seeds can serve as a seed bank
for long-term preservation in saline environments. Another
difference between the two types of dimorphic seeds lies
in their levels of endogenous hormones, including indole-
3-acetic acid (IAA), free zeatin riboside (ZR), and ABA,
which in S. salsa are much greater in brown seeds than
in black seeds (Wang et al., 2015). These characteristics
may help the species to ensure seedling establishment and
population succession in variable saline environments. Finally,
though the seeds of S. corniculata are collected from two
distant population (F0), the descendants (F1 and F2) still
kept phenotypic differences regardless of whether grown in
low or high salinity, indicating that the traits of dimorphic
seeds are genetically determined and that soil salinity only
plays an ecological role in influencing heteromorphic seed

production (high salinity results in fewer seeds and more
non-dormant brown seeds) (Yang et al., 2017). Recently, Xu
et al. (2017) used dimorphic seeds of S. salsa to perform
differential expression analysis by transcriptome and identified
a series of genes related to embryo development, fatty acid
metabolism, osmoregulatory substances, and plant hormones
that may regulate seed dormancy or germination. In this context,
experiments with dimorphic seeds are a highly promising tool
to reveal the mechanism of seed germination competence in
halophytes.

PERSPECTIVES

The reproductive growth and early germination are two critical
processes that all plants must carry out, in order to survive
under saline conditions, since only plants that can reproduce
and germinate have a chance to complete their life cycle
and establish descendant populations. Halophytes perform
well in both respects under saline conditions. The current
review mainly pay attention to the majority of halophytes
that show promoted reproductive growth; however, it is
worth noting that not all halophytes show the stimulation
of growth or germination at low or moderate salinities, and
some especial exceptions exist in different germplasms of
the same species. For example, one accession (from Tabarka,
Tunisian) of halophyte Cakile maritime behaves limited growth
under 100 mM NaCl (Ben Amor et al., 2010), while other
accessions of this species have enhanced biomass (Ksouri et al.,
2007).

In the future, analyzing the in-depth mechanisms of salt
tolerance in halophytes, isolating the unique genes involved,
and creating new salt-tolerant plants by genetic engineering
represents a promising approach toward developing saline
agriculture. However, few reports have uncovered the key genes
involved in the reproductive growth and early germination
of halophytes. To date, certain salt-tolerance genes involved
in vegetative growth have been cloned, and many key genes
have been transformed into non-halophytes to verify their
functions (Table 1). The maximum salt concentration tolerated
by such transgenic plants was 400 mM (Li W. et al.,
2011; Jha et al., 2012). Heterologous expression of halophytic
salt-tolerance genes indeed improves the salt resistance of
non-halophytes to a certain degree; however, no reports
have demonstrated the stable expression of such genes in
the next generation. The reason for this lies in a fact
that the targeted traits were related to vegetative growth
but not to seed formation or early germination. As a
result, transgenic plants grew reasonably well in controlled
condition but could not complete their life cycle in saline
land.

Therefore, to improve salinity tolerance in non-halophytes,
key genes related to seed germination and formation should
be also targeted and pyramided in the transformed plants. The
utility of this approach was confirmed in a preliminary fashion
by an assessment of Arabidopsis transformed with the gene
coda involved in reproductive growth, which showed improved
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TABLE 1 | Cloned halophyte genes related to salt tolerance and their effects after transformation into non-halophytes.

Halophyte species Gene Probable function of
gene product in salt
tolerance

Effect when transformed into non-halophyte Reference

Aeluropus littoralis AlNHX Vacuolar-type Na+/H+

antiporter
Transgenic tobacco overexpression lines had high salt
tolerance (400 mM NaCl) and compartmentalized more
Na+ in the roots to maintain a relatively high K+/Na+

ratio in the leaves.

Zhang et al., 2008

Kalidium foliatum KfVP1 H+-pyrophosphatase Transgenic Arabidopsis showed more vigorous growth
than the wild type and accumulated more Na+ in the
leaves in 120 mM NaCl

Yao et al., 2012

Salicornia brachiata SbASR-1 Abscisic acid stress
ripening-1

Transgenic T0 tobacco seeds showed better
germination and seedling growth than the wild type in
400 mM NaCl

Jha et al., 2012

SbSOS1 Plasma membrane Na+/H+

antiporter
Transgenic tobacco showed high seed germination and
a high degree of salt tolerance in 200 mM NaCl

Yadav et al., 2012

SbpAPX Peroxisomal ascorbate
peroxidase

Transgenic tobacco showed enhanced salt and drought
tolerance, with enhanced vegetative growth and higher
germination rates than the wild type in 300 mM NaCl

Singh et al., 2014

Salsola soda SsNHX1 Putative vacuolar Na+/H+

antiporter
Transgenic Medicago sativa grew in high
concentrations of NaCl (up to 400 mM) as a result of
improved Na+ sequestration in vacuoles

Li W. et al., 2011

Sesuvium portulacastrum SpAQP1 Aquaporin-related protein
whose expression is
induced by salt

Transgenic tobacco had increased activity of
antioxidative enzymes, and enhanced seed germination
and root growth in 200 mM NaCl

Chang et al., 2016

Spartina alterniflora SaVHAc1 A vacuolar ATPase subunit
c1

Transgenic rice showed early stomata closure and
increased K+/Na+ ratio

Niranjan et al., 2012

Suaeda salsa SsVP Vacuolar
H+-pyrophosphatase

Higher salt tolerance in transgenic Arabidopsis was
related to higher activities of V-ATPase and V-PPase

Guo et al., 2006

SsHKT1;1 High-affinity K+ transporter Transgenic Arabidopsis showed enhanced salt
tolerance and increased shoot K+ concentration

Shao et al., 2014

Ss.sAPX Stroma ascorbate
peroxidase

Transgenic Arabidopsis overexpression lines had
increased germination rates, cotyledon growth, and
survival under saline conditions

Li K. et al., 2012

Suaeda asparagoides SaDhn and
SaRBP1

Dehydrin and RNA-binding
protein

Transgenic yeast overexpression lines showed
enhanced tolerance to osmotic, freezing, and
heat-shock stresses

Ayarpadikannan et al.,
2012

Zoysia matrella ZmVP1 A type I VP homolog gene
induced by salt

Transgenic Arabidopsis grew more vigorously than the
wild type in 300 mM NaCl because of higher activities
of V-ATPase and V-PPase

Chen et al., 2015

reproductive growth due to the resulting accumulation of the
osmoregulator glycine betaine, especially in flowers and siliques
(Sulpice et al., 2003).

Until now, with a single exception of KcNHX in Karelinia
caspica (Liu L. et al., 2012), all salt-tolerance genes cloned
in halophytes have been heterologously expressed in non-
halophytes to illustrate their function. The usefulness of this
approach is jeopardized by the fact that salinity tolerance is a
complex trait that cannot be controlled by a single or a few
genes, prompting a need for a pyramiding approach and targeting
gene networks. This results in a need to obtain genetic evidence
for the functional role of specific gene(s) in the “native” (i.e.,
halophyte) systems. The recent development of transformation
systems for certain halophytes (Ishimaru, 1999; Sun and Hong,
2012; Yuan et al., 2014) opens prospects for validating the
functions of the key halophyte genes by knockout, CRISPR-cas9,
or overexpression studies in halophytes themselves. Moreover,
many halophytes such as S. europaea is a promising crop

(crop adapted halophyte), and present on food market as a tea,
juice, powder, etc. (Gunning, 2016). Thus, the domestication
of existing halophytic plants is another approach that should
be considered for developing crops that can grow under saline
conditions.

Given the paucity of the existing data, many aspects of the
reproductive biology of halophytes remain to be elucidated. An
important step in this process is the recent genome sequencing
of Z. marina (Olsen et al., 2016) and Chenopodium quinoa (Jarvis
et al., 2017; Zou et al., 2017). In the near future, it will be necessary
to obtain more genome sequences so as to study salt-tolerance
mechanisms in a broader range of halophytes – such as L. bicolor,
which has salt glands; and S. salsa, which shows leaf and stem
succulence – to detect the key genes and networks underlying
these traits.

Halophytes provide good material for studying salt-tolerance
mechanisms, especially those involved in seed formation and
germination under saline conditions. Subsequent salt-tolerance
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studies may thus be focused on halophytes instead of non-
halophytes. Moreover, mutant libraries for halophytes should be
constructed to verify the functions of salt-tolerance genes. The
use of ethyl methanesulfonate (EMS) or gamma ray mutagenesis
and/or CRISPR-cas9 in halophytes may represent feasible
approaches to obtaining mutants with differences in salt tolerance
(Yuan et al., 2013, 2015). We hope to obtain salt-sensitive
halophyte strains by applying the above mutagenesis techniques
followed by transcriptome or expression profiling. Such work
would allow us to accurately identify a series of salt-related genes
by comparing the mutants’ profiles with those of the wild type.
Therefore, more efficient transformation systems for different
types of halophytes urgently need to be established. The detailed
mechanisms underlying the good reproductive growth and early
germination of halophytes can then be further investigated at the
molecular level.
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